package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Conditions.ml.html
Source file Conditions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Weakest Pre Accumulator --- *) (* -------------------------------------------------------------------------- *) open Qed.Logic open Cil_types open Lang open Lang.F let dkey_pruning = Wp_parameters.register_category "pruning" (* -------------------------------------------------------------------------- *) (* --- Category --- *) (* -------------------------------------------------------------------------- *) type category = | KEEP (** Has probes, but equivalent to True *) | TRUE (** Logically equivalent to True *) | FALSE (** Logically equivalent to False *) | MAYBE (** Any Hypothesis *) let c_and c1 c2 = match c1 , c2 with | FALSE , _ | _ , FALSE -> FALSE | MAYBE , _ | _ , MAYBE -> MAYBE | TRUE , TRUE -> TRUE | (KEEP | TRUE) , (KEEP | TRUE) -> KEEP let c_or c1 c2 = match c1 , c2 with | FALSE , FALSE -> FALSE | TRUE , TRUE -> TRUE | _ -> MAYBE let rec cfold_and a f = function | [] -> a | e::es -> cfold_and (c_and a (f e)) f es let rec cfold_or a f = function | [] -> a | e::es -> cfold_or (c_or a (f e)) f es let c_conj f es = cfold_and TRUE f es let c_disj f = function [] -> FALSE | e::es -> cfold_or (f e) f es (* -------------------------------------------------------------------------- *) (* --- Datatypes --- *) (* -------------------------------------------------------------------------- *) type step = { mutable id : int ; (* step identifier *) size : int ; (* number of conditions *) vars : Vars.t ; stmt : stmt option ; descr : string option ; deps : Property.t list ; warn : Warning.Set.t ; condition : condition ; } and sequence = { seq_size : int ; seq_vars : Vars.t ; seq_core : Pset.t ; seq_catg : category ; seq_list : step list ; (* forall i . 0 <= i < n ==> Step_i *) } and condition = | Type of pred (* related to Type *) | Have of pred | When of pred (* related to Condition *) | Core of pred | Init of pred | Branch of pred * sequence * sequence (* if Pred then Seq_1 else Seq_2 *) | Either of sequence list (* exist i . 0 <= i < n && Sequence_i *) | State of Mstate.state | Probe of Probe.t * term (* -------------------------------------------------------------------------- *) (* --- Variable Utilities --- *) (* -------------------------------------------------------------------------- *) let vars_seqs w = List.fold_left (fun xs s -> Vars.union xs s.seq_vars) Vars.empty w let vars_list s = List.fold_left (fun xs s -> Vars.union xs s.vars) Vars.empty s let size_list s = List.fold_left (fun n s -> n + s.size) 0 s let vars_cond = function | Type q | When q | Have q | Core q | Init q -> F.varsp q | Branch(p,sa,sb) -> Vars.union (F.varsp p) (Vars.union sa.seq_vars sb.seq_vars) | Either cases -> vars_seqs cases | State _ -> Vars.empty | Probe(_,t) -> F.vars t let size_cond = function | Type _ | When _ | Have _ | Core _ | Init _ | State _ | Probe _ -> 1 | Branch(_,sa,sb) -> 1 + sa.seq_size + sb.seq_size | Either cases -> List.fold_left (fun n s -> n + s.seq_size) 1 cases let vars_hyp hs = hs.seq_vars let vars_seq (hs,g) = Vars.union (F.varsp g) hs.seq_vars (* -------------------------------------------------------------------------- *) (* --- Core Utilities --- *) (* -------------------------------------------------------------------------- *) let is_core p = match F.e_expr p with (* | Qed.Logic.Eq (a,b) -> is_def a && is_def b *) | Qed.Logic.Eq _ -> true | _ -> false let rec add_core s p = match F.p_expr p with | Qed.Logic.And ps -> List.fold_left add_core Pset.empty ps | _ -> if is_core p then Pset.add p s else s let core_cond = function | Type _ | State _ | Probe _ -> Pset.empty | Have p | When p | Core p | Init p -> add_core Pset.empty p | Branch(_,sa,sb) -> Pset.inter