package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Vlist.ml.html
Source file Vlist.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- VList Builtins --- *) (* -------------------------------------------------------------------------- *) let dkey = Wp_parameters.register_category "sequence" let debug fmt = Wp_parameters.debug ~dkey fmt let debugN level fmt = Wp_parameters.debug ~level ~dkey fmt open Lang open Lang.F module L = Qed.Logic module E = Qed.Engine (* -------------------------------------------------------------------------- *) (* --- Driver --- *) (* -------------------------------------------------------------------------- *) let library = "vlist" (*--- Linked Symbols ---*) let t_list = "\\list" let l_list = "list" let l_concat = E.F_right "concat" let l_elt = E.(F_call "elt") let l_repeat = E.(F_call "repeat") (*--- Typechecking ---*) let () = LogicBuiltins.add_type t_list ~library ~link:l_list () let a_list = Lang.get_builtin_type ~name:t_list let alist e = L.Data(a_list,[e]) let vlist_get_tau = function | None -> invalid_arg "a list operator without result type" | Some t -> t let ty_nil = function _ -> invalid_arg "All nil must be typed" let ty_listelt = function | L.Data(_,[t]) -> (t : tau) | _ -> raise Not_found let ty_cons = function | [ _ ; Some l ] -> l | [ Some e ; _ ] -> alist e | _ -> raise Not_found let ty_elt = function | [ Some e ] -> alist e | _ -> raise Not_found let ty_nth = function | Some l :: _ -> ty_listelt l | _ -> raise Not_found let rec ty_concat = function | Some l :: _ -> l | None :: w -> ty_concat w | [] -> raise Not_found let ty_repeat = function | Some l :: _ -> l | _ -> raise Not_found (*--- Qed Symbols ---*) let f_cons = Lang.extern_f ~library ~typecheck:ty_cons "cons" (* rewriten in concat(elt) *) let f_nil = Lang.extern_f ~library ~typecheck:ty_nil ~category:L.Constructor "nil" let f_elt = Lang.extern_f ~library ~category:L.Constructor ~typecheck:ty_elt ~link:l_elt "elt" let concatenation = L.(Operator { invertible = true ; associative = true ; commutative = false ; idempotent = false ; neutral = E_fun(f_nil,[]) ; absorbant = E_none ; }) let f_nth = Lang.extern_f ~library ~typecheck:ty_nth "nth" let f_length = Lang.extern_f ~library ~sort:L.Sint "length" let f_concat = Lang.extern_f ~library ~category:concatenation ~typecheck:ty_concat ~link:l_concat "concat" let f_repeat = Lang.extern_f ~library ~typecheck:ty_repeat ~link:l_repeat "repeat" (*--- ACSL Builtins ---*) let () = let open LogicBuiltins in begin add_builtin "\\Nil" [] f_nil ; add_builtin "\\Cons" [A;A] f_cons ; add_builtin "\\nth" [A;Z] f_nth ; add_builtin "\\length" [A] f_length ; add_builtin "\\concat" [A;A] f_concat ; add_builtin "\\repeat" [A;Z] f_repeat ; end let category e = match F.repr e with | Qed.Logic.Fun (f,_) when Fun.equal f f_nil -> "Nil" | Qed.Logic.Fun (f,_) when Fun.equal f f_cons -> "Cons" | Qed.Logic.Fun (f,_) when Fun.equal f f_nth -> "Nth" | Qed.Logic.Fun (f,_) when Fun.equal f f_length -> "Length" | Qed.Logic.Fun (f,_) when Fun.equal f f_concat -> "Concat" | Qed.Logic.Fun (f,_) when Fun.equal f f_repeat -> "Repeat" | _ -> "_" let rec pp_pattern fmt e = match F.repr e with | Qed.Logic.Fun (f, args) when Fun.equal f f_nil || Fun.equal f f_cons || Fun.equal f f_nth || Fun.equal f f_length || Fun.equal f f_concat || Fun.equal f f_repeat -> Format.fprintf fmt "(%s %a)" (category e) (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.pp_print_string fmt " ") pp_pattern) args | _ -> Format.pp_print_string fmt "_" (*--- Smart Constructors ---*) let is_nil e = (* under-approximation