package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Pattern.ml.html
Source file Pattern.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Logic_typing open Logic_ptree (* -------------------------------------------------------------------------- *) (* --- Pattern Engine --- *) (* -------------------------------------------------------------------------- *) type 'a loc = { loc : location ; value : 'a } type pvar = string loc type ast = node loc and node = | Any | Pany of ast list | Pvar of pvar | Named of pvar * ast | Range of int * int | Int of Integer.t | Bool of bool | String of string | Not of ast | Assoc of assoc * ast list | Binop of ast * binop * ast | Call of string * ast list * bool (* trailing .. *) | Times of Integer.t * ast | List of ast list | Field of ast * string | Get of ast * ast | Set of ast * ast * ast and assoc = [ `Add | `Mul | `Concat | `Band | `Bor | `Bxor | `And | `Or ] and binop = [ `Div | `Mod | `Repeat | `Eq | `Lt | `Le | `Ne | `Lsl | `Lsr ] let self p = let pattern,self = match p.value with | Named(x,_) | Pvar x -> p , x | _ -> let x = { loc = p.loc ; value= "\\target" } in { loc = p.loc ; value = Named(x,p) } , x in pattern , { loc = p.loc ; value = Pvar self } let unroll op = function | { value = Assoc(f,xs) } when f = op -> xs | e -> [e] let assoc op a b = { loc = fst a.loc, snd b.loc ; value = Assoc(op,unroll op a @ unroll op b) ; } let concat ~loc es = let es = List.map (unroll `Concat) es in { loc ; value = Assoc(`Concat, List.concat es) } module Vmap = Map.Make(String) type context = { typing : typing_context ; mutable value : bool ; mutable pvars : pvar Vmap.t ; } type pattern = ast type value = ast (* -------------------------------------------------------------------------- *) (* --- Node Parsing --- *) (* -------------------------------------------------------------------------- *) let context typing = { typing ; value = false ; pvars = Vmap.empty } let pint ctxt ~loc a = try int_of_string a with _ -> ctxt.typing.error loc "Invalid int %S" a let pinteger ctxt ~loc a = try Integer.of_string a with _ -> ctxt.typing.error loc "Invalid integer %S" a let pvar ctxt ~loc x = try Vmap.find x ctxt.pvars with Not_found -> if ctxt.value then ctxt.typing.error loc "Unknown pattern variable '%s'" x else let pv = { loc ; value = x } in ctxt.pvars <- Vmap.add x pv ctxt.pvars ; pv let pbound ctxt p = let loc = p.lexpr_loc in match p.lexpr_node with | PLconstant (IntConstant a) -> pint ctxt ~loc a | _ -> ctxt.typing.error loc "Invalid bound (int expected)" let rec ptrail rps = function | [] -> List.rev rps,false | [{ lexpr_node = PLrange(None,None) }] -> List.rev rps,true | p::ps -> ptrail (p::rps) ps let rec parse ctxt p = let loc = p.lexpr_loc in match p.lexpr_node with | PLvar "_" when not ctxt.value -> { loc ; value = Any } | PLvar x -> { loc ; value = Pvar (pvar ctxt ~loc x) } | PLnamed(x,p) -> let pv = pvar ctxt ~loc x in let pn = parse ctxt p in { loc ; value = Named(pv,pn) } | PLtrue -> { loc ; value = Bool true } | PLfalse -> { loc ; value = Bool false } | PLconstant (IntConstant n) -> { loc ; value = Int (pinteger ctxt ~loc n) } | PLconstant (StringConstant s) -> { loc ; value = String s } | PLrange(Some a,Some b) when not ctxt.value -> { loc ; value = Range(pbound ctxt a,pbound ctxt b) } | PLapp("\\any",[],ps) when not ctxt.value -> { loc ; value = Pany (List.map (parse ctxt) ps) } | PLapp("\\concat",[],[]) -> { loc ; value = List [] } | PLapp("\\concat",[],ps) -> concat ~loc @@ List.map (parse ctxt) ps | PLapp("\\repeat",[],[p;q]) -> parse_binop ctxt ~loc `Repeat p q | PLapp(lf,[],ps) -> let ps,trail = if ctxt.value then ps,false else ptrail [] ps in { loc ; value = Call(lf,List.map (parse ctxt) ps,trail) } | PLunop(Uminus,a) -> let a = parse ctxt a in { loc = a.loc ; value = Times(Integer.minus_one,a) } | PLunop(Ubw_not,a) -> let a = parse ctxt a in { loc = a.loc ; value = Call("lf:lnot",[a],false) } | PLnot a -> let a = parse ctxt a in { loc = a.loc ; value = Not a } | PLbinop(a,Bmul,b) -> let a = parse ctxt a in let b = parse ctxt b in begin match a.value with | Int k -> { loc ; value = Times(k,b) } | _ -> assoc `Mul a b end | PLbinop(a,Bsub,b) -> let a = parse ctxt a in let b = parse ctxt b in let b = { loc = b.loc ; value = Times(Integer.minus_one,b) } in assoc `Add a b | PLbinop(a,Badd,b) -> assoc `Add (parse ctxt a) (parse ctxt b) | PLbinop(a,Bbw_or,b) -> assoc `Bor (parse ctxt a) (parse ctxt b) | PLbinop(a,Bbw_and,b) -> assoc `Band (parse ctxt a) (parse ctxt b) | PLbinop(a,Bbw_xor,b) -> assoc `Bxor (parse ctxt a) (parse ctxt b) | PLbinop(a,Bdiv,b) -> parse_binop ctxt ~loc `Div a b | PLbinop(a,Bmod,b) -> parse_binop ctxt ~loc `Mod a b | PLbinop(a,Blshift,b) -> parse_binop ctxt ~loc `Lsl a b | PLbinop(a,Brshift,b) -> parse_binop ctxt ~loc `Lsr a b | PLrel(a,Lt,b) -> parse_binop ctxt ~loc `Lt a b | PLrel(a,Le,b) -> parse_binop ctxt ~loc `Le a b | PLrel(a,Gt,b) -> parse_binop ctxt ~loc `Lt b a | PLrel(a,Ge,b) -> parse_binop ctxt ~loc `Le b a | PLrel(a,Eq,b) -> parse_binop ctxt ~loc `Eq a b | PLrel(a,Neq,b) -> parse_binop ctxt ~loc `Ne a b | PLand(a,b) -> assoc `And (parse ctxt a) (parse ctxt b) | PLor(a,b) -> assoc `Or (parse ctxt a) (parse ctxt b) | PLempty -> { loc ; value = List [] } | PLlist ps -> { loc ; value = List (List.map (parse ctxt) ps) } | PLrepeat(p,n) -> parse_binop ctxt ~loc `Repeat p n | PLdot(a,fd) -> { loc ; value = Field(parse ctxt a,fd) } | PLarrget(a,b) -> begin match b.lexpr_node with | PLarrget(k,v) -> { loc ; value = Set(parse ctxt a,parse ctxt k,parse ctxt v) } | _ -> { loc ; value = Get(parse ctxt a,parse ctxt b) } end | _ -> ctxt.typing.error loc (if ctxt.value then "Invalid value" else "Invalid pattern") and parse_binop ctxt ~loc (op:binop) a b = { loc ; value = Binop(parse ctxt a,op,parse ctxt b) } let pa_pattern ctxt p = ctxt.value <- false ; parse ctxt p let pa_value ctxt p = ctxt.value <- true ; parse ctxt p (* -------------------------------------------------------------------------- *) (* --- Pretty --- *) (* -------------------------------------------------------------------------- *) let rec pp fmt (a : ast) = match a.value with | Any -> Format.pp_print_string fmt "_" | Pvar x -> Format.pp_print_string fmt x.value | Named (x,v) -> Format.fprintf fmt "%s:%a" x.value pp v | Range(a,b) -> Format.fprintf fmt "(%d..%d)" a b | Int n -> Integer.pretty fmt n | Bool b -> Format.pp_print_string fmt (if b then "\\true" else "\\false") | String s -> Format.fprintf fmt "%S" s | Assoc(`Band,[]) -> Format.pp_print_string fmt "-1" | Assoc(`Mul,[]) -> Format.pp_print_string fmt "1" | Assoc((`Add|`Bor|`Bxor),[]) -> Format.pp_print_string fmt "0" | Assoc(`And,[]) -> Format.pp_print_string fmt "\\true" | Assoc(`Or,[]) -> Format.pp_print_string fmt "\\false" | Assoc(`Concat,[]) -> Format.pp_print_string fmt "[| |]" | Not a -> Format.fprintf fmt "!