sa.seq_core sb.seq_core | Either [] -> Pset.empty | Either (c::cs) -> List.fold_left (fun w s -> Pset.inter w s.seq_core) c.seq_core cs let add_core_step ps s = Pset.union ps (core_cond s.condition) let core_list s = List.fold_left add_core_step Pset.empty s (* -------------------------------------------------------------------------- *) (* --- Category --- *) (* -------------------------------------------------------------------------- *) let catg_seq s = s.seq_catg let catg_cond = function | State _ -> TRUE | Probe _ -> KEEP | Have p | Type p | When p | Core p | Init p -> begin match F.is_ptrue p with | No -> FALSE | Maybe -> MAYBE | Yes -> TRUE end | Either cs -> c_disj catg_seq cs | Branch(_,a,b) -> c_or a.seq_catg b.seq_catg let catg_step s = catg_cond s.condition let catg_list l = c_conj catg_step l (* -------------------------------------------------------------------------- *) (* --- Sequence Constructor --- *) (* -------------------------------------------------------------------------- *) let sequence l = { seq_size = size_list l ; seq_vars = vars_list l ; seq_core = core_list l ; seq_catg = catg_list l ; seq_list = l ; } (* -------------------------------------------------------------------------- *) (* --- Sequence Comparator --- *) (* -------------------------------------------------------------------------- *) (* Only used for stability after a turn of simpliciations *) let rec equal_cond ca cb = match ca,cb with | Probe(p,a) , Probe(q,b) -> Probe.equal p q && a == b | State _ , State _ -> true | Type p , Type q | Have p , Have q | When p , When q | Core p , Core q | Init p , Init q -> p == q | Branch(p,a,b) , Branch(q,a',b') -> p == q && equal_seq a a' && equal_seq b b' | Either u, Either v -> Qed.Hcons.equal_list equal_seq u v | Probe _ , _ | _ , Probe _ | State _ , _ | _ , State _ | Type _ , _ | _ , Type _ | Have _ , _ | _ , Have _ | When _ , _ | _ , When _ | Core _ , _ | _ , Core _ | Init _ , _ | _ , Init _ | Branch _ , _ | _ , Branch _ -> false and equal_step a b = equal_cond a.condition b.condition and equal_list sa sb = Qed.Hcons.equal_list equal_step sa sb and equal_seq sa sb = equal_list sa.seq_list sb.seq_list (* -------------------------------------------------------------------------- *) (* --- Core Inference --- *) (* -------------------------------------------------------------------------- *) module Core = struct let rec fpred core p = match F.p_expr p with | Qed.Logic.And ps -> F.p_conj (List.map (fpred core) ps) | _ -> if Pset.mem p core then p_true else p let fcond core = function | Core p -> Core (fpred core p) | Have p -> Have (fpred core p) | When p -> When (fpred core p) | Init p -> Init (fpred core p) | (Type _ | Branch _ | Either _ | State _ | Probe _) as cond -> cond let fstep core step = let condition = fcond core step.condition in let vars = vars_cond condition in { step with condition ; vars } let factorize a b = if Wp_parameters.Core.get () then let core = Pset.inter a.seq_core b.seq_core in if Pset.is_empty core then None else let ca = List.map (fstep core) a.seq_list in let cb = List.map (fstep core) b.seq_list in Some (F.p_conj (Pset.elements core) , sequence ca , sequence cb) else None end (* -------------------------------------------------------------------------- *) (* --- Bundle (non-simplified conditions) --- *) (* -------------------------------------------------------------------------- *) module Bundle : sig type t val empty : t val vars : t -> Vars.t val is_empty : t -> bool val category : t -> category val add : step -> t -> t val factorize : t -> t -> t * t * t val big_inter : t list -> t val diff : t -> t -> t val head : t -> Mstate.state option val freeze: ?join:step -> t -> sequence val map : (condition -> 'a) -> t -> 'a list end = struct module SEQ = Qed.Listset.Make (struct type t = int * step let equal (k1,_) (k2,_) = k1 = k2 let compare (k1,s1) (k2,s2) = let rank = function | Type _ -> 0 | When _ -> 1 | _ -> 2 in let r = rank s1.condition - rank s2.condition in if r = 0 then Stdlib.compare k2 k1 else r end) type t = Vars.t * SEQ.t let vars = fst let cid = ref 0 let fresh () = incr cid ; assert (!cid > 0) ; !cid let add s (xs,t) = Vars.union xs s.vars , SEQ.add (fresh (),s) t let empty = Vars.empty , [] let is_empty = function (_,[]) -> true | _ -> false let head = function _,(_,{ condition = State s }) :: _ -> Some s | _ -> None let build seq = let xs = List.fold_left (fun xs (_,s) -> Vars.union xs s.vars) Vars.empty seq in xs , seq let factorize (_,a) (_,b) = let l,m,r = SEQ.factorize a b in build l , build m , build r let big_inter cs = build (SEQ.big_inter (List.map snd cs)) let diff (_,a) (_,b) = build (SEQ.diff a b) let freeze ?join (seq_vars,bundle) = let seq = List.map snd bundle in let seq_list = match join with None -> seq | Some s -> seq @ [s] in let seq_size = size_list seq in let seq_catg = catg_list seq in { seq_size ; seq_vars ; seq_core = Pset.empty ; seq_catg ; seq_list } let map f b = List.map (fun (_,s) -> f s.condition) (snd b) let category (_,bundle) = c_conj (fun (_,s) -> catg_step s) bundle end (* -------------------------------------------------------------------------- *) (* --- Hypotheses --- *) (* -------------------------------------------------------------------------- *) type bundle = Bundle.t type sequent = sequence * F.pred let pretty = ref (fun _fmt _seq -> ()) let equal (a : sequent) (b : sequent) : bool = F.eqp (snd a) (snd b) && equal_seq (fst a) (fst b) let is_true = function { seq_catg = TRUE | KEEP } -> true | _ -> false let is_empty = function { seq_catg = TRUE } -> true | _ -> false let is_false = function { seq_catg = FALSE } -> true | _ -> false let is_absurd_h h = match h.condition with | State _ | Probe _ -> false | (Type p | Core p | When p | Have p | Init p) -> p == F.p_false | Branch(_,p,q) -> is_false p && is_false q | Either w -> List.for_all is_false w (* note: an empty w is an absurd hyp *) let is_trivial_h h = match h.condition with | State _ | Probe _ -> false | (Type p | Core p | When p | Have p | Init p) -> p == F.p_true | Branch(_,a,b) -> is_true a && is_true b | Either [] -> false | Either w -> List.for_all is_true w let is_trivial_hs_p hs p = p == F.p_true || List.exists is_absurd_h hs let is_trivial_hsp (hs,p) = is_trivial_hs_p hs p let is_trivial (s:sequent) = is_trivial_hs_p (fst s).seq_list (snd s) (* -------------------------------------------------------------------------- *) (* --- Extraction --- *) (* -------------------------------------------------------------------------- *) let rec pred_cond = function | State _ | Probe _ -> F.p_true | When p | Type p | Have p | Core p | Init p -> p | Branch(p,a,b) -> F.p_if p (pred_seq a) (pred_seq b) | Either cases -> F.p_any pred_seq cases and pred_seq seq = F.p_all (fun s -> pred_cond s.condition) seq.seq_list let extract bundle = Bundle.map pred_cond bundle let bundle = Bundle.freeze ?join:None let intersect p bundle = Vars.intersect (F.varsp p) (Bundle.vars bundle) let occurs x bundle = Vars.mem x (Bundle.vars bundle) (* -------------------------------------------------------------------------- *) (* --- Constructors --- *) (* -------------------------------------------------------------------------- *) let nil = Bundle.empty let noid = (-1) let step ?descr ?stmt ?(deps=[]) ?(warn=Warning.Set.empty) cond = { id = noid ; size = size_cond cond ; vars = vars_cond cond ; stmt = stmt ; descr = descr ; warn = warn ; deps = deps ; condition = cond ; } let update_cond ?descr ?(deps=[]) ?