package herdtools7

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file StaticOperations.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
open AST
open ASTUtils
module TypingRule = Instrumentation.TypingRule

let ( |: ) = Instrumentation.TypingNoInstr.use_with
let exact e = Constraint_Exact e
let range a b = Constraint_Range (a, b)

(* Begin ConstraintMod *)
let constraint_mod = function
  | Constraint_Exact e | Constraint_Range (_, e) ->
      range zero_expr (binop MINUS e one_expr) |: TypingRule.ConstraintMod
(* End *)

(* Begin PossibleExtremitiesLeft *)

(** [possible_extremities_left op a b] is given a range [a..b] the set of
    needed extremities of intervals for the left-hand-side of an operation
    [op]. *)
let possible_extremities_left op a b =
  match op with
  (* MUL is not left-increasing: if c is negative, then the following is not
     true: if x < y then x op c < y op c This is why we have to add the
     reversed intervals. We also have to add the intervals (a, a) and (b, b)
     for the case where a < 0 < b and c < 0 < d. *)
  | MUL ->
      [ (a, a); (a, b); (b, a); (b, b) ] |: TypingRule.PossibleExtremitiesLeft
  (* All the following operations are left-increasing:
     for any operation op among those, if x < y, and c a valid value for the
     right-hand side of op, x op c < y op c *)
  | DIV | DIVRM | SHR | SHL | PLUS | MINUS -> [ (a, b) ]
  | _ -> assert false
(* End *)

(* Begin PossibleExtremitiesRIght *)

(** [possible_extremities_right op a b] is given a range [a..b] the set of
    needed extremities of intervals for the right-hand-side of an operation
    [op]. *)
let possible_extremities_right op c d =
  match op with
  (* PLUS is right-increasing. *)
  | PLUS -> [ (c, d) ] |: TypingRule.PossibleExtremitiesRight
  (* MINUS simply reverse the intervals. *)
  | MINUS -> [ (d, c) ]
  (* We need:
      - the normal interval if the left-hand-side value is positive
      - the reversed interval if the right-hand-side value is negative
      - the singletons at bounds for the case where a < 0 < b and c < 0 < d. *)
  | MUL -> [ (c, c); (c, d); (d, c); (d, d) ]
  (* For SHR and SHL, we can replace [c] by [0] because this handle the case where c is
     negative, that will need to be treated anyway. Then if the right-hand side
     is negative, we need to reverse the intervals. *)
  | SHL | SHR -> [ (d, zero_expr); (zero_expr, d) ]
  (* Same as SHR/SHL, but with [1] for divisions. *)
  | DIV | DIVRM -> [ (one_expr, d); (d, one_expr) ]
  | _ -> assert false
(* End *)

(* Begin ApplyBinopExtremities *)

(** [apply_binop_extremities op c1 c2] applies [op] to the slices [c1] and [c2].

    It produces a list of all possible slices, by using the functions
    [possible_extremities_left/right], and taking the cartesian product of
    their results. *)
let apply_binop_extremities op c1 c2 =
  match (c1, c2) with
  | Constraint_Exact a, Constraint_Exact c ->
      [ exact (binop op a c) ] |: TypingRule.ApplyBinopExtremities
  | Constraint_Range (a, b), Constraint_Exact c ->
      List.map
        (fun (a', b') -> range (binop op a' c) (binop op b' c))
        (possible_extremities_left op a b)
  | Constraint_Exact a, Constraint_Range (c, d) ->
      List.map
        (fun (c', d') -> range (binop op a c') (binop op a d'))
        (possible_extremities_right op c d)
  | Constraint_Range (a, b), Constraint_Range (c, d) ->
      list_cross
        (fun (a', b') (c', d') -> range (binop op a' c') (binop op b' d'))
        (possible_extremities_left op a b)
        (possible_extremities_right op c d)
(* End *)

(* Begin ConstraintPow *)