(%a)" pp a | Assoc(op,v::vs) -> let op = match op with | `Add -> "+" | `Mul -> "*" | `Concat | `Bxor -> "^" | `Band -> "&" | `Bor -> "|" | `And -> "&&" | `Or -> "||" in Format.fprintf fmt "@[<hov 2>(%a" pp v ; List.iter (Format.fprintf fmt "@ %s %a" op pp) vs ; Format.fprintf fmt ")@]" | Binop(a,op,b) -> let op = match op with | `Div -> "/" | `Mod -> "%" | `Eq -> "==" | `Ne -> "!=" | `Lt -> "<" | `Le -> "<=" | `Repeat -> "*^" | `Lsl -> "<<" | `Lsr -> ">>" in Format.fprintf fmt "@[<hov 2>(%a@ %s %a)@]" pp a op pp b | Times(k,v) -> Format.fprintf fmt "%a*%a" Integer.pretty k pp v | Get(a,k) -> Format.fprintf fmt "@[<hov 2>%a[@,%a]@]" pp a pp k | Set(a,k,v) -> Format.fprintf fmt "@[<hov 2>%a[@,%a@ -> %a]@]" pp a pp k pp v | List [] -> Format.pp_print_string fmt "[| |]" | List (v::vs) -> Format.fprintf fmt "@[<hov 2>[| %a" pp v ; List.iter (Format.fprintf fmt " ;@ %a" pp) vs ; Format.fprintf fmt " |]@]" | Field(v,id) -> Format.fprintf fmt "%a.%s" pp v id | Call(id,[],true) -> Format.fprintf fmt "%s((..))" id | Call(id,[],false) -> Format.fprintf fmt "%s()" id | Call(id,v::vs,trail) -> Format.fprintf fmt "@[<hov 2>%s(%a" id pp v ; List.iter (Format.fprintf fmt ",@ %a" pp) vs ; if trail then Format.fprintf fmt ",@ (..)" ; Format.fprintf fmt ")@]" | Pany [] -> Format.pp_print_string fmt "\\never" | Pany (v::vs) -> Format.fprintf fmt "@[<hov 2>\\any(%a" pp v ; List.iter (Format.fprintf fmt ",@ %a" pp) vs ; Format.fprintf fmt ")@]" let pp_value = pp let pp_pattern = pp (* -------------------------------------------------------------------------- *) (* --- Pattern Matching --- *) (* -------------------------------------------------------------------------- *) type sigma = Tactical.selection Vmap.t let pp_sigma fmt s = begin Format.fprintf fmt "@[<hv 0>[@[<hv 2>" ; Vmap.iter (fun x e -> Format.fprintf fmt "@ @[<hov 2>%s -> %a@] ;" x Tactical.pp_selection e ) s ; Format.fprintf fmt "@]@ ]@]" ; end type penv = { mutable sigma : sigma ; mutable marked : Lang.F.Tset.t ; select : Lang.F.term -> Tactical.selection ; } let merge env (x : pvar) e = try let s = Vmap.find x.value env.sigma in let v = Tactical.selected s in if not (Lang.F.equal v e) then raise Not_found with Not_found -> env.sigma <- Vmap.add x.value (env.select e) env.sigma let rec is_any (p : pattern) = match p.value with | Any | Pvar _ -> true | Named(_,q) -> is_any q | _ -> false let rec pmatch env (p : pattern) e = match p.value , Lang.F.repr e with | Any , _ -> () | Pvar x , _ -> merge env x e | Named(x,p) , _ -> merge env x e ; pmatch env p e | Range(a,b) , Kint n -> begin match Integer.to_int_opt n with | Some v when a <= v && v <= b -> () | _ -> raise Not_found end | Bool true , True -> () | Bool false , False -> () | Int v1, Kint v2 when Z.equal v1 v2 -> () | Not p , Not e -> pmatch env p e | Assoc(`Or,ps) , Or es -> pac env Lang.F.e_or [] ps es | Assoc(`And,ps) , And es -> pac env Lang.F.e_and [] ps es | Assoc(`Add,ps) , Add es -> pac env Lang.F.e_sum [] ps es | Assoc(`Mul,ps) , Mul es -> pac env Lang.F.e_prod [] ps es | Assoc(`Bor,ps) , Fun(lf,es) when lf == Cint.f_lor -> pac env (Lang.F.e_fun lf) [] ps es | Assoc(`Band,ps) , Fun(lf,es) when lf == Cint.f_land -> pac env (Lang.F.e_fun lf) [] ps es | Assoc(`Bxor,ps) , Fun(lf,es) when