(warn=Warning.Set.empty) h c = let descr = match h.descr, descr with | None, _ -> descr ; | Some _, None -> h.descr ; | Some decr1, Some descr2 -> Some (decr1 ^ "-" ^ descr2) in { id = noid ; condition = c ; stmt = h.stmt ; size = size_cond c ; vars = vars_cond c ; descr = descr ; deps = deps@h.deps ; warn = Warning.Set.union h.warn warn ; } type 'a disjunction = D_TRUE | D_FALSE | D_EITHER of 'a list let disjunction phi es = let positives = ref false in (* TRUE or KEEP items *) let remains = List.filter (fun e -> match phi e with | TRUE | KEEP -> positives := true ; false | MAYBE -> true | FALSE -> false ) es in match remains with | [] -> if !positives then D_TRUE else D_FALSE | cs -> D_EITHER cs (* -------------------------------------------------------------------------- *) (* --- Prenex-Form Introduction --- *) (* -------------------------------------------------------------------------- *) let prenex_intro p = try let open Qed.Logic in (* invariant: xs <> []; result <-> forall xs, hs -> p *) let rec walk hs xs p = match F.p_expr p with | Imply(h,p) -> walk (h::hs) xs p | Bind(Forall,_,_) -> bind hs xs p | _ -> if hs = [] then raise Exit ; F.p_forall (List.rev xs) (F.p_hyps (List.concat hs) p) (* invariant: result <-> forall hs xs (\tau.bind) *) and bind hs xs p = let pool = Lang.get_pool () in let ctx,t = e_open ~pool ~forall:true ~exists:false ~lambda:false (e_prop p) in let xs = List.fold_left (fun xs (_,x) -> x::xs) xs (List.rev ctx) in walk hs xs (F.p_bool t) (* invariant: result <-> p *) and crawl p = match F.p_expr p with | Imply(h,p) -> F.p_hyps h (crawl p) | Bind(Forall,_,_) -> bind [] [] p | _ -> raise Exit in crawl p with Exit -> p (* -------------------------------------------------------------------------- *) (* --- Existential Introduction --- *) (* -------------------------------------------------------------------------- *) let rec exist_intro p = let open Qed.Logic in match F.p_expr p with | And ps -> F.p_all exist_intro ps | Bind(Exists,_,_) -> let pool = Lang.get_pool () in let _,t = e_open ~pool ~exists:true ~forall:false ~lambda:false (e_prop p) in exist_intro (F.p_bool t) | _ -> (* Note: Qed implement De Morgan rules such that [p] cannot match the decomposable representations: Not Or, Not Imply, Not Forall *) if Wp_parameters.Prenex.get () then prenex_intro p else p let rec exist_intros = function | [] -> [] | p::hs -> begin let open Qed.Logic in match F.p_expr p with | And ps -> exist_intros (ps@hs) | Bind(Exists,_,_) -> let pool = Lang.get_pool () in let _,t = F.QED.e_open ~pool ~exists:true ~forall:false ~lambda:false (e_prop p) in exist_intros ((F.p_bool t)::hs) | _ -> (* Note: Qed implement De Morgan rules such that [p] cannot match the decomposable representations: Not Or, Not Imply, Not Forall *) p::(exist_intros hs) end (* -------------------------------------------------------------------------- *) (* --- Universal Introduction --- *) (* -------------------------------------------------------------------------- *) let rec forall_intro p = let open Qed.Logic in match F.p_expr p with | Bind(Forall,_,_) -> let pool = Lang.get_pool () in let _,t = F.QED.e_open ~pool ~forall:true ~exists:false ~lambda:false (e_prop p) in forall_intro (F.p_bool t) | Imply(hs,p) -> let hs = exist_intros hs in let hp,p = forall_intro p in hs @ hp , p | Or qs -> (* analogy with Imply *) let hps,ps = List.fold_left (fun (hs,ps) q -> let hp,p = forall_intro q in (* q <==> (hp ==> p) *) (hp @ hs), (p::ps)) ([],[]) qs in (* ORs qs <==> ORs (hps ==> ps) <==> ((ANDs hps) ==> ORs ps) *) let hps,ps = List.fold_left (fun (hs,ps) q -> match F.repr (F.e_prop q) with | Neq _ -> ((F.p_not q)::hs), ps | _ -> hs, (q::ps)) (hps,[]) ps in (* ORs qs <==> ((ANDs hps) ==> ORs ps)) *) hps, (F.p_disj ps) | _ -> (* Note: Qed implement De Morgan rules such that [p] cannot match the decomposable