(** [constraint_pow c1 c2] applies [POW] to [c1] and [c2]. *)
let constraint_pow c1 c2 =
  let pow = binop POW and neg = unop NEG in
  match (c1, c2) with
  | Constraint_Exact a, Constraint_Exact c ->
      [ exact (pow a c) ] |: TypingRule.ConstraintPow
  | Constraint_Range (a, b), Constraint_Exact c ->
      (* We need:
         - the case a positive is included in the case a negative.
         - 0..b POW c for the positive values
         - (- ((-a) POW c)) .. ((-a) POW c) for the negative values
         - the case 0 POW 0 can only happen if c = 0, and then this is included in 0..b POW c
      *)
      let mac = pow (neg a) c in
      [ range zero_expr (pow b c); range (neg mac) mac ]
  | Constraint_Exact a, Constraint_Range (_c, d) ->
      (* We need here:
         - 1 for 0 POW 0 that can be included everywhere and is the only time that POW is very unpredictable
         - (- ((-a) POW d)) .. ((-a) POW d) for the negative values
         - 0 .. ad for the positive values
      *)
      let mad = pow (neg a) d and ad = pow a d in
      [ range zero_expr ad; range (neg mad) mad; exact one_expr ]
  | Constraint_Range (a, b), Constraint_Range (_c, d) ->
      (* We need here:
         - 1 for 0 POW 0 that can be included everywhere and is the only time that POW is very unpredictable
         - (- ((-a) POW d)) .. ((-a) POW d) for the negative values
         - 0 .. bd for the positive values
      *)
      let mad = pow (neg a) d in
      [ range zero_expr (pow b d); range (neg mad) mad; exact one_expr ]
(* End *)

(* Begin ConstraintBinop *)
let constraint_binop op cs1 cs2 =
  match op with
  | DIV | DIVRM | MUL | PLUS | MINUS | SHR | SHL ->
      list_flat_cross (apply_binop_extremities op) cs1 cs2
      |: TypingRule.ConstraintBinop
  | MOD -> List.map constraint_mod cs2
  | POW -> list_flat_cross constraint_pow cs1 cs2
  | AND | BAND | BEQ | BOR | EOR | EQ_OP | GT | GEQ | IMPL | LT | LEQ | NEQ | OR
  | RDIV | BV_CONCAT ->
      assert false
(* End *)

(* Begin FilterReduceConstraintDiv *)
let filter_reduce_constraint_div =
  let get_literal_div_opt e =
    match e.desc with
    | E_Binop (DIV, a, b) -> (
        match (a.desc, b.desc) with
        | E_Literal (L_Int z1), E_Literal (L_Int z2) -> Some (z1, z2)
        | _ -> None)
    | _ -> None
  in
  function
  | Constraint_Exact e as c -> (
      match get_literal_div_opt e with
      | Some (z1, z2) when Z.sign z2 > 0 ->
          if Z.divisible z1 z2 then Some c else None
      | _ -> Some c)
  | Constraint_Range (e1, e2) as c -> (
      let z1_opt =
        match get_literal_div_opt e1 with
        | Some (z1, z2) when Z.sign z2 > 0 ->
            let zdiv, zmod = Z.ediv_rem z1 z2 in
            let zres = if Z.sign zmod = 0 then zdiv else Z.succ zdiv in
            Some zres
        | _ -> None
      and z2_opt =
        match get_literal_div_opt e2 with
        | Some (z1, z2) when Z.sign z2 > 0 -> Some (Z.ediv z1 z2)
        | _ -> None
      in
      match (z1_opt, z2_opt) with
      | Some z1, Some z2 ->
          let () =
            if false then
              Format.eprintf "Reducing %a DIV %a@ got z1=%a and z2=%a@."
                PP.pp_expr e1 PP.pp_expr e2 Z.pp_print z1 Z.pp_print z2
          in
          if Z.equal z1 z2 then Some (exact (expr_of_z z1))
          else if Z.leq z1 z2 then Some (range (expr_of_z z1) (expr_of_z z2))
          else None
      | Some z1, None -> Some (range (expr_of_z z1) e2)
      | None, Some z2 -> Some (range e1 (expr_of_z z2))
      | None, None -> Some c)
(* End *)

module type CONFIG = sig
  val fail : unit -> 'a
  val warn_from : loc:'a annotated -> Error.warning_desc -> unit
end

module Make (C : CONFIG) = struct
  let list_filter_map_modified f =
    let rec aux (accu, flag) = function
      | [] -> (List.rev accu, flag)
      | x :: l -> (
          match f x with
          | None -> aux (accu, true) l
          | Some v -> aux (v :: accu, v <> x || flag) l)
    in
    aux ([], false)

