package herdtools7

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file ASTUtils.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
(******************************************************************************)
(*                                ASLRef                                      *)
(******************************************************************************)
(*
 * SPDX-FileCopyrightText: Copyright 2022-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
 * SPDX-License-Identifier: BSD-3-Clause
 *)
(******************************************************************************)
(* Disclaimer:                                                                *)
(* This material covers both ASLv0 (viz, the existing ASL pseudocode language *)
(* which appears in the Arm Architecture Reference Manual) and ASLv1, a new,  *)
(* experimental, and as yet unreleased version of ASL.                        *)
(* This material is work in progress, more precisely at pre-Alpha quality as  *)
(* per Arm’s quality standards.                                               *)
(* In particular, this means that it would be premature to base any           *)
(* production tool development on this material.                              *)
(* However, any feedback, question, query and feature request would be most   *)
(* welcome; those can be sent to Arm’s Architecture Formal Team Lead          *)
(* Jade Alglave <jade.alglave@arm.com>, or by raising issues or PRs to the    *)
(* herdtools7 github repository.                                              *)
(******************************************************************************)

open AST

let list_iterated_op ~empty op =
  let rec pairwise acc = function
    | [] -> acc
    | [ x ] -> x :: acc
    | x :: y :: t -> pairwise (op x y :: acc) t
  and iter = function
    | [] -> empty
    | [ x ] -> x
    | li -> pairwise [] li |> iter
  in
  iter

module ISet = struct
  include Set.Make (String)

  let of_option = function None -> empty | Some s -> singleton s

  let pp_print f t =
    let open Format in
    let pp_comma f () = fprintf f ",@ " in
    fprintf f "@[{@,%a}@]"
      (pp_print_list ~pp_sep:pp_comma pp_print_string)
      (elements t)

  let unions = list_iterated_op ~empty union
end

module IMap = struct
  include Map.Make (String)

  let of_list li =
    List.fold_left (fun acc (key, value) -> add key value acc) empty li

  let pp_print pp_elt f t =
    let open Format in
    let pp_comma f () = fprintf f ",@ " in
    let pp_one f (name, v) = fprintf f "@[<h>%s:@ @[%a@]@]" name pp_elt v in
    fprintf f "{@[@,%a@]}" (pp_print_list ~pp_sep:pp_comma pp_one) (bindings t)
end

let dummy_pos = Lexing.dummy_pos
let default_version = V1
let desc v = v.desc

let annotated desc pos_start pos_end version =
  { desc; pos_start; pos_end; version }

let add_dummy_annotation ?(version = default_version) desc =
  annotated desc dummy_pos dummy_pos version

let dummy_annotated = add_dummy_annotation ()
let to_pos pos = { pos with desc = () }

let add_pos_from_st pos desc =
  if pos.desc == desc then pos else { pos with desc }

let add_pos_from pos desc = { pos with desc }
let map_desc f thing = f thing |> add_pos_from thing
let map_desc_st' thing f = f thing.desc |> add_pos_from thing

let add_pos_from_pos_of ((fname, lnum, cnum, enum), desc) =
  let open Lexing in
  let common =
    { pos_fname = fname; pos_lnum = lnum; pos_bol = 0; pos_cnum = 0 }
  in
  {
    desc;
    pos_start = { common with pos_cnum = cnum };
    pos_end = { common with pos_cnum = enum };
    version = default_version (* used only in testing *);
  }

let list_equal equal li1 li2 =
  li1 == li2 || (List.compare_lengths li1 li2 = 0 && List.for_all2 equal li1 li2)

let rec list_compare cmp l1 l2 =
  (* List.compare available >= 4.12 *)
  match (l1, l2) with
  | [], [] -> 0
  | [], _ :: _ -> -1
  | _ :: _, [] -> 1
  | a1 :: l1, a2 :: l2 ->
      let c = cmp a1 a2 in
      if c <> 0 then c else list_compare cmp l1 l2

(* Straight out of stdlib v4.11 *)
let list_fold_left_map f accu l =
  let rec aux accu l_accu = function
    | [] -> (accu, List.rev l_accu)
    | x :: l ->
        let accu, x = f accu x in
        aux accu (x :: l_accu) l
  in
  aux accu [] l

let list_fold_lefti f accu l =
  List.fold_left (fun (i, accu) elt -> (i + 1, f i accu elt)) (0, accu) l |> snd

let list_coalesce_right f l =
  List.fold_right
    (fun e acc ->
      match acc with
      | [] -> [ e ]
      | acc_head :: acc_tail -> (
          match f e acc_head with
          | Some coalesced -> coalesced :: acc_tail
          | None -> e :: acc))
    l []

(* Straight out of stdlib v4.10 *)
let list_concat_map f l =
  let open List in
  let rec aux f acc = function
    | [] -> rev acc
    | x :: l ->
        let xs = f x in
        aux f (rev_append xs acc) l
  in
  aux f [] l

let list_take =
  let rec aux acc n li =
    match (li, n) with
    | [], _ | _, 0 -> List.rev acc
    | h :: t, n -> aux (h :: acc) (n - 1) t
  in
  fun n li ->
    if n < 0 then raise (Invalid_argument "list_take");
    aux [] n li

(** [list_take_while pred li] is the longest prefix of [li] where all items
    satisfy [pred]. *)
let list_take_while =
  let rec aux pred accu = function
    | [] -> List.rev accu
    | x :: xs -> if pred x then aux pred (x :: accu) xs else List.rev accu
  in
  fun pred li -> aux pred [] li

let uniq l =
  List.fold_left (fun acc x -> if List.mem x acc then acc else x :: acc) [] l
  |> List.rev

let rec list_split3 = function
  | [] -> ([], [], [])
  | (x, y, z) :: l ->
      let xs, ys, zs = list_split3 l in
      (x :: xs, y :: ys, z :: zs)

let rec list_map_split f = function
  | [] -> ([], [])
  | [ a ] ->
      let x, y = f a in
      ([ x ], [ y ])
  | a1 :: a2 :: l ->
      let x1, y1 = f a1 in
      let x2, y2 = f a2 in
      let xs, ys = list_map_split f l in
      (x1 :: x2 :: xs, y1 :: y2 :: ys)

let get_first_duplicate li =
  let rec scan_for_dup = function
    | [] | [ _ ] -> None
    | x :: y :: rest ->
        if String.equal x y then Some x else scan_for_dup (y :: rest)
  in
  let sorted = List.sort String.compare li in
  scan_for_dup sorted

let list_is_empty = function [] -> true | _ -> false
let pair x y = (x, y)
let pair' y x = (x, y)
let pair_equal f g (x1, y1) (x2, y2) = f x1 x2 && g y1 y2

let map2_desc f thing1 thing2 =
  {
    desc = f thing1 thing2;
    pos_start = thing1.pos_start;
    pos_end = thing2.pos_end;
    version = thing1.version;
  }

let s_pass = add_dummy_annotation S_Pass
let s_then = map2_desc (fun s1 s2 -> S_Seq (s1, s2))
let boolean = T_Bool |> add_dummy_annotation
let integer' = T_Int UnConstrained
let integer = integer' |> add_dummy_annotation
let integer_exact' e = T_Int (WellConstrained [ Constraint_Exact e ])
let integer_exact e = integer_exact' e |> add_dummy_annotation
let string = T_String |> add_dummy_annotation
let real = T_Real |> add_dummy_annotation

let stmt_from_list : stmt list -> stmt =
  let is_not_s_pass = function { desc = S_Pass; _ } -> false | _ -> true in
  let rec one_step acc = function
    | [] -> List.rev acc
    | [ x ] -> List.rev (x :: acc)
    | s1 :: s2 :: t -> one_step (s_then s1 s2 :: acc) t
  in
  let rec aux = function
    | [] -> s_pass
    | [ x ] -> x
    | l -> aux @@ one_step [] l
  in
  fun l -> List.filter is_not_s_pass l |> aux

let mask_from_set_bits_positions size pos =
  let buf = Bytes.make size '0' in
  let set i = Bytes.set buf i '1' in
  let () = List.iter set pos in
  Bytes.to_string buf

let inv_mask =
  let one_char = function '0' -> '1' | '1' -> '0' | c -> c in
  String.map one_char

let slices_to_positions as_int =
  let one_slice (start, length) =
    let start = as_int start and length = as_int length in
    (* Reversed interval - recall that bitvectors are reversed. *)
    if length >= 0 then List.init length (( - ) (start + length - 1))
    else raise (Invalid_argument "slices_to_positions")
  in
  fun positions -> List.map one_slice positions |> List.flatten

let fold_named_list folder acc list =
  List.fold_left (fun acc (_, v) -> folder acc v) acc list

let ( $ ) f1 f2 acc = f1 acc |> f2
let use_option use_elt = function None -> Fun.id | Some elt -> use_elt elt
let use_list use_elt elts acc = List.fold_left (Fun.flip use_elt) acc elts

let use_named_list use_elt named_elts acc =
  fold_named_list (Fun.flip use_elt) acc named_elts

let rec use_e e =
  match e.desc with
  | E_Literal _ -> Fun.id
  | E_ATC (e, ty) -> use_ty ty $ use_e e
  | E_Var x -> ISet.add x
  | E_GetArray (e1, e2) | E_GetEnumArray (e1, e2) | E_Binop (_, e1, e2) ->
      use_e e1 $ use_e e2
  | E_Unop (_op, e) -> use_e e
  | E_Call { name; args; params } -> ISet.add name $ use_es params $ use_es args
  | E_Slice (e, slices) -> use_e e $ use_slices slices
  | E_Cond (e1, e2, e3) -> use_e e1 $ use_e e2 $ use_e e3
  | E_GetItem (e, _) -> use_e e
  | E_GetField (e, _) -> use_e e
  | E_GetFields (e, _) -> use_e e
  | E_Record (ty, li) -> use_ty ty $ use_fields li
  | E_Tuple es -> use_es es
  | E_Array { length; value } -> use_e length $ use_e value
  | E_EnumArray { labels; value } -> use_list ISet.add labels $ use_e value
  | E_Arbitrary t -> use_ty t
  | E_Pattern (e, p) -> use_e e $ use_pattern p

and use_es es acc = use_list use_e es acc
and use_fields fields acc = use_named_list use_e fields acc

and use_pattern p =
  match p.desc with
  | Pattern_Mask _ | Pattern_All -> Fun.id
  | Pattern_Tuple li | Pattern_Any li -> use_list use_pattern li
  | Pattern_Single e | Pattern_Geq e | Pattern_Leq e -> use_e e
  | Pattern_Not p -> use_pattern p
  | Pattern_Range (e1, e2) -> use_e e1 $ use_e e2

and use_slice = function
  | Slice_Single e -> use_e e
  | Slice_Star (e1, e2) | Slice_Length (e1, e2) | Slice_Range (e1, e2) ->
      use_e e1 $ use_e e2

and use_slices slices = use_list use_slice slices

(** [use_ty t s] adds the identifiers that appear in [t] to the set of identifiers [s] *)
and use_ty t =
  match t.desc with
  | T_Named s -> ISet.add s
  | T_Int (UnConstrained | Parameterized _ | PendingConstrained)
  | T_Enum _ | T_Bool | T_Real | T_String ->
      Fun.id
  | T_Int (WellConstrained cs) -> use_constraints cs
  | T_Tuple li -> use_list use_ty li
  | T_Record fields | T_Exception fields -> use_named_list use_ty fields
  | T_Array (ArrayLength_Expr e, t') -> use_e e $ use_ty t'
  | T_Array (ArrayLength_Enum (s, _), t') -> ISet.add s $ use_ty t'
  | T_Bits (e, bit_fields) -> use_e e $ use_bitfields bit_fields

and use_bitfields bitfields = use_list use_bitfield bitfields

and use_bitfield = function
  | BitField_Simple (_name, slices) -> use_slices slices
  | BitField_Nested (_name, slices, bitfields) ->
      use_bitfields bitfields $ use_slices slices
  | BitField_Type (_name, slices, ty) -> use_ty ty $ use_slices slices

and use_constraint = function
  | Constraint_Exact e -> use_e e
  | Constraint_Range (e1, e2) -> use_e e1 $ use_e e2

and use_constraints cs = use_list use_constraint cs

let rec use_s s =
  match s.desc with
  | S_Pass | S_Return None -> Fun.id
  | S_Seq (s1, s2) -> use_s s1 $ use_s s2
  | S_Assert e | S_Return (Some e) -> use_e e
  | S_Assign (le, e) -> use_e e $ use_le le
  | S_Call { name; args; params } -> ISet.add name $ use_es params $ use_es args
  | S_Cond (e, s1, s2) -> use_s s1 $ use_s s2 $ use_e e
  | S_For { start_e; end_e; body; index_name = _; dir = _; limit } ->
      use_option use_e limit $ use_e start_e $ use_e end_e $ use_s body
  | S_While (e, limit, s) | S_Repeat (s, e, limit) ->
      use_option use_e limit $ use_s s $ use_e e
  | S_Decl (_, _, ty, e) -> use_option use_e e $ use_option use_ty ty
  | S_Throw (Some (e, _)) -> use_e e
  | S_Throw None -> Fun.id
  | S_Try (s, catchers, s') ->
      use_s s $ use_option use_s s' $ use_catchers catchers
  | S_Print { args; debug = _ } -> use_es args
  | S_Pragma (name, args) -> ISet.add name $ use_es args
  | S_Unreachable -> Fun.id

and use_le le =
  match le.desc with
  | LE_Var x -> ISet.add x
  | LE_Destructuring les -> List.fold_right use_le les
  | LE_Discard -> Fun.id
  | LE_SetArray (le, e) | LE_SetEnumArray (le, e) -> use_le le $ use_e e
  | LE_SetField (le, _) | LE_SetFields (le, _, _) -> use_le le
  | LE_Slice (le, slices) -> use_slices slices $ use_le le

and use_catcher (_name, ty, s) = use_s s $ use_ty ty
and use_catchers catchers = use_list use_catcher catchers

and use_decl d =
  match d.desc with
  | D_TypeDecl (_name, ty, fields) -> use_ty ty $ use_option use_subtypes fields
  | D_GlobalStorage { initial_value; ty; name = _; keyword = _ } ->
      use_option use_e initial_value $ use_option use_ty ty
  | D_Func
      { body; name = _; args; return_type; parameters; subprogram_type = _ }
    -> (
      use_named_list use_ty args
      $ use_option use_ty return_type
      $ use_named_list (use_option use_ty) parameters
      $ match body with SB_ASL s -> use_s s | SB_Primitive _ -> Fun.id)
  | D_Pragma (name, args) -> ISet.add name $ use_es args

and use_subtypes (x, subfields) = ISet.add x $ use_named_list use_ty subfields

let used_identifiers ast = use_list use_decl ast ISet.empty
let used_identifiers_stmt s = use_s s ISet.empty

let canonical_fields li =
  let compare (x, _) (y, _) = String.compare x y in
  List.sort compare li

let literal_equal v1 v2 =
  v1 == v2
  ||
  match (v1, v2) with
  | L_Bool b1, L_Bool b2 -> b1 = b2
  | L_Bool _, _ -> false
  | L_Int i1, L_Int i2 -> i1 = i2
  | L_Int _, _ -> false
  | L_Real f1, L_Real f2 -> f1 = f2
  | L_Real _, _ -> false
  | L_BitVector bv1, L_BitVector bv2 -> Bitvector.equal bv1 bv2
  | L_BitVector _, _ -> false
  | L_String s1, L_String s2 -> String.equal s1 s2
  | L_String _, _ -> false
  | L_Label l1, L_Label l2 -> String.equal l1 l2
  | L_Label _, _ -> false

let rec expr_equal eq e1 e2 =
  e1 == e2 || eq e1 e2
  ||
  match (e1.desc, e2.desc) with
  | E_Binop (o1, e11, e21), E_Binop (o2, e12, e22) ->
      o1 = o2 && expr_equal eq e11 e12 && expr_equal eq e21 e22
  | E_Binop _, _ | _, E_Binop _ -> false
  | ( E_Call { name = x1; params = params1; args = args1 },
      E_Call { name = x2; params = params2; args = args2 } ) ->
      if e1.version = V0 then
        (* We can ignore parameters as they are deduced from arguments. *)
        String.equal x1 x2 && list_equal (expr_equal eq) args1 args2
      else
        String.equal x1 x2
        && list_equal (expr_equal eq) params1 params2
        && list_equal (expr_equal eq) args1 args2
  | E_Call _, _ | _, E_Call _ -> false
  | E_Cond (e11, e21, e31), E_Cond (e12, e22, e32) ->
      expr_equal eq e11 e12 && expr_equal eq e21 e22 && expr_equal eq e31 e32
  | E_Cond _, _ | _, E_Cond _ -> false
  | E_Slice (e1, slices1), E_Slice (e2, slices2) ->
      expr_equal eq e1 e2 && slices_equal eq slices1 slices2
  | E_Slice _, _ | _, E_Slice _ -> false
  | E_GetArray (e11, e21), E_GetArray (e12, e22) ->
      expr_equal eq e11 e12 && expr_equal eq e21 e22
  | E_GetArray _, _ | _, E_GetArray _ -> false
  | E_GetEnumArray (e11, e21), E_GetEnumArray (e12, e22) ->
      expr_equal eq e11 e12 && expr_equal eq e21 e22
  | E_GetEnumArray _, _ | _, E_GetEnumArray _ -> false
  | E_GetField (e1', f1), E_GetField (e2', f2) ->
      String.equal f1 f2 && expr_equal eq e1' e2'
  | E_GetField _, _ | _, E_GetField _ -> false
  | E_GetFields (e1', f1s), E_GetFields (e2', f2s) ->
      list_equal String.equal f1s f2s && expr_equal eq e1' e2'
  | E_GetFields _, _ | _, E_GetFields _ -> false
  | E_GetItem (e1', i1), E_GetItem (e2', i2) ->
      Int.equal i1 i2 && expr_equal eq e1' e2'
  | E_GetItem _, _ | _, E_GetItem _ -> false
  | E_Pattern _, _ | E_Record _, _ -> assert false
  | E_Literal v1, E_Literal v2 -> literal_equal v1 v2
  | E_Literal _, _ | _, E_Literal _ -> false
  | E_Tuple li1, E_Tuple li2 -> list_equal (expr_equal eq) li1 li2
  | E_Tuple _, _ | _, E_Tuple _ -> false
  | E_Array { length = l1; value = v1 }, E_Array { length = l2; value = v2 } ->
      expr_equal eq l1 l2 && expr_equal eq v1 v2
  | E_Array _, _ | _, E_Array _ -> false
  | ( E_EnumArray { labels = l1; value = v1 },
      E_EnumArray { labels = l2; value = v2 } ) ->
      list_equal String.equal l1 l2 && expr_equal eq v1 v2
  | E_EnumArray _, _ | _, E_EnumArray _ -> false
  | E_ATC (e1, t1), E_ATC (e2, t2) -> expr_equal eq e1 e2 && type_equal eq t1 t2
  | E_ATC _, _ | _, E_ATC _ -> false
  | E_Unop (o1, e1), E_Unop (o2, e2) -> o1 = o2 && expr_equal eq e1 e2
  | E_Unop _, _ | _, E_Unop _ -> false
  | E_Arbitrary _, _ | _, E_Arbitrary _ -> false
  | E_Var s1, E_Var s2 -> String.equal s1 s2
  | E_Var _, _ (* | _, E_Var _ *) -> false

and slices_equal eq slices1 slices2 =
  list_equal (slice_equal eq) slices1 slices2

and slice_equal eq slice1 slice2 =
  slice1 == slice2
  ||
  match (slice1, slice2) with
  | Slice_Single e1, Slice_Single e2 -> expr_equal eq e1 e2
  | Slice_Range (e11, e21), Slice_Range (e12, e22)
  | Slice_Length (e11, e21), Slice_Length (e12, e22) ->
      expr_equal eq e11 e12 && expr_equal eq e21 e22
  | _ -> false

and constraint_equal eq c1 c2 =
  c1 == c2
  ||
  match (c1, c2) with
  | Constraint_Exact e1, Constraint_Exact e2 -> expr_equal eq e1 e2
  | Constraint_Range (e11, e21), Constraint_Range (e12, e22) ->
      expr_equal eq e11 e12 && expr_equal eq e21 e22
  | _ -> false

and constraints_equal eq cs1 cs2 =
  cs1 == cs2 || list_equal (constraint_equal eq) cs1 cs2

and array_length_equal eq l1 l2 =
  match (l1, l2) with
  | ArrayLength_Expr e1, ArrayLength_Expr e2 -> expr_equal eq e1 e2
  | ArrayLength_Enum (enum1, _), ArrayLength_Enum (enum2, _) ->
      String.equal enum1 enum2
  | ArrayLength_Enum (_, _), ArrayLength_Expr _
  | ArrayLength_Expr _, ArrayLength_Enum (_, _) ->
      false

and type_equal eq t1 t2 =
  t1.desc == t2.desc
  ||
  match (t1.desc, t2.desc) with
  | T_Bool, T_Bool
  | T_Real, T_Real
  | T_String, T_String
  | T_Int UnConstrained, T_Int UnConstrained ->
      true
  | T_Int (Parameterized (i1, _)), T_Int (Parameterized (i2, _)) -> i1 == i2
  | T_Int (WellConstrained c1), T_Int (WellConstrained c2) ->
      constraints_equal eq c1 c2
  | T_Bits (w1, bf1), T_Bits (w2, bf2) ->
      bitwidth_equal eq w1 w2 && bitfields_equal eq bf1 bf2
  | T_Array (l1, t1), T_Array (l2, t2) ->
      array_length_equal eq l1 l2 && type_equal eq t1 t2
  | T_Named s1, T_Named s2 -> String.equal s1 s2
  | T_Enum li1, T_Enum li2 ->
      (* TODO: order of fields? *) list_equal String.equal li1 li2
  | T_Exception f1, T_Exception f2 | T_Record f1, T_Record f2 ->
      list_equal
        (pair_equal String.equal (type_equal eq))
        (canonical_fields f1) (canonical_fields f2)
  | T_Tuple ts1, T_Tuple ts2 -> list_equal (type_equal eq) ts1 ts2
  | _ -> false

and bitwidth_equal eq w1 w2 = expr_equal eq w1 w2

and bitfields_equal eq bf1 bf2 =
  bf1 == bf2 || (list_equal (bitfield_equal eq)) bf1 bf2

and bitfield_equal eq bf1 bf2 =
  bf1 == bf2
  ||
  match (bf1, bf2) with
  | BitField_Simple (name1, slices1), BitField_Simple (name2, slices2) ->
      String.equal name1 name2 && slices_equal eq slices1 slices2
  | ( BitField_Nested (name1, slices1, bf1'),
      BitField_Nested (name2, slices2, bf2') ) ->
      String.equal name1 name2
      && slices_equal eq slices1 slices2
      && bitfields_equal eq bf1' bf2'
  | BitField_Type (name1, slices1, t1), BitField_Type (name2, slices2, t2) ->
      String.equal name1 name2
      && slices_equal eq slices1 slices2
      && type_equal eq t1 t2
  | BitField_Simple _, BitField_Nested _
  | BitField_Simple _, BitField_Type _
  | BitField_Nested _, BitField_Simple _
  | BitField_Nested _, BitField_Type _
  | BitField_Type _, BitField_Nested _
  | BitField_Type _, BitField_Simple _ ->
      false

let var_ x = E_Var x |> add_dummy_annotation
let binop op = map2_desc (fun e1 e2 -> E_Binop (op, e1, e2))
let unop op = map_desc (fun e -> E_Unop (op, e))
let literal v = E_Literal v |> add_dummy_annotation
let expr_of_int i = literal (L_Int (Z.of_int i))
let expr_of_z z = literal (L_Int z)
let zero_expr = expr_of_z Z.zero
let one_expr = expr_of_z Z.one
let minus_one_expr = expr_of_z Z.minus_one

let expr_of_rational q =
  if Z.equal (Q.den q) Z.one then expr_of_z (Q.num q)
  else binop DIV (expr_of_z (Q.num q)) (expr_of_z (Q.den q))

let mul_expr e1 e2 =
  if expr_equal (fun _ _ -> false) e1 one_expr then e2
  else if expr_equal (fun _ _ -> false) e2 one_expr then e1
  else binop MUL e1 e2

let pow_expr e = function
  | 0 -> one_expr
  | 1 -> e
  | 2 -> mul_expr e e
  | p -> binop POW e (expr_of_int p)

let div_expr e z = if Z.equal z Z.one then e else binop DIV e (expr_of_z z)

let add_expr e1 (s, e2) =
  if s = 0 then e1 else if s > 0 then binop PLUS e1 e2 else binop MINUS e1 e2

let conj_expr e1 e2 =
  let lit_true = literal (L_Bool true) in
  if expr_equal (fun _ _ -> false) e1 lit_true then e2
  else if expr_equal (fun _ _ -> false) e2 lit_true then e1
  else binop BAND e1 e2

let cond_expr e1 e2 e3 = E_Cond (e1, e2, e3) |> add_pos_from dummy_annotated

module Infix = struct
  let ( ~$ ) i = L_Int (Z.of_int i)
  let ( !$ ) i = expr_of_int i
end

let fresh_var =
  let i = ref 0 in
  fun s ->
    let () = incr i in
    s ^ "-" ^ string_of_int !i

let ldi_of_lexpr =
  let tr_tuple_var le = match le.desc with LE_Var x -> x | _ -> raise Exit in
  let tr le =
    match le.desc with
    | LE_Discard -> LDI_Var (fresh_var "__ldi_discard")
    | LE_Var x -> LDI_Var x
    | LE_Destructuring les -> LDI_Tuple (List.map tr_tuple_var les)
    | _ -> raise Exit
  in
  fun le -> try Some (tr le) with Exit -> None

let expr_of_lexpr : lexpr -> expr =
  let rec aux le =
    match le.desc with
    | LE_Var x -> E_Var x
    | LE_Slice (le, args) -> E_Slice (map_desc aux le, args)
    | LE_SetArray (le, e) -> E_GetArray (map_desc aux le, e)
    | LE_SetEnumArray (le, e) -> E_GetEnumArray (map_desc aux le, e)
    | LE_SetField (le, x) -> E_GetField (map_desc aux le, x)
    | LE_SetFields (le, x, _) -> E_GetFields (map_desc aux le, x)
    | LE_Discard -> E_Var "-"
    | LE_Destructuring les -> E_Tuple (List.map (map_desc aux) les)
  in
  map_desc aux

(* Straight out of stdlib 4.12 *)
let string_starts_with ~prefix s =
  let open String in
  let len_s = length s and len_pre = length prefix in
  let rec aux i =
    if i = len_pre then true
    else if unsafe_get s i <> unsafe_get prefix i then false
    else aux (i + 1)
  in
  len_s >= len_pre && aux 0

let global_ignored_prefix = "__global_ignored"
let global_ignored () = fresh_var global_ignored_prefix
let is_global_ignored s = string_starts_with ~prefix:global_ignored_prefix s
let slice_is_single = function Slice_Single _ -> true | _ -> false

let slice_as_single = function
  | Slice_Single e -> e
  | _ -> raise @@ Invalid_argument "slice_as_single"

let default_t_bits = T_Bits (E_Var "-" |> add_dummy_annotation, [])

let default_array_ty =
  let len = ArrayLength_Expr (E_Var "-" |> add_dummy_annotation) in
  let ty = T_Named "-" |> add_dummy_annotation in
  T_Array (len, ty)

let identifier_of_decl d =
  match d.desc with
  | D_Func { name; _ } | D_GlobalStorage { name; _ } | D_TypeDecl (name, _, _)
    ->
      name
  | D_Pragma _ -> assert false

let patch ~src ~patches =
  (* Size considerations:
     - [src] is BIG.
     - [patches] is not that little. *)
  let to_remove =
    patches |> List.to_seq |> Seq.map identifier_of_decl |> ISet.of_seq
  in
  let filter d = not (ISet.mem (identifier_of_decl d) to_remove) in
  src |> List.filter filter |> List.rev_append patches

let list_cross f li1 li2 =
  List.fold_left
    (fun xys x -> List.fold_left (fun xys' y -> f x y :: xys') xys li2)
    [] li1
  |> List.rev

let list_flat_cross f li1 li2 =
  List.fold_left
    (fun xys x ->
      List.fold_left (fun xys' y -> List.rev_append (f x y) xys') xys li2)
    [] li1
  |> List.rev

(* Begin SubstExpr *)
let rec subst_expr substs e =
  (* WARNING: only subst runtime vars. *)
  let tr e = subst_expr substs e in
  add_pos_from_st e
  @@
  match e.desc with
  | E_Var s -> (
      match List.assoc_opt s substs with None -> e.desc | Some e' -> e'.desc)
  | E_Binop (op, e1, e2) -> E_Binop (op, tr e1, tr e2)
  | E_Cond (e1, e2, e3) -> E_Cond (tr e1, tr e2, tr e3)
  | E_Call { name; args; params; call_type } ->
      E_Call
        {
          name;
          args = List.map tr args;
          params = List.map tr params;
          call_type;
        }
  | E_GetArray (e1, e2) -> E_GetArray (tr e1, tr e2)
  | E_GetEnumArray (e1, e2) -> E_GetEnumArray (tr e1, tr e2)
  | E_GetField (e, x) -> E_GetField (tr e, x)
  | E_GetFields (e, fields) -> E_GetFields (tr e, fields)
  | E_GetItem (e, i) -> E_GetItem (tr e, i)
  | E_Literal _ -> e.desc
  | E_Pattern (e, ps) -> E_Pattern (tr e, ps)
  | E_Record (t, fields) ->
      E_Record (t, List.map (fun (x, e) -> (x, tr e)) fields)
  | E_Slice (e, slices) -> E_Slice (tr e, slices)
  | E_Tuple es -> E_Tuple (List.map tr es)
  | E_Array { length; value } ->
      E_Array { length = tr length; value = tr value }
  | E_EnumArray { enum; labels; value } ->
      E_EnumArray { enum; labels; value = tr value }
  | E_ATC (e, t) -> E_ATC (tr e, t)
  | E_Arbitrary _ -> e.desc
  | E_Unop (op, e) -> E_Unop (op, tr e)
(* End *)

let rec is_simple_expr e =
  match e.desc with
  | E_Var _ | E_Literal _ | E_Arbitrary _ -> true
  | E_Array { length = e1; value = e2 }
  | E_GetArray (e1, e2)
  | E_GetEnumArray (e1, e2)
  | E_Binop (_, e1, e2) ->
      is_simple_expr e1 && is_simple_expr e2
  | E_EnumArray { value = e }
  | E_ATC (e, _)
  | E_GetFields (e, _)
  | E_GetField (e, _)
  | E_GetItem (e, _)
  | E_Unop (_, e)
  | E_Pattern (e, _) (* because pattern must be side-effect free. *) ->
      is_simple_expr e
  | E_Tuple es -> List.for_all is_simple_expr es
  | E_Cond (e1, e2, e3) ->
      is_simple_expr e1 && is_simple_expr e2 && is_simple_expr e3
  | E_Slice (e, slices) ->
      is_simple_expr e && List.for_all is_simple_slice slices
  | E_Record (_, fields) ->
      List.for_all (fun (_name, e) -> is_simple_expr e) fields
  | E_Call _ -> false

and is_simple_slice = function
  | Slice_Length (e1, e2) | Slice_Range (e1, e2) | Slice_Star (e1, e2) ->
      is_simple_expr e1 && is_simple_expr e2
  | Slice_Single e -> is_simple_expr e

let bitfield_get_name = function
  | BitField_Simple (name, _)
  | BitField_Nested (name, _, _)
  | BitField_Type (name, _, _) ->
      name

let bitfield_get_slices = function
  | BitField_Simple (_, slices)
  | BitField_Nested (_, slices, _)
  | BitField_Type (_, slices, _) ->
      slices

let bitfield_get_nested = function
  | BitField_Simple _ | BitField_Type _ -> []
  | BitField_Nested (_, _, nested_fields) -> nested_fields

let has_name name bf = bitfield_get_name bf |> String.equal name

(* Begin FindBitfieldOpt *)
let find_bitfield_opt name bitfields = List.find_opt (has_name name) bitfields
(* End *)

(* Begin FindBitFieldsSlices *)
let find_bitfields_slices_opt name bitfields =
  try List.find (has_name name) bitfields |> bitfield_get_slices |> Option.some
  with Not_found -> None
(* End *)

let rename_locals map_name ast =
  (* Begin RenameLocalsExpr *)
  let rec map_e e =
    map_desc_st' e @@ function
    | E_Literal _ -> e.desc
    | E_Arbitrary t -> E_Arbitrary (map_t t)
    | E_Var x -> E_Var (map_name x)
    | E_ATC (e1, t) -> E_ATC (map_e e1, map_t t)
    | E_Binop (op, e1, e2) -> E_Binop (op, map_e e1, map_e e2)
    | E_Unop (op, e1) -> E_Unop (op, map_e e1)
    | E_Call { name; args; params; call_type } ->
        E_Call { name; args = map_es args; params = map_es params; call_type }
    | E_Slice (e1, slices) -> E_Slice (map_e e1, map_slices slices)
    | E_Cond (e1, e2, e3) -> E_Cond (map_e e1, map_e e2, map_e e3)
    | E_GetArray (e1, e2) -> E_GetArray (map_e e1, map_e e2)
    | E_GetEnumArray (e1, e2) -> E_GetEnumArray (map_e e1, map_e e2)
    | E_GetField (e1, f) -> E_GetField (map_e e1, f)
    | E_GetFields (e1, li) -> E_GetFields (map_e e1, li)
    | E_GetItem (e1, i) -> E_GetItem (map_e e1, i)
    | E_Record (t, li) -> E_Record (t, List.map (fun (f, e) -> (f, map_e e)) li)
    | E_Tuple li -> E_Tuple (map_es li)
    | E_Array { length; value } ->
        E_Array { length = map_e length; value = map_e value }
    | E_EnumArray { enum; labels; value } ->
        E_EnumArray { enum; labels; value = map_e value }
    | E_Pattern (_, _) -> failwith "Not yet implemented: obfuscate patterns"
  (* End *)
  and map_es li = List.map map_e li
  and map_slices slices = List.map map_slice slices
  (* Begin RenameLocalsSlice *)
  and map_slice = function
    | Slice_Length (e1, e2) -> Slice_Length (map_e e1, map_e e2)
    | Slice_Single e -> Slice_Single (map_e e)
    | Slice_Range (e1, e2) -> Slice_Range (map_e e1, map_e e2)
    | Slice_Star (e1, e2) -> Slice_Star (map_e e1, map_e e2)
  (* End *)
  (* Begin RenameLocalsType *)
  and map_t t =
    map_desc_st' t @@ function
    | T_Real | T_String | T_Bool | T_Enum _ | T_Named _
    | T_Int (UnConstrained | PendingConstrained) ->
        t.desc
    | T_Int (Parameterized _) ->
        failwith "Not yet implemented: obfuscate parametrized types"
    | T_Int (WellConstrained cs) -> T_Int (WellConstrained (map_cs cs))
    | T_Bits (e, bitfields) -> T_Bits (map_e e, bitfields)
    | T_Tuple li -> T_Tuple (List.map map_t li)
    | T_Array (_, _) -> failwith "Not yet implemented: obfuscate array types"
    | T_Record li -> T_Record (List.map (fun (f, t) -> (f, map_t t)) li)
    | T_Exception li -> T_Exception (List.map (fun (f, t) -> (f, map_t t)) li)
  (* End *)
  and map_cs cs = List.map map_c cs
  (* Begin RenameLocalsConstraint *)
  and map_c = function
    | Constraint_Exact e -> Constraint_Exact (map_e e)
    | Constraint_Range (e1, e2) -> Constraint_Range (map_e e1, map_e e2)
  (* End *)
  (* Begin RenameLocalsStmt *)
  and map_s s =
    map_desc_st' s @@ function
    | S_Pass -> s.desc
    | S_Seq (s1, s2) -> S_Seq (map_s s1, map_s s2)
    | S_Decl (ldk, ldi, ty, e) ->
        S_Decl (ldk, map_ldi ldi, Option.map map_t ty, Option.map map_e e)
    | S_Assign (le, e) -> S_Assign (map_le le, map_e e)
    | S_Call { name; args; params; call_type } ->
        S_Call { name; args = map_es args; params = map_es params; call_type }
    | S_Return e -> S_Return (Option.map map_e e)
    | S_Cond (e, s1, s2) -> S_Cond (map_e e, map_s s1, map_s s2)
    | S_Assert e -> S_Assert (map_e e)
    | S_For { index_name; start_e; dir; end_e; body; limit } ->
        let index_name = map_name index_name
        and start_e = map_e start_e
        and end_e = map_e end_e
        and limit = Option.map map_e limit
        and body = map_s body in
        S_For { index_name; start_e; dir; end_e; body; limit }
    | S_While (e, limit, body) ->
        S_While (map_e e, Option.map map_e limit, map_s body)
    | S_Repeat (s, e, limit) ->
        S_Repeat (map_s s, map_e e, Option.map map_e limit)
    | S_Throw (Some (e, t)) -> S_Throw (Some (map_e e, Option.map map_t t))
    | S_Throw None -> s.desc
    | S_Try (_, _, _) -> failwith "Not yet implemented: obfuscate try"
    | S_Print { args; newline; debug } ->
        S_Print { args = List.map map_e args; newline; debug }
    | S_Unreachable -> S_Unreachable
    | S_Pragma (name, args) ->
        let args = map_es args in
        S_Pragma (name, args)
  (* End *)
  (* Begin RenameLocalsLexpr *)
  and map_le le =
    map_desc_st' le @@ function
    | LE_Discard -> le.desc
    | LE_Var x -> LE_Var (map_name x)
    | LE_Slice (le1, slices) -> LE_Slice (map_le le1, map_slices slices)
    | LE_SetArray (le1, i) -> LE_SetArray (map_le le1, map_e i)
    | LE_SetEnumArray (le, i) -> LE_SetEnumArray (map_le le, map_e i)
    | LE_SetField (le1, f) -> LE_SetField (map_le le1, f)
    | LE_SetFields (le1, fl, annot) -> LE_SetFields (map_le le1, fl, annot)
    | LE_Destructuring les -> LE_Destructuring (List.map map_le les)
  (* End *)
  (* Begin RenameLocalsLDI *)
  and map_ldi = function
    | LDI_Var x -> LDI_Var (map_name x)
    | LDI_Tuple names -> LDI_Tuple (List.map map_name names)
  (* End *)
  and map_body = function
    | SB_Primitive _ as b -> b
    | SB_ASL s -> SB_ASL (map_s s)
  (* Begin RenameLocalsFunc *)
  and map_func f =
    (* RenameLocalsArgs( *)
    let map_args li = List.map (fun (name, t) -> (map_name name, map_t t)) li in
    (* RenameLocalsArgs) *)
    (* RenameLocalsNamedArgs( *)
    let map_nargs li =
      List.map (fun (name, t) -> (map_name name, Option.map map_t t)) li
      (* RenameLocalsNamedArgs) *)
    in
    {
      f with
      parameters = map_nargs f.parameters;
      args = map_args f.args;
      body = map_body f.body;
      return_type = Option.map map_t f.return_type;
    }
  (* End *)
  (* Begin RenameLocals *)
  and map_decl d =
    map_desc_st' d @@ function D_Func f -> D_Func (map_func f) | d -> d
  in
  List.map map_decl ast
(* End *)

(* Taken from lib/innerRel.ml *)
let rec transitive_closure m0 =
  let m1 =
    IMap.fold
      (fun x ys m ->
        let zs =
          ISet.fold
            (fun y k -> try IMap.find y m :: k with Not_found -> k)
            ys []
        in
        IMap.add x (ISet.unions zs) m)
      m0 m0
  in
  if IMap.equal ISet.equal m0 m1 then m0 else transitive_closure m1

let get_cycle m =
  (* Depth first search for a cycle.

     [m] is the graph represented as a Map from a node to its successors;
     [seen] is the set of already seen nodes;
     [path] is the set of nodes along the branch currently taken, with the
       parent of the current node just on top, the starting point of the
       algorithm being the lowest on the stack;
     [above] is the set of nodes in path;

     When a cycle is found, the exception [Cycle] is used for early return.
  *)
  let exception Cycle of identifier list in
  let rec dfs path above e seen =
    if ISet.mem e above then
      let cycle =
        e :: list_take_while (fun e' -> not (String.equal e e')) path
      in
      raise (Cycle cycle)
    else if ISet.mem e seen then seen
    else
      let path' = e :: path
      and above' = ISet.add e above
      and seen' = ISet.add e seen
      and succs = try IMap.find e m with Not_found -> ISet.empty in
      ISet.fold (dfs path' above') succs seen'
  in
  try
    let above0 = ISet.empty and seen0 = ISet.empty and path0 = [] in
    let _ = IMap.fold (fun x _ -> dfs path0 above0 x) m seen0 in
    None
  with Cycle e -> Some (List.rev e)
OCaml

Innovation. Community. Security.