representations: Not And, Not Exists *) [] , p (* -------------------------------------------------------------------------- *) (* --- Constructors --- *) (* -------------------------------------------------------------------------- *) type 'a attributed = ( ?descr:string -> ?stmt:stmt -> ?deps:Property.t list -> ?warn:Warning.Set.t -> 'a ) let domain ps hs = if ps = [] then hs else Bundle.add (step (Type (p_conj ps))) hs let intros ps hs = if ps = [] then hs else let p = F.p_all exist_intro ps in Bundle.add (step ~descr:"Goal" (When p)) hs let state ?descr ?stmt state hs = Bundle.add (step ?descr ?stmt (State state)) hs let probe ~loc ?descr ?stmt ~name term hs = let p = Probe.create ~loc ?stmt ~name () in Bundle.add (step ?descr ?stmt (Probe(p,term))) hs let assume ?descr ?stmt ?deps ?warn ?(init=false) ?(domain=false) p hs = match F.is_ptrue p with | Yes -> hs | No -> let cond = if init then Init p else if domain then Type p else Have p in let s = step ?descr ?stmt ?deps ?warn cond in Bundle.add s Bundle.empty | Maybe -> begin match Bundle.category hs with | MAYBE | TRUE | KEEP -> let p = exist_intro p in let cond = if init then Init p else if domain then Type p else Have p in let s = step ?descr ?stmt ?deps ?warn cond in Bundle.add s hs | FALSE -> hs end let join = function None -> None | Some s -> Some (step (State s)) let branch ?descr ?stmt ?deps ?warn p ha hb = match F.is_ptrue p with | Yes -> ha | No -> hb | Maybe -> match Bundle.category ha , Bundle.category hb with | TRUE , TRUE -> Bundle.empty | _ , FALSE -> assume ?descr ?stmt ?deps ?warn p ha | FALSE , _ -> assume ?descr ?stmt ?deps ?warn (p_not p) hb | _ -> let ha,hs,hb = Bundle.factorize ha hb in if Bundle.is_empty ha && Bundle.is_empty hb then hs else let join = join (Bundle.head hs) in let a = Bundle.freeze ?join ha in let b = Bundle.freeze ?join hb in let s = step ?descr ?stmt ?deps ?warn (Branch(p,a,b)) in Bundle.add s hs let either ?descr ?stmt ?deps ?warn cases = match disjunction Bundle.category cases with | D_TRUE -> Bundle.empty | D_FALSE -> let s = step ?descr ?stmt ?deps ?warn (Have p_false) in Bundle.add s Bundle.empty | D_EITHER cases -> let trunk = Bundle.big_inter cases in let cases = List.map (fun case -> Bundle.diff case trunk) cases in match disjunction Bundle.category cases with | D_TRUE -> trunk | D_FALSE -> let s = step ?descr ?stmt ?deps ?warn (Have p_false) in Bundle.add s Bundle.empty | D_EITHER cases -> let cases = List.map Bundle.freeze cases in let s = step ?descr ?stmt ?deps ?warn (Either cases) in Bundle.add s trunk let merge cases = either ~descr:"Merge" cases (* -------------------------------------------------------------------------- *) (* --- Flattening --- *) (* -------------------------------------------------------------------------- *) let rec flat_catg = function | [] -> TRUE | s::cs -> match catg_step s with | TRUE -> flat_catg cs | r -> r let flat_cons step tail = match flat_catg tail with | FALSE -> tail | _ -> step :: tail let flat_concat head tail = match flat_catg head with | TRUE -> tail | FALSE -> head | MAYBE|KEEP -> match flat_catg tail with | TRUE -> head | FALSE -> tail | MAYBE|KEEP -> head @ tail let core_residual step core = { id = noid ; size = 1 ; vars = F.varsp core ; condition = Core core ; descr = None ; warn = Warning.Set.empty ; deps = [] ; stmt = step.stmt ; } let core_branch step p a b = let condition = match a.seq_catg , b.seq_catg with | (TRUE | KEEP) , (TRUE|KEEP) -> Have p_true | FALSE , FALSE -> Have p_false | _ -> Branch(p,a,b) in update_cond step condition let rec flatten_sequence m = function | [] -> [] | step :: seq -> match step.condition with | State _ | Probe _ -> flat_cons step (flatten_sequence m seq) | Have p | Type p | When p | Core p | Init p -> begin match F.is_ptrue p