of e==[] *) match F.repr e with | Qed.Logic.Fun (f,_) -> Fun.equal f f_nil | _ -> false let v_nil t = F.e_fun ~result:t f_nil [] let v_elt e = F.e_fun f_elt [e] let v_concat es tau = F.e_fun f_concat es ~result:tau let v_length l = F.e_fun f_length [l] let v_repeat s n tau = F.e_fun f_repeat [s;n] ~result:tau let concat vs = let tl = Lang.F.typeof (List.hd vs) in v_concat vs tl let list es = concat (List.map v_elt es) let repeat s n = v_repeat s n (Lang.F.typeof s) (* -------------------------------------------------------------------------- *) (* --- Rewriters --- *) (* -------------------------------------------------------------------------- *) let rewrite_cons a w tau = (* a::w == [a]^w *) v_concat [v_elt a ; w] (vlist_get_tau tau) let rewrite_length e = match F.repr e with | L.Fun( nil , [] ) when nil == f_nil -> F.e_zero (* \length([]) == 0 *) | L.Fun( elt , [_] ) when elt == f_elt -> F.e_one (* \length([x]) == 1 *) | L.Fun( concat , es ) when concat == f_concat -> (* \length(\concat(...,x_i,...)) == \sum(...,\length(x_i),...) *) F.e_sum (List.map v_length es) | L.Fun( repeat , [ u ; n ] ) when repeat == f_repeat -> (* \length(u ^* n) == if 0<=n then n * \length(u) else 0 *) F.e_if (F.e_leq e_zero n) (F.e_mul n (v_length u)) e_zero | _ -> (* NB. do not considers \Cons because they are removed *) raise Not_found let match_natural k = match F.repr k with | L.Kint z -> let k = try Integer.to_int_exn z with Z.Overflow -> raise Not_found in if 0 <= k then k else raise Not_found | _ -> raise Not_found (* Why3 definition: [\nth(e,k)] is undefined for [k<0 || k>=\length(e)]. So, the list cannot be destructured when the length is unknown *) let rec get_nth k e = match F.repr e with | L.Fun( concat , list ) when concat == f_concat -> get_nth_list k list | L.Fun( elt , [x] ) when elt == f_elt -> get_nth_elt k x (fun _ -> raise Not_found) | L.Fun( repeat , [x;n] ) when repeat == f_repeat -> get_nth_repeat k x n (fun _ -> raise Not_found) | _ -> raise Not_found and get_nth_list k = function | head::tail -> begin match F.repr head with | L.Fun( elt , [x] ) when elt == f_elt -> get_nth_elt k x (fun k -> get_nth_list k tail) | L.Fun( repeat , [x;n] ) when repeat == f_repeat -> get_nth_repeat k x n (fun k -> get_nth_list k tail) | _ -> raise Not_found end | [] -> raise Not_found and get_nth_elt k x f = if k = 0 then x else (f (k-1)) and get_nth_repeat k x n f = let n = match_natural n in if n = 0 then raise Not_found ; let m = match_natural (rewrite_length x) in if m = 0 then raise Not_found ; let en = Integer.of_int n in let em = Integer.of_int m in let ek = Integer.of_int k in if Integer.(ge ek (mul en em)) then f (k -(n*m)) else get_nth (k mod m) x let rewrite_nth s k = get_nth (match_natural k) s let rewrite_repeat s n = if F.decide (F.e_leq n e_zero) then (* n <=0 ==> (s *^ n) == [] *) v_nil (F.typeof s) else if F.equal n e_one then (* (s *^ 1) == s *) s else if is_nil s then (* ([] *^ n) == [] ; even if [n] is negative *) s else match F.repr s with | L.Fun( repeat , [s0 ; n0] ) (* n0>=0 && n>=0 ==> ((s0 *^ n0) *^ n) == (s0 *^ (n0 * n)) *) when (repeat == f_repeat) && (Cint.is_positive_or_null n) && (Cint.is_positive_or_null n0) -> v_repeat s0 (F.e_mul n0 n) (F.typeof s) | _ -> raise Not_found let rec leftmost a ms = match F.repr a with | L.Fun( concat , e :: es ) when concat == f_concat -> leftmost e (es@ms) | L.Fun( repeat , [ u ; n ] ) when repeat == f_repeat -> begin match (* tries to perform some rolling that do not depend on [n] *) (match ms with | b::ms -> let b,ms = leftmost b ms in let u,us = leftmost u [] in if F.decide (F.e_eq u b) then (* u=b ==> ((u^us)*^n) ^ b ^ ms == u ^ (us^b)*^n) ^ ms *) Some (u, v_repeat (v_concat (us@[b]) (F.typeof a)) n (F.typeof a) :: ms) else None | _ -> None) with | Some res -> res | None -> if F.decide (F.e_lt F.e_zero n) then (* 0<n ==> (u*^n) ^ ms == u ^ (u*^(n-1)) ^ ms *) leftmost u (v_repeat u (F.e_sub n F.e_one) (F.typeof a) :: ms) else a , ms end | _ -> a , ms (* [leftmost a] returns [s,xs] such that [a = s ^ x1 ^ ... ^ xn] *) let leftmost a = let r = leftmost a [] in debugN 2 "Vlist.leftmost %a@ = %a (form: %s) ^ ... (%d more)@." Lang.F.pp_term a Lang.F.pp_term (fst r) (category (fst r)) (List.length (snd r)) ; r let rec rightmost ms a = match F.repr a with | L.Fun( concat , es ) when concat == f_concat -> begin match List.rev es with | [] -> ms , a | e::es -> rightmost (ms @ List.rev es) e end | L.Fun( repeat , [ u ; n ] ) when repeat == f_repeat -> begin match (* tries to perform some rolling that do not depend on [n] *) (match List.rev ms with | b::ms -> let ms,b = rightmost (List.rev ms) b in let us,u = rightmost [] u in if F.decide (F.e_eq u b) then (* u=b ==> (ms ^ b ^ (us^u)*^n) == ms ^ (b^us)*^n) ^ u *) Some (ms @ [ v_repeat (v_concat (b::us) (F.typeof a)) n (F.typeof a)], u) else None | _ -> None) with | Some res -> res | None -> if F.decide (F.e_lt F.e_zero n) then (* 0<n ==> ms ^ (u*^n) == ms ^ (u*^(n-1)) ^ u *) rightmost (ms @ [v_repeat u (F.e_sub n F.e_one) (F.typeof a)]) u else ms , a end | _ -> ms , a (* [rightmost a] returns [s,xs] such that [a = x1 ^ ... ^ xn ^ s] *) let rightmost a = let r = rightmost [] a in debugN 2 "Vlist.rightmost %a@ = (%d more) ... ^ %a (form: %s)@." Lang.F.pp_term a (List.length (fst r)) Lang.F.pp_term (snd r) (category (snd r)); r let leftmost_eq a b = let a , u = leftmost a in let b , v = leftmost b in if u <> [] || v <> [] then match F.is_equal a b with | L.Yes -> (* s ^ u1 ^ ... = s ^ v1 ^ ... <=> u1 ^ ... = v1 ^ ... *) F.p_equal (v_concat u (F.typeof a)) (v_concat v (F.typeof a)) | L.No when F.decide (F.e_eq (v_length a) (v_length b)) -> (* a <> b && \length(a)=\length(b) ==> a ^ u1 ^ ... <> b ^ v1 ^ ... *) F.p_false | _ -> raise Not_found else raise Not_found let rightmost_eq a b = let u , a = rightmost a in let v , b = rightmost b in if u <> [] || v <> [] then match F.is_equal a b with | L.Yes -> (* u1 ^ ... ^ s = v1 ^ ... ^ s <=> u1 ^ ... = v1 ^ ... *) F.p_equal (v_concat u (F.typeof a)) (v_concat v (F.typeof a)) | L.No when F.decide (F.e_eq (v_length a) (v_length b)) -> (* a <> b && \length(a)=\length(b) ==> u1 ^ ... ^ a <> v1 ^ ... ^ b *) F.p_false | _ -> raise Not_found else raise Not_found let rewrite_is_nil ~nil a = let p_is_nil a = F.p_equal nil a in match F.repr a with | L.Fun(concat,es) when concat == f_concat -> (* \concat (s1,...,sn)==[] <==> (s1==[] && ... && sn==[]) *) F.p_all p_is_nil es | L.Fun(elt,[_]) when elt == f_elt -> F.p_false (* [x]==[] <==> false *) | L.Fun(repeat,[s;n]) when repeat == f_repeat -> (* (s *^ n)==[] <==> (s==[] || n<=0) *) F.p_or (F.p_leq n F.e_zero) (p_is_nil s) | _ -> raise Not_found (* Ensures xs to be a sub-sequence of ys, otherwise raise Not_found In such a case, (concat xs = concat ys) <==> (forall r in result, r = nil) *) let rec subsequence xs ys = match xs , ys with | [],ys -> ys | x::rxs, y::rys -> if (F.decide (e_eq x y)) then subsequence rxs rys else y :: subsequence xs rys | _ -> raise Not_found let elements a = match F.repr a with | L.Fun(concat,es) when concat == f_concat -> true, es | _ -> false, [ a ] (* Ensures that [a] or [b] is a sub-sequence of the