lf == Cint.f_lxor -> pac env (Lang.F.e_fun lf) [] ps es | Assoc(`Concat,ts) , Fun(lf, es) when lf == Vlist.f_concat -> pac env (Lang.F.e_fun lf) [] ts es | Binop(p,`Div,q) , Div(a,b) -> pbinop env p q a b | Binop(p,`Mod,q) , Mod(a,b) -> pbinop env p q a b | Binop(p,`Eq,q) , Eq(a,b) -> pbinop env p q a b | Binop(p,`Ne,q) , Neq(a,b) -> pbinop env p q a b | Binop(p,`Lt,q) , Lt(a,b) -> pbinop env p q a b | Binop(p,`Le,q) , Leq(a,b) -> pbinop env p q a b | Binop(p,`Lsl,q) , Fun(lf,[a;b]) when lf == Cint.f_lsl -> pbinop env p q a b | Binop(p,`Lsr,q) , Fun(lf,[a;b]) when lf == Cint.f_lsr -> pbinop env p q a b | Times(b,p) , Times(a,e) -> let q,r = Integer.c_div_rem a b in if Integer.is_zero r then pmatch env p (Lang.F.e_times q e) else raise Not_found | Get(pa,pk) , Aget(a,k) -> pmatch env pa a ; pmatch env pk k | Set(pa,pk,pv) , Aset(a,k,v) -> pmatch env pa a ; pmatch env pk k ; pmatch env pv v | Field(pv,fid) , Rget(v,fd) when Lang.name_of_field fd = fid -> pmatch env pv v | Call(fid,ps,trail) , Fun(lf,es) when Lang.name_of_lfun lf = fid -> begin match Lang.Fun.category lf with | Operator op -> if op.associative then let rps = if trail then [{ loc = p.loc ; value = Any }] else [] in if op.commutative then pac env (Lang.F.e_fun lf) rps ps es else passoc env (Lang.F.e_fun lf) rps ps [] es else pargs env ps trail es | _ -> pargs env ps trail es end | Binop(pl,`Repeat,pn) , Fun(lf,[l;n]) when lf == Vlist.f_repeat -> pmatch env pl l ; pmatch env pn n | List _vs , _ -> () | Pany ps , _ -> let ok = List.exists (fun p -> ptry env p e) ps in if not ok then raise Not_found | _ -> raise Not_found and pbinop env p q a b = pmatch env p a ; pmatch env q b (* Associative matching : - rps are (reversed) any-patterns to be matched with (reversed) rvs values - invariant is (rev rps @ ps) being matched with (rev rvs @ vs) *) and passoc env op rps ps rvs vs = match ps with | [] -> pany env op (List.rev rps) (List.rev_append rvs vs) | p::ps -> if is_any p then passoc env op (p::rps) ps rvs vs else match vs with | [] -> raise Not_found | v::vs -> if ptry env p v then begin pany env op (List.rev rps) (List.rev rvs) ; passoc env op [] ps [] vs end else passoc env op rps ps (v::rvs) vs (* AC matching: - rps are (reversed) any-patterns - invariant is (rev rs @ ps) being matched with es *) and pac env op rps ps es = match ps with | p::ps -> if is_any p then pac env op (p::rps) ps es else let ep = List.find (ptry env p) es in let es = List.filter (fun e -> not @@ Lang.F.equal ep e) es in pac env op rps ps es | [] -> pany env op (List.rev rps) es (* Match with backtracking *) and ptry env p e = let s0 = env.sigma in try pmatch env p e ; true with Not_found -> env.sigma <- s0 ; false (* Matching any-patterns rs with es *) and pany env op rs es = match rs , es with | [] , [] -> () | [] , _ | _ , [] -> raise Not_found | [r] , _ -> pmatch env r (op es) | r::rs , e::es -> pmatch env r e ; pany env op rs es (* Pairwise matching *) and pargs env ps trail es = match ps , es with | [] , [] -> () | [] , _ when trail -> () | p::ps , e::es -> pmatch env p e ; pargs env ps trail es | _ -> raise Not_found (* Deep matching with marking *) let rec pchildren env p e = let rs = ref [] in Lang.F.lc_iter (fun e -> rs := e :: !rs) e ; List.exists (pchild env p) (List.rev !rs) and pchild env p e = if Lang.F.lc_closed e then not (Lang.F.Tset.mem e env.marked) && begin env.marked <- Lang.F.Tset.add e env.marked ; ptry env p e || pchildren env p e end else pchildren env p e let rec plist f = function [] -> None | x::xs -> match f x with | Some _ as result -> result | None -> plist f xs (* -------------------------------------------------------------------------- *) (* --- Pattern Lookup --- *) (* -------------------------------------------------------------------------- *) type lookup = { head: bool ; goal: bool ; hyps: bool ; split: bool ; pattern: pattern ; } let pclause { head ; pattern ; split } clause sigma prop = let tprop = Lang.F.e_prop prop in let select t = if t == tprop then Tactical.Clause clause else Tactical.Inside(clause,t) in let env = { sigma ; select ; marked = Lang.F.Tset.empty } in let pcond t = if ptry env pattern t || (not head && pchildren env pattern t) then Some env.sigma else None in match Lang.F.repr tprop with | And ts when split -> plist pcond ts | _ -> pcond tprop (* --- Step Ordering --- *) let queue = Queue.create () let order (s : Conditions.step) : int = match s.condition with | Have _ -> 0 | When _ -> 1 | Branch _ -> 2 | Core _ -> 3 | Init _ -> 4 | Type _ -> 5 | Either _ -> 6 | State _ -> 7 | Probe _ -> 8 let priority sa sb = order sa - order sb let push (step : Conditions.step) = match step.condition with | Have _ | When _ | Core _ | Init _ | Type _ | State _ | Probe _ -> () | Branch(_,sa,sb) -> Queue.push sa queue ; Queue.push sb queue | Either cs -> List.iter (fun s -> Queue.push s queue) cs (* --- Step Matching --- *) let pstep ctxt sigma (step : Conditions.step) = let term = Conditions.head step in let clause = Tactical.Step step in pclause ctxt clause sigma term (* --- Sequence Matching --- *) let rec psequence ctxt sigma (seq : Conditions.sequence) = let steps = List.sort priority (Conditions.list seq) in match plist (pstep ctxt sigma) steps with | Some _ as result -> Queue.clear queue ; result | None -> List.iter push steps ; if Queue.is_empty queue then None else psequence ctxt sigma (Queue.pop queue) (* --- Hypotheses Matching --- *) let phyps ctxt sigma (seq : Conditions.sequent) = if not ctxt.hyps then None else psequence ctxt sigma (fst seq) let pgoal ctxt sigma (seq : Conditions.sequent) = if not ctxt.goal then None else let goal = snd seq in let clause = Tactical.Goal goal in pclause ctxt clause sigma goal let empty = Vmap.empty let psequent ctxt sigma (seq : Conditions.sequent) = Conditions.index seq ; match pgoal ctxt sigma seq with | Some _ as result -> result | None -> phyps ctxt sigma seq (* -------------------------------------------------------------------------- *) (* --- Composing Values --- *) (* -------------------------------------------------------------------------- *) let () = Lang.on_lfun begin fun lf -> let id = "lf:" ^ Lang.name_of_lfun lf in Tactical.add_computer id (Lang.F.e_fun lf) end let () = Lang.on_field begin fun fd -> let id = "fd:" ^ Lang.name_of_field fd in Tactical.add_computer id (fun es -> Lang.F.e_getfield (List.hd es) fd) end let error ~loc msg = Wp_parameters.logwith (fun _evt -> raise Not_found) ~source:(fst loc) msg let getvar env (x : string loc) : Tactical.selection = try Vmap.find x.value env with Not_found -> error ~loc:x.loc "Pattern variable '%s' not bound" x.value let rec select (env : sigma) (a : value) = let loc = a.loc in let cc = select env in match a.value with | Any -> error ~loc "Pattern _ is not a value" | Pany _ -> error ~loc "Pattern \\any(..) is not a value" | String s -> error ~loc "String %S is not a value" s | Pvar x -> getvar env x | Named (_,v) -> cc v | Range(a,b) -> Tactical.range a b | Int n -> Tactical.cint n | Bool b -> Tactical.compose (if b then "wp:true" else "wp:false") [] | Not a -> Tactical.compose "wp:not" [cc a] | Assoc(op,vs) -> let op = match op with | `Add -> "wp:add" | `Mul -> "wp:mul" | `Concat -> "wp:concat" | `And -> "wp:and" | `Or -> "wp:or" | `Bor -> "lf:lor" | `Band -> "lf:land" | `Bxor -> "lf:lxor" in Tactical.compose op (List.map (cc) vs) | Binop(a,op,b) -> let op = match op with | `Div -> "wp:div" | `Mod -> "wp:mod" | `Eq -> "wp:eq" | `Ne -> "wp:neq" | `Lt -> "wp:lt" | `Le -> "wp:leq" | `Repeat -> "wp:repeat" | `Lsl -> "lf:lsl" | `Lsr -> "lf:lsr" in compose env ~loc op [a;b] | Times(k,v) -> Tactical.compose "wp:mul" [Tactical.cint k;cc v] | Get(a,k) -> Tactical.compose "wp:get" [cc a;cc k] | Set(a,k,v) -> Tactical.compose "wp:set" [cc a;cc k;cc v] | List vs -> Tactical.compose "wp:list" (List.map cc vs) | Field(v,id) -> compose env ~loc ("fd:" ^ id) [v] | Call(id,vs,_) -> compose env ~loc ("lf:" ^ id) vs and compose env ~loc id vs = match Tactical.compose id (List.map (select env) vs) with | Tactical.Empty -> error ~loc "Computer %S not found" id | result -> result let bool (a : value) = match a.value with | Bool b -> b | _ -> error ~loc:a.loc "Not a boolean value (%a)" pp a let string (a : value) = match a.value with | String s -> s | _ -> error ~loc:a.loc "Not a string value (%a)" pp a (* -------------------------------------------------------------------------- *) (* --- Typechecking --- *) (* -------------------------------------------------------------------------- *) type vtype = | Tnone | Tany | Numerical | Boolean | String | List of vtype | Array of vtype * vtype | Type of Lang.F.tau let vint = Type Qed.Logic.Int let vbool = Type Qed.Logic.Bool let vlist = List Tany let list = function | Type t -> Type (Vlist.alist t) | Tnone -> Tnone | v -> List v let array vk ve = match vk , ve with | Type tk, Type te -> Type (Qed.Logic.Array(tk,te)) | Tnone , _ | _ , Tnone -> Tnone | _ -> Array(vk,ve) let rec vmerge va vb = if va == vb then vb else match va, vb with | Tany , v | v, Tany -> v (* numerical *) | Numerical, Numerical -> Numerical | Numerical, Type (Int | Real) -> vb | Type (Int | Real), Numerical -> va | Type Int , Type Real -> vb | Type Real , Type Int -> va (* boolean *) | Boolean, Boolean -> Boolean | Boolean, Type (Bool | Prop) -> vb | Type (Bool | Prop) , Boolean -> va | Type Bool , Type Prop -> vb | Type Prop , Type Bool -> va (* list *) | List u , List v -> list (vmerge u v) | (List m, Type t) | (Type t , List m) -> begin match Vlist.elist t with | None -> Tnone | Some te -> list (vmerge m (Type te)) end (* arrays *) | Array(vk,ve) , Array(uk,ue) -> array (vmerge vk uk) (vmerge ve ue) | (Array(vk,ve) , Type(Array(tk,te))) | (Type(Array(tk,te)) , Array(vk,ve)) -> array (vmerge vk (Type tk)) (vmerge ve (Type te)) (* types *) | Type ta , Type tb -> if Lang.F.Tau.equal ta tb then vb else Tnone | _ -> Tnone let rec vpretty fmt = function | Tnone -> Format.fprintf fmt "\\none" | Tany -> Format.fprintf fmt "\\any" | List v -> Format.fprintf fmt "\\list(%a)" vpretty v | Array(vk,ve) -> Format.fprintf fmt "%a[%a]" vpretty vk vpretty ve | String -> Format.fprintf fmt "string" | Numerical -> Format.fprintf fmt "number" | Boolean -> Format.fprintf fmt "boolean" | Type t -> Lang.F.Tau.pretty fmt t type env = vtype Vmap.t ref let env () = ref Vmap.empty let tc_merge ~loc va vb = let v = vmerge va vb in if v = Tnone then Wp_parameters.error ~source:(fst loc) "Invalid type %a (expected %a)" vpretty va vpretty vb ; v let tc_var env ~loc vt x = let vx = try Vmap.find x !env with Not_found -> Tany in let vy = tc_merge ~loc vt vx in if vx != vy then env := Vmap.add x vy !env ; vy let rec typecheck env vt (a : ast) = let loc = a.loc in match a.value with | Any -> vt | Pany ps -> List.fold_left (typecheck env) vt ps | Pvar x -> tc_var env ~loc vt x.value | Named(x,v) -> tc_var env ~loc (typecheck env vt v) x.value | Range(a,b) -> if a > b then Wp_parameters.error ~source:(fst loc) "Invalid range %d..%d" a b ; tc_merge ~loc vt (Type Qed.Logic.Int) | Int _ -> tc_merge ~loc vt vint | Bool _ -> tc_merge ~loc vt vbool | String _ -> tc_merge ~loc vt String | Not a -> typecheck env (tc_merge ~loc vbool vt) a | Assoc((`And|`Or),vs) -> List.fold_left (typecheck env) (tc_merge ~loc vbool vt) vs | Assoc((`Bor|`Band|`Bxor),vs) -> List.fold_left (typecheck env) (tc_merge ~loc vint vt) vs | Assoc((`Add|`Mul),vs) -> List.fold_left (typecheck env) (tc_merge ~loc Numerical vt) vs | Assoc(`Concat,vs) -> List.fold_left (typecheck env) (tc_merge ~loc vlist vt) vs | Binop(a,(`Eq | `Ne),b) -> let va = typecheck env Tany a in let vb = typecheck env Tany b in ignore @@ tc_merge ~loc va vb ; tc_merge ~loc vt Boolean | Binop(a,(`Lt | `Le),b) -> let va = typecheck env Numerical a in let vb = typecheck env Numerical b in ignore @@ tc_merge ~loc va vb ; tc_merge ~loc vt Boolean | Binop(a,`Div,b) -> let vn = tc_merge ~loc Numerical vt in let va = typecheck env vn a in let vb = typecheck env vn b in tc_merge ~loc va vb | Binop(a,(`Mod|`Lsl|`Lsr),b) -> ignore @@ typecheck env vint a ; ignore @@ typecheck env vint b ; tc_merge ~loc vt vint | Binop(a,`Repeat,b) -> ignore @@ typecheck env vint b ; typecheck env (tc_merge ~loc vlist vt) a | Times(_,v) -> typecheck env (tc_merge ~loc Numerical vt) v | List vs -> let ve = List.fold_left (typecheck env) Tany vs in tc_merge ~loc vt (List ve) | Get(a,k) -> let vk = typecheck env Tany k in begin match typecheck env (Array(vk,vt)) a with | Array(_,ve) -> ve | Type(Array(_,te)) -> Type te | va -> Wp_parameters.error ~source:(fst a.loc) "Not an array type (%a)" vpretty va ; vt end | Set(a,k,v) -> let vk = typecheck env Tany k in let ve = typecheck env vt v in typecheck env (array vk ve) a | Field(v,fid) -> begin match typecheck env Tany v with | Type(Record fds) -> begin try let (_,ft) = List.find (fun (fd,_) -> Lang.name_of_field fd = fid) fds in tc_merge ~loc vt (Type ft) with Not_found -> vt end | Tany -> vt | vr -> Wp_parameters.error ~source:(fst v.loc) "Not a record type (%a)" vpretty vr ; vt end | Call(_f,vs,_) -> List.iter (fun v -> ignore @@ typecheck env Tany v) vs ; vt let typecheck_vtau env ?tau v = ignore @@ typecheck env (match tau with None -> Tany | Some t -> Type t) v let typecheck_value = typecheck_vtau let typecheck_pattern = typecheck_vtau let typecheck_lookup env p = ignore @@ typecheck env (if p.head then Boolean else Tany) p.pattern (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>