  (* Begin RefineConstraintBySign *)
  let refine_constraint_by_sign env sign_predicate = function
    | Constraint_Exact e as c -> (
        match StaticModel.reduce_to_z_opt env e with
        | Some z when sign_predicate (Z.sign z) -> Some c
        | Some _ -> None
        | None -> Some c)
    | Constraint_Range (e1, e2) as c -> (
        match
          ( StaticModel.reduce_to_z_opt env e1,
            StaticModel.reduce_to_z_opt env e2 )
        with
        | Some z1, Some z2 -> (
            match (sign_predicate (Z.sign z1), sign_predicate (Z.sign z2)) with
            | true, true -> Some c
            | false, true ->
                Some
                  (range (if sign_predicate 0 then zero_expr else one_expr) e2)
            | true, false ->
                Some
                  (range e1
                     (if sign_predicate 0 then zero_expr else minus_one_expr))
            | false, false -> None)
        | None, Some z2 ->
            Some
              (if sign_predicate (Z.sign z2) then c
               else
                 range e1
                   (if sign_predicate 0 then zero_expr else minus_one_expr))
        | Some z1, None ->
            Some
              (if sign_predicate (Z.sign z1) then c
               else range (if sign_predicate 0 then zero_expr else one_expr) e2)
        | None, None -> Some c)
  (* End *)

  (* Begin RefineConstraints *)
  let refine_constraints ~loc op filter constraints =
    let pp_constraints f cs =
      Format.fprintf f "@[<h>{%a}@]" PP.pp_int_constraints cs
    in
    let constraints', modified = list_filter_map_modified filter constraints in
    match constraints' with
    | [] ->
        let () =
          Format.eprintf
            "@[%a:@ All@ values@ in@ constraints@ %a@ would@ fail@ with@ op \
             %s,@ operation@ will@ always@ fail.@]@."
            PP.pp_pos loc pp_constraints constraints
            PP.(binop_to_string op)
        in
        C.fail ()
    | _ ->
        let () =
          if modified then
            C.warn_from ~loc
              Error.(
                RemovingValuesFromConstraints
                  { op; prev = constraints; after = constraints' })
          else if false then
            Format.eprintf "Unmodified for op %s: %a = %a@."
              PP.(binop_to_string op)
              pp_constraints constraints pp_constraints constraints'
        in
        constraints'
  (* End *)

  let filter_sign ~loc env op sign_predicate constraints =
    refine_constraints ~loc op
      (refine_constraint_by_sign env sign_predicate)
      constraints

  (* Begin BinopFilterRight *)

  (** Filters out values from the right-hand-side operand of [op] that will definitely
  result in a dynamic error. *)
  let binop_filter_rhs ~loc env op =
    match op with
    | SHL | SHR | POW -> filter_sign ~loc env op @@ fun x -> x >= 0
    | MOD | DIV | DIVRM -> filter_sign ~loc env op @@ fun x -> x > 0
    | MINUS | MUL | PLUS -> Fun.id
    | AND | BAND | BEQ | BOR | EOR | EQ_OP | GT | GEQ | IMPL | LT | LEQ | NEQ
    | OR | RDIV | BV_CONCAT ->
        assert false
  (* End *)

  (* Begin RefineConstraintForDIV *)
  let refine_constraint_for_div ~loc op cs =
    match op with
    | DIV -> (
        let res = List.filter_map filter_reduce_constraint_div cs in
        match res with
        | [] ->
            let () =
              Format.eprintf
                "@[%a:@ Division@ will@ result@ in@ empty@ constraint@ set,@ \
                 so@ will@ always@ fail.@]@."
                PP.pp_pos loc
            in
            C.fail ()
        | _ -> res)
    | _ -> cs
  (* End *)

  (* Begin ReduceConstraint *)
  let reduce_constraint env = function
    | Constraint_Exact e -> Constraint_Exact (StaticModel.try_normalize env e)
    | Constraint_Range (e1, e2) ->
        Constraint_Range
          (StaticModel.try_normalize env e1, StaticModel.try_normalize env e2)
  (* End *)

  let list_remove_duplicates eq =
    let rec aux prev acc = function
      | [] -> List.rev acc
      | x :: li -> if eq prev x then aux prev acc li else aux x (x :: acc) li
    in
    function [] -> [] | x :: li -> aux x [ x ] li

  let simplify_static_constraints =
    let module DZ = Diet.Z in
    let to_diets (diets, non_static) = function
      | Constraint_Exact e as c -> (
          match e.desc with
          | E_Literal (L_Int z) -> (DZ.singleton z :: diets, non_static)
          | _ -> (diets, c :: non_static))
      | Constraint_Range (e1, e2) as c -> (
          match (e1.desc, e2.desc) with
          | E_Literal (L_Int z1), E_Literal (L_Int z2) when Z.leq z1 z2 ->
              DZ.(add Interval.(make z1 z2) empty :: diets, non_static)
          | _ -> (diets, c :: non_static))
    in
    let constraint_of_interval interval =
      let x = DZ.Interval.x interval and y = DZ.Interval.y interval in
      if Z.equal x y then Constraint_Exact (expr_of_z x)
      else Constraint_Range (expr_of_z x, expr_of_z y)
    in
    fun constraints ->
      let diets, non_static = List.fold_left to_diets ([], []) constraints in
      let diet = DZ.unions diets in
      DZ.fold
        (fun interval acc -> constraint_of_interval interval :: acc)
        diet non_static

  (* Begin ReduceConstraints *)
  let reduce_constraints env constraints =
    List.map (reduce_constraint env) constraints
    |> simplify_static_constraints |> List.sort compare
    |> list_remove_duplicates (constraint_equal (StaticModel.equal_in_env env))
  (* End *)

  (** [binop_is_exploding op] returns [true] if [constraint_binop op] loses
      precision on intervals. *)
  let binop_is_exploding = function
    | PLUS | MINUS -> false
    | MUL | SHL | POW | DIV | DIVRM | MOD | SHR -> true
    | AND | BAND | BEQ | BOR | EOR | EQ_OP | GT | GEQ | IMPL | LT | LEQ | NEQ
    | OR | RDIV | BV_CONCAT ->
        assert false

  let log_max_constraint_size = 17
  let max_constraint_size = Z.shift_left Z.one log_max_constraint_size
  let max_exploded_interval_size = Z.shift_left Z.one 14

  (* Begin ExplodeIntervals *)
  let explode_intervals =
    let rec make_interval ~loc acc a b =
      if Z.leq a b then
        let eb = E_Literal (L_Int b) |> add_pos_from loc in
        let acc' = Constraint_Exact eb :: acc in
        make_interval ~loc acc' a (Z.pred b)
      else acc
    in
    let interval_too_large z1 z2 =
      let expected_size = Z.sub z2 z1 in
      Z.lt max_exploded_interval_size expected_size
    in
    let explode_constraint ~loc env = function
      | Constraint_Exact _ as c -> [ c ]
      | Constraint_Range (a, b) as c -> (
          match
            ( StaticModel.reduce_to_z_opt env a,
              StaticModel.reduce_to_z_opt env b )
          with
          | Some za, Some zb ->
              if interval_too_large za zb then
                let () =
                  C.warn_from ~loc Error.(IntervalTooBigToBeExploded (za, zb))
                in
                [ c ]
              else make_interval [] ~loc za zb
          | _ -> [ c ])
    in
    fun ~loc env -> list_concat_map (explode_constraint ~loc env)
  (* End *)

  (* Begin AnnotateConstraintBinop *)
  let annotate_constraint_binop ~loc env op cs1 cs2 =
    match op with
    | SHL | SHR | POW | MOD | DIVRM | MINUS | MUL | PLUS | DIV ->
        let cs2_f = binop_filter_rhs ~loc env op cs2 in
        let () =
          if false then
            Format.eprintf
              "Reduction of binop %s@ on@ constraints@ %a@ and@ %a@."
              (PP.binop_to_string op) PP.pp_int_constraints cs1
              PP.pp_int_constraints cs2
        in
        let cs1_arg, cs2_arg =
          if binop_is_exploding op then
            let ex_cs1 = explode_intervals ~loc env cs1
            and ex_cs2 = explode_intervals ~loc env cs2_f in
            let l1 = List.length ex_cs1 and l2 = List.length ex_cs2 in
            let expected_constraint_length =
              Z.(if op = MOD then ~$l2 else mul ~$l1 ~$l2)
            in
            if Z.leq expected_constraint_length max_constraint_size then
              (ex_cs1, ex_cs2)
            else
              let () =
                C.warn_from ~loc
                  Error.(
                    ConstraintSetPairToBigToBeExploded
                      {
                        op;
                        left = cs1;
                        right = cs2_f;
                        log_max = log_max_constraint_size;
                      })
              in
              (cs1, cs2_f)
          else (cs1, cs2_f)
        in
        let annotated_cs =
          constraint_binop op cs1_arg cs2_arg
          |> refine_constraint_for_div ~loc op
          |> reduce_constraints env
        in
        let () =
          if false then
            Format.eprintf
              "Reduction of binop %s@ on@ constraints@ %a@ and@ %a@ gave@ %a@."
              (PP.binop_to_string op) PP.pp_int_constraints cs1_arg
              PP.pp_int_constraints cs2_arg PP.pp_int_constraints annotated_cs
        in
        annotated_cs |: TypingRule.AnnotateConstraintBinop
    | AND | BAND | BEQ | BOR | EOR | EQ_OP | GT | GEQ | IMPL | LT | LEQ | NEQ
    | OR | RDIV | BV_CONCAT ->
        assert false
  (* End *)
end
OCaml

Innovation. Community. Security.