other, otherwise [raise Not_found] In such a case, (concat xs = concat ys) <==> (forall r in result, r = nil) *) let subsequence a b = let destruct_a, xs = elements a in let destruct_b, ys = elements b in if not (destruct_a || destruct_b) then raise Not_found; let shortest,xs,ys = if List.length xs <= List.length ys then a,xs,ys else b,ys,xs in let es = subsequence xs ys in (* xs=ys <==> forall s in es ; s = nil *) let nil = v_nil (F.typeof shortest) in (* [s] are elements of [ys] (the longest sequence) and [nil] has the same type than the [shortest] sequence *) let p_is_nil s = F.p_equal nil s in F.p_all p_is_nil es let repeat_eq a x n b y m = let e_eq_x_y = F.e_eq x y in let e_eq_n_m = F.e_eq n m in if F.decide e_eq_x_y then (* s *^ n == s *^ m <==> ( n=m || (s *^ n == [] && s *^ m == []) ) *) let nil_a = v_nil (F.typeof a) in let nil_b = v_nil (F.typeof b) in F.p_or (Lang.F.p_bool e_eq_n_m) (F.p_and (F.p_equal a nil_b) (F.p_equal nil_a b)) else if F.decide e_eq_n_m then (* x *^ n == y *^ n <==> ( x == y || n<=0 ) *) F.p_or (F.p_leq n e_zero) (Lang.F.p_bool e_eq_x_y) else if F.decide (e_eq (v_length x) (v_length y)) then (* \length(x)=\length(y) ==> ( x *^ n == y *^ m <==> ( m == n && x == y) || (x *^ n == [] && y *^ m == [] ) *) let nil_a = v_nil (F.typeof a) in let nil_b = v_nil (F.typeof b) in F.p_or (F.p_and (F.p_bool e_eq_n_m) (Lang.F.p_bool e_eq_x_y)) (F.p_and (F.p_equal a nil_b) (F.p_equal nil_a b)) else raise Not_found let rewrite_eq_sequence a b = debug "Vlist.rewrite_eq_sequence: tries to rewrite %a@ = %a@.- left pattern: %a@.- right pattern: %a@." Lang.F.pp_term a Lang.F.pp_term b pp_pattern a pp_pattern b; match F.repr a , F.repr b with | L.Fun(nil,[]) , _ when nil == f_nil -> rewrite_is_nil ~nil:a b | _ , L.Fun(nil,[]) when nil == f_nil -> rewrite_is_nil ~nil:b a | _ -> try match F.repr a , F.repr b with | L.Fun(repeat_a, [x;n]), L.Fun(repeat_b, [y;m]) when repeat_a == f_repeat && repeat_b == f_repeat -> repeat_eq a x n b y m | _ -> try leftmost_eq a b with Not_found -> try rightmost_eq a b with Not_found -> subsequence a b with Not_found -> if F.decide (F.e_neq (v_length a) (v_length b)) then F.p_false else raise Not_found let rewrite_eq_length a b = match F.repr a , F.repr b with | L.Fun(length_a,[_]), L.Fun(length_b,[_]) when length_a == f_length && length_b == f_length -> (* N.B. cannot be simplified by the next patterns *) raise Not_found | _, L.Fun(length,[_]) when length == f_length && F.decide (e_lt a e_zero) -> (* a < 0 ==> ( a=\length(b) <=> false ) *) F.p_false | L.Fun(length,[_]), _ when length == f_length && F.decide (e_lt b e_zero) -> (* b < 0 ==> ( \length(a)<=b <=> false ) *) F.p_false | _ -> raise Not_found let rewrite_leq_length a b = match F.repr a , F.repr b with | L.Fun(length_a,[_]), L.Fun(length_b,[_]) when length_a == f_length && length_b == f_length -> (* N.B. cannot be simplified by the next patterns *) raise Not_found | L.Fun(length,[_]), _ when length == f_length && F.decide (e_lt b e_zero) -> (* b < 0 ==> ( \length(a)<=b <=> false ) *) F.e_false (* N.B. the next rule does not allow to split on the sign of \length(a) with TIP | _, L.Fun(length,[_]) when length == f_length && F.decide (e_leq a e_zero) -> (* a <= 0 ==> ( a<=\length(b) <=> true ) *) F.e_true *) | _ -> raise Not_found (* All Simplifications *) let () = Context.register begin fun () -> F.set_builtin_2 f_nth rewrite_nth ; F.set_builtin_2' f_cons rewrite_cons ; F.set_builtin_2 f_repeat rewrite_repeat ; F.set_builtin_1 f_length rewrite_length ; F.set_builtin_leq f_length rewrite_leq_length ; F.set_builtin_eqp