with | Yes -> m := true ; flatten_sequence m seq | No -> (* FALSE context *) if seq <> [] then m := true ; [step] | Maybe -> flat_cons step (flatten_sequence m seq) end | Branch(p,a,b) -> begin match F.is_ptrue p with | Yes -> m := true ; flat_concat a.seq_list (flatten_sequence m seq) | No -> m := true ; flat_concat b.seq_list (flatten_sequence m seq) | Maybe -> let sa = a.seq_list in let sb = b.seq_list in match a.seq_catg , b.seq_catg with | (TRUE|KEEP) , (TRUE|KEEP) -> m := true ; flatten_sequence m seq | _ , FALSE -> m := true ; let step = update_cond step (Have p) in step :: sa @ flatten_sequence m seq | FALSE , _ -> m := true ; let step = update_cond step (Have (p_not p)) in step :: sb @ flatten_sequence m seq | _ -> begin match Core.factorize a b with | None -> step :: flatten_sequence m seq | Some( core , a , b ) -> m := true ; let score = core_residual step core in let scond = core_branch step p a b in score :: scond :: flatten_sequence m seq end end | Either [] -> (* FALSE context *) if seq <> [] then m := true ; [step] | Either cases -> match disjunction catg_seq cases with | D_TRUE -> m := true ; flatten_sequence m seq | D_FALSE -> m := true ; [ update_cond step (Have p_false) ] | D_EITHER [hc] -> m := true ; flat_concat hc.seq_list (flatten_sequence m seq) | D_EITHER cs -> let step = update_cond step (Either cs) in flat_cons step (flatten_sequence m seq) (* -------------------------------------------------------------------------- *) (* --- Mapping --- *) (* -------------------------------------------------------------------------- *) let rec map_condition f = function | Probe(p,t) -> Probe(p,F.p_lift f t) | State s -> State (Mstate.apply (F.p_lift f) s) | Have p -> Have (f p) | Type p -> Type (f p) | When p -> When (f p) | Core p -> Core (f p) | Init p -> Init (f p) | Branch(p,a,b) -> Branch(f p,map_sequence f a,map_sequence f b) | Either cs -> Either (List.map (map_sequence f) cs) and map_step f h = update_cond h (map_condition f h.condition) and map_steplist f = function | [] -> [] | h::hs -> let h = map_step f h in if is_absurd_h h then [h] else let hs = map_steplist f hs in if is_trivial_h h then hs else h :: hs and map_sequence f s = sequence (map_steplist f s.seq_list) and map_sequent f (hs,g) = map_sequence f hs , f g (* -------------------------------------------------------------------------- *) (* --- Ground Simplifier --- *) (* -------------------------------------------------------------------------- *) module Ground = Letify.Ground let rec ground_flow ~fwd env h = match h.condition with | Probe(p,t) -> update_cond h (Probe (p,Ground.e_apply env t)) | State s -> let s = Mstate.apply (Ground.e_apply env) s in update_cond h (State s) | Type _ | Have _ | When _ | Core _ | Init _ -> let phi = if fwd then Ground.forward else Ground.backward in let cond = map_condition (phi env) h.condition in update_cond h cond | Branch(p,a,b) -> let p,wa,wb = Ground.branch env p in let a = ground_flowseq ~fwd wa a in let b = ground_flowseq ~fwd wb b in update_cond h (Branch(p,a,b)) | Either ws -> let ws = List.map (fun w -> ground_flowseq ~fwd (Ground.copy env) w) ws in update_cond h (Either ws) and ground_flowseq ~fwd env hs = sequence (ground_flowlist ~fwd env hs.seq_list) and ground_flowlist ~fwd env hs = if fwd then ground_flowdir ~fwd env hs else List.rev (ground_flowdir ~fwd env (List.rev hs)) and ground_flowdir ~fwd env = function | [] -> [] | h::hs -> let h = ground_flow ~fwd env h in if is_absurd_h h then [h] else let hs = ground_flowdir ~fwd env hs in if is_trivial_h h then hs else h :: hs let ground (hs,g) = let hs = ground_flowlist ~fwd:true (Ground.top ()) hs in let hs = ground_flowlist ~fwd:false (Ground.top ()) hs in let env = Ground.top () in let hs = ground_flowlist ~fwd:true env hs in hs , