package herdtools7

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file diet.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
(*
 * Copyright (C) 2016 David Scott <dave@recoil.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 *)

[@@@warning "-44"]

module type ELT = sig
  type t

  val compare : t -> t -> int
  val zero : t
  val pred : t -> t
  val succ : t -> t
  val sub : t -> t -> t
  val add : t -> t -> t
  val to_string : t -> string
end

module type INTERVAL_SET = sig
  type elt
  type interval

  module Interval : sig
    val make : elt -> elt -> interval
    val x : interval -> elt
    val y : interval -> elt
  end

  type t

  val equal : t -> t -> bool
  val compare : t -> t -> int
  val pp : Format.formatter -> t -> unit
  val empty : t
  val is_empty : t -> bool
  val singleton : elt -> t
  val cardinal : t -> elt
  val mem : elt -> t -> bool
  val fold : (interval -> 'a -> 'a) -> t -> 'a -> 'a
  val fold_individual : (elt -> 'a -> 'a) -> t -> 'a -> 'a
  val filter_map_individual : (elt -> elt option) -> t -> t
  val iter : (interval -> unit) -> t -> unit
  val add : interval -> t -> t
  val remove : interval -> t -> t
  val min_elt : t -> elt
  val max_elt : t -> elt
  val min_interval : t -> interval
  val max_interval : t -> interval
  val choose : t -> interval
  val take : t -> elt -> (t * t) option
  val union : t -> t -> t
  val unions : t list -> t
  val diff : t -> t -> t
  val inter : t -> t -> t
  val subset : t -> t -> bool
  val cross_filter_map_individual : (elt -> elt -> elt option) -> t -> t -> t
  val find_next_gap : elt -> t -> elt
  val elements : t -> interval list
  val elements_individual : t -> elt list
  val of_list : elt list -> t
  val check_invariants : t -> (unit, string) result
  val height : t -> int
end

module Make (Elt : ELT) = struct
  type elt = Elt.t

  module Elt = struct
    include Elt

    let ( - ) = sub
    let ( + ) = add
  end

  type interval = elt * elt

  module Interval = struct
    let make x y =
      if x > y then invalid_arg "Interval.make";
      (x, y)

    let x = fst
    let y = snd
  end

  let ( > ) x y = Elt.compare x y > 0
  let ( >= ) x y = Elt.compare x y >= 0
  let ( < ) x y = Elt.compare x y < 0
  let ( <= ) x y = Elt.compare x y <= 0
  let eq x y = Elt.compare x y = 0
  let succ, pred = (Elt.succ, Elt.pred)

  type t = Empty | Node : node -> t
  and node = { x : elt; y : elt; l : t; r : t; h : int; cardinal : elt }

  let rec cons_enum t enum =
    match t with
    | Empty -> enum
    | Node ({ l; _ } as node) -> cons_enum l (node :: enum)

  let compare_with_invariant { x; y; _ } { x = x'; y = y'; _ } =
    if eq x x' && eq y y' then 0 else if y < x' then -1 else 1

  let rec compare_aux enum enum' =
    match (enum, enum') with
    | [], [] -> 0
    | [], _ -> -1
    | _, [] -> 1
    | node :: enum, node' :: enum' -> (
        match compare_with_invariant node node' with
        | 0 -> compare_aux (cons_enum node.r enum) (cons_enum node'.r enum')
        | c -> c)

  let compare t t' = compare_aux (cons_enum t []) (cons_enum t' [])
  let equal t t' = compare t t' = 0

  let rec pp fmt = function
    | Empty -> Format.fprintf fmt "Empty"
    | Node n -> pp_node fmt n

  and pp_node fmt { x; y; l; r; h; cardinal } =
    Format.pp_open_vbox fmt 0;
    Format.fprintf fmt "x: %s@," (Elt.to_string x);
    Format.fprintf fmt "y: %s@," (Elt.to_string y);
    Format.fprintf fmt "l:@[@\n%a@]@," pp l;
    Format.fprintf fmt "r:@[@\n%a@]@," pp r;
    Format.fprintf fmt "h: %d@," h;
    Format.fprintf fmt "cardinal: %s" (Elt.to_string cardinal);
    Format.pp_close_box fmt ()

  let height = function Empty -> 0 | Node n -> n.h
  let cardinal = function Empty -> Elt.zero | Node n -> n.cardinal

  let create x y l r =
    let h = max (height l) (height r) + 1 in
    let cardinal = Elt.(succ (y - x) + cardinal l + cardinal r) in
    Node { x; y; l; r; h; cardinal }

  let rec node x y l r =
    let hl = height l and hr = height r in
    let open Stdlib in
    if hl > hr + 2 then
      match l with
      | Empty -> assert false
      | Node { x = lx; y = ly; l = ll; r = lr; _ } -> (
          if height ll >= height lr then node lx ly ll (node x y lr r)
          else
            match lr with
            | Empty -> assert false
            | Node { x = lrx; y = lry; l = lrl; r = lrr; _ } ->
                node lrx lry (node lx ly ll lrl) (node x y lrr r))
    else if hr > hl + 2 then
      match r with
      | Empty -> assert false
      | Node { x = rx; y = ry; l = rl; r = rr; _ } -> (
          if height rr >= height rl then node rx ry (node x y l rl) rr
          else
            match rl with
            | Empty -> assert false
            | Node { x = rlx; y = rly; l = rll; r = rlr; _ } ->
                node rlx rly (node x y l rll) (node rx ry rlr rr))
    else create x y l r

  let depth tree =
    let rec depth tree k =
      match tree with
      | Empty -> k 0
      | Node n -> depth n.l (fun dl -> depth n.r (fun dr -> k (1 + max dl dr)))
    in
    depth tree (fun d -> d)

  module Invariant = struct
    let ( >>= ) xr f = match xr with Ok x -> f x | e -> e

    let ensure b msg t =
      if b then Ok () else Error (Format.asprintf "%s: %a" msg pp t)

    let rec on_every_node d f =
      match d with
      | Empty -> Ok ()
      | Node n ->
          f n d >>= fun () ->
          on_every_node n.l f >>= fun () -> on_every_node n.r f

    (* The pairs (x, y) in each interval are ordered such that x <= y *)
    let ordered { x; y; _ } =
      ensure (x <= y) "Pairs within each interval should be ordered"

    (* The intervals don't overlap *)
    let no_overlap { x; y; l; r; _ } n =
      let error = "Intervals should be ordered without overlap" in
      (match l with Empty -> Ok () | Node left -> ensure (left.y < x) error n)
      >>= fun () ->
      match r with Empty -> Ok () | Node right -> ensure (right.x > y) error n

    let no_adjacent { x; y; l; r; _ } n =
      let error = "Intervals should not be adjacent" in
      (match l with
      | Empty -> Ok ()
      | Node left -> ensure (Elt.succ left.y < x) error n)
      >>= fun () ->
      match r with
      | Empty -> Ok ()
      | Node right -> ensure (Elt.pred right.x > y) error n

    let node_height n = n.h
    let node_depth n = depth (Node n)

    (* The height is being stored correctly *)
    let height_equals_depth n =
      ensure
        (node_height n = node_depth n)
        "The height is not being maintained correctly"

    let balanced { l; r; _ } =
      let diff = height l - height r in
      let open Stdlib in
      ensure (-2 <= diff && diff <= 2) "The tree has become imbalanced"

    let check_cardinal { x; y; l; r; cardinal = c; _ } =
      ensure
        Elt.(c - cardinal l - cardinal r - y + x = succ zero)
        "The cardinal value stored in the node is wrong"

    let check t =
      on_every_node t ordered >>= fun () ->
      on_every_node t no_overlap >>= fun () ->
      on_every_node t height_equals_depth >>= fun () ->
      on_every_node t balanced >>= fun () ->
      on_every_node t check_cardinal >>= fun () -> on_every_node t no_adjacent
  end

  let empty = Empty
  let is_empty = function Empty -> true | _ -> false

  let rec mem elt = function
    | Empty -> false
    | Node n ->
        (* consider this interval *)
        (elt >= n.x && elt <= n.y)
        ||
        (* or search left or search right *)
        if elt < n.x then mem elt n.l else mem elt n.r

  let rec min_interval = function
    | Empty -> raise Not_found
    | Node { x; y; l = Empty; _ } -> (x, y)
    | Node { l; _ } -> min_interval l

  let rec max_interval = function
    | Empty -> raise Not_found
    | Node { x; y; r = Empty; _ } -> (x, y)
    | Node { r; _ } -> max_interval r

  let min_elt t = min_interval t |> Interval.x
  let max_elt t = max_interval t |> Interval.y
  let choose = function Empty -> raise Not_found | Node { x; y; _ } -> (x, y)

  (* fold over the maximal contiguous intervals *)
  let rec fold f t acc =
    match t with
    | Empty -> acc
    | Node n ->
        let acc = fold f n.l acc in
        let acc = f (n.x, n.y) acc in
        fold f n.r acc

  (* fold over individual elements *)
  let fold_individual f t acc =
    let range (from, upto) acc =
      let rec loop acc x =
        if eq x (succ upto) then acc else loop (f x acc) (succ x)
      in
      loop acc from
    in
    fold range t acc

  let elements t = fold List.cons t []
  let elements_individual t = fold_individual List.cons t []

  (* iterate over maximal contiguous intervals *)
  let iter f t =
    let f' itl () = f itl in
    fold f' t ()

  (* return (x, y, l) where (x, y) is the maximal interval and [l] is
     the rest of the tree on the left (whose intervals are all smaller). *)
  let rec splitMax = function
    | { x; y; l; r = Empty; _ } -> (x, y, l)
    | { r = Node r; _ } as n ->
        let u, v, r' = splitMax r in
        (u, v, node n.x n.y n.l r')

  (* return (x, y, r) where (x, y) is the minimal interval and [r] is
     the rest of the tree on the right (whose intervals are all larger) *)
  let rec splitMin = function
    | { x; y; l = Empty; r; _ } -> (x, y, r)
    | { l = Node l; _ } as n ->
        let u, v, l' = splitMin l in
        (u, v, node n.x n.y l' n.r)

  let addL = function
    | { l = Empty; _ } as n -> n
    | { l = Node l; _ } as n ->
        (* we might have to merge the new element with the maximal interval from
           the left *)
        let x', y', l' = splitMax l in
        if eq (succ y') n.x then { n with x = x'; l = l' } else n

  let addR = function
    | { r = Empty; _ } as n -> n
    | { r = Node r; _ } as n ->
        (* we might have to merge the new element with the minimal interval on
           the right *)
        let x', y', r' = splitMin r in
        if eq (succ n.y) x' then { n with y = y'; r = r' } else n

  let rec add (x, y) t =
    if y < x then invalid_arg "interval reversed";
    match t with
    | Empty -> node x y Empty Empty
    (* completely to the left *)
    | Node n when y < Elt.pred n.x ->
        let l = add (x, y) n.l in
        node n.x n.y l n.r
    (* completely to the right *)
    | Node n when Elt.succ n.y < x ->
        let r = add (x, y) n.r in
        node n.x n.y n.l r
    (* overlap on the left only *)
    | Node n when x < n.x && y <= n.y ->
        let l = add (x, pred n.x) n.l in
        let n = addL { n with l } in
        node n.x n.y n.l n.r
    (* overlap on the right only *)
    | Node n when y > n.y && x >= n.x ->
        let r = add (succ n.y, y) n.r in
        let n = addR { n with r } in
        node n.x n.y n.l n.r
    (* overlap on both sides *)
    | Node n when x < n.x && y > n.y ->
        let l = add (x, pred n.x) n.l in
        let r = add (succ n.y, y) n.r in
        let n = addL { (addR { n with r }) with l } in
        node n.x n.y n.l n.r
    (* completely within *)
    | Node n -> Node n

  let union a b =
    let a' = cardinal a and b' = cardinal b in
    if a' > b' then fold add b a else fold add a b

  (* Added by Hadrien Renaud *)
  let rec pairwise_unions acc = function
    | [] -> acc
    | x :: [] -> x :: acc
    | x :: y :: li -> pairwise_unions (union x y :: acc) li

  let rec unions = function
    | [] -> empty
    | x :: [] -> x
    | li -> pairwise_unions [] li |> unions
  (* End added by Hadrien Renaud *)

  let merge l r =
    match (l, r) with
    | l, Empty -> l
    | Empty, r -> r
    | Node l, r ->
        let x, y, l' = splitMax l in
        node x y l' r

  let rec remove (x, y) t =
    if y < x then invalid_arg "interval reversed";
    match t with
    | Empty -> Empty
    (* completely to the left *)
    | Node n when y < n.x ->
        let l = remove (x, y) n.l in
        node n.x n.y l n.r
    (* completely to the right *)
    | Node n when n.y < x ->
        let r = remove (x, y) n.r in
        node n.x n.y n.l r
    (* overlap on the left only *)
    | Node n when x < n.x && y < n.y ->
        let n' = node (succ y) n.y n.l n.r in
        remove (x, pred n.x) n'
    (* overlap on the right only *)
    | Node n when y > n.y && x > n.x ->
        let n' = node n.x (pred x) n.l n.r in
        remove (succ n.y, y) n'
    (* overlap on both sides *)
    | Node n when x <= n.x && y >= n.y ->
        let l = remove (x, n.x) n.l in
        let r = remove (n.y, y) n.r in
        merge l r
    (* completely within *)
    | Node n when eq y n.y -> node n.x (pred x) n.l n.r
    | Node n when eq x n.x -> node (succ y) n.y n.l n.r
    | Node n ->
        assert (n.x <= pred x);
        assert (succ y <= n.y);
        let r = node (succ y) n.y Empty n.r in
        node n.x (pred x) n.l r

  let diff a b = fold remove b a
  let inter a b = diff a (diff a b)
  let subset a b = is_empty (diff a b)

  let rec find_next_gap from = function
    | Empty -> from
    | Node n ->
        (* consider this interval *)
        if from >= n.x && from <= n.y then succ n.y (* or search left *)
        else if from < n.x then find_next_gap from n.l (* or search right *)
        else find_next_gap from n.r

  let take t n =
    let rec loop acc free n =
      if n = Elt.zero then Some (acc, free)
      else
        match
          try
            let i = choose free in
            let x, y = Interval.(x i, y i) in
            let len = Elt.(succ @@ (y - x)) in
            let will_use = if Stdlib.(Elt.compare n len < 0) then n else len in
            let i' = Interval.make x Elt.(pred @@ (x + will_use)) in
            Some (add i' acc, remove i' free, Elt.(n - will_use))
          with Not_found -> None
        with
        | Some (acc', free', n') -> loop acc' free' n'
        | None -> None
    in
    loop empty t n

  let of_sorted_list =
    let rec loop acc x y = function
      | [] -> add (Interval.make x y) acc
      | z :: t ->
          let y' = Elt.succ y in
          if eq y' z then loop acc x y' t
          else loop (add (Interval.make x y) acc) z z t
    in
    function [] -> empty | x :: t -> loop empty x x t

  let of_list li = List.sort_uniq Elt.compare li |> of_sorted_list

  let filter_map_individual f t =
    fold_individual
      (fun x acc -> match f x with Some z -> z :: acc | None -> acc)
      t []
    |> of_list

  let cross_filter_map_individual f t1 t2 =
    fold_individual
      (fun x ->
        fold_individual
          (fun y acc -> match f x y with Some z -> z :: acc | None -> acc)
          t2)
      t1 []
    |> of_list

  let check_invariants = Invariant.check
  let singleton x = add (Interval.make x x) empty

  let pp_interval fmt i =
    let x, y = Interval.(x i, y i) in
    if eq x y then Format.fprintf fmt "{%s}" (Elt.to_string x)
    else Format.fprintf fmt "[%s, %s]" (Elt.to_string x) (Elt.to_string y)

  let pp fmt =
    let open Format in
    function
    | Empty -> fprintf fmt "∅"
    | t ->
        let m = min_interval t in
        let t = remove m t in
        pp_open_hovbox fmt 0;
        pp_interval fmt m;
        iter
          (fun i ->
            fprintf fmt "@ \u{222a} ";
            pp_interval fmt i)
          t;
        pp_close_box fmt ()
end

module Int_elt = struct
  type t = int

  let compare a b = compare (a : int) b
  let zero = 0
  let pred = pred
  let succ = succ
  let sub = ( - )
  let add = ( + )
  let to_string = string_of_int
end

module Int = Make (Int_elt)
module Int64 = Make (Int64)
module Z = Make (Z)
OCaml

Innovation. Community. Security.