f_length rewrite_eq_length ; F.set_builtin_eqp f_concat rewrite_eq_sequence ; F.set_builtin_eqp f_repeat rewrite_eq_sequence ; F.set_builtin_eqp f_nil rewrite_eq_sequence ; end (* -------------------------------------------------------------------------- *) (* --- Typing --- *) (* -------------------------------------------------------------------------- *) let f_list = [ f_nil ; f_cons ; f_elt ; f_repeat ; f_concat ] let check_tau = Lang.is_builtin_type ~name:t_list let check_term e = try match F.repr e with | L.Fvar x -> check_tau (F.tau_of_var x) | L.Bvar(_,t) -> check_tau t | L.Fun( f , _ ) -> List.memq f f_list || check_tau (Lang.F.typeof e) | _ -> false with Not_found -> false let elist (t : tau) = match t with | L.Data(_,[e]) when check_tau t -> Some e | _ -> None let f_vlist_eq = Lang.extern_f ~library ~sort:L.Sprop "vlist_eq" let specialize_eq_list = {For_export.for_tau = check_tau; mk_new_eq = (fun a b -> Lang.F.e_fun ~result:Qed.Logic.Prop f_vlist_eq [a;b])} (* -------------------------------------------------------------------------- *) (* --- Export --- *) (* -------------------------------------------------------------------------- *) class type engine = object method callstyle : Qed.Engine.callstyle method pp_atom : Format.formatter -> Lang.F.term -> unit method pp_flow : Format.formatter -> Lang.F.term -> unit end let rec export (engine : #engine) fmt = function | [] -> begin match engine#callstyle with | E.CallVoid -> Format.pp_print_string fmt "nil()" | E.CallVar|E.CallApply -> Format.pp_print_string fmt "nil" end | e::es -> begin match F.repr e with | L.Fun( elt , [x] ) when elt == f_elt -> apply engine fmt "cons" x es | _ -> apply engine fmt "concat" e es end and apply (engine : #engine) fmt f x es = match engine#callstyle with | E.CallVar | E.CallVoid -> Format.fprintf fmt "@[<hov 2>%s(@,%a,@,%a)@]" f engine#pp_flow x (export engine) es | E.CallApply -> Format.fprintf fmt "@[<hov 2>(%s@ %a@ %a)@]" f engine#pp_atom x (export engine) es let export_rewriter_concat es tau = match es with | [] -> v_nil (vlist_get_tau tau) | e::es -> begin match F.repr e with | L.Fun( elt , [x] ) when Lang.Fun.equal elt f_elt -> e_fun ?result:tau f_cons [x;e_fun ?result:tau f_concat es] | _ -> raise Not_found end let () = Lang.For_export.set_builtin' f_concat export_rewriter_concat (* -------------------------------------------------------------------------- *) let rec collect xs = function | [] -> List.rev xs , [] | (e::es) as w -> begin match F.repr e with | L.Fun( elt , [x] ) when elt == f_elt -> collect (x::xs) es | _ -> List.rev xs , w end let pplist engine fmt xs = Qed.Plib.pp_listsep ~sep:"," engine#pp_flow fmt xs let elements (engine : #engine) fmt xs = Format.fprintf fmt "@[<hov 2>[ %a ]@]" (pplist engine) xs let rec pp_concat (engine : #engine) fmt es = let xs , es = collect [] es in begin (if xs <> [] then elements engine fmt xs) ; match es with | [] -> () | m::ms -> if xs <> [] then Format.fprintf fmt " ^@ " ; engine#pp_atom fmt m ; if ms <> [] then ( Format.fprintf fmt " ^@ " ; pp_concat engine fmt ms ) end let pretty (engine : #engine) fmt es = if es = [] then Format.pp_print_string fmt "[]" else Format.fprintf fmt "@[<hov 2>%a@]" (pp_concat engine) es let pprepeat (engine : #engine) fmt = function | [l;n] -> Format.fprintf fmt "@[<hov 2>(%a *^@ %a)@]" engine#pp_flow l engine#pp_flow n | es -> Format.fprintf fmt "@[<hov 2>repeat(%a)@]" (pplist engine) es let e = match F.repr e with | L.Fun( f , es ) -> f != f_elt && es != [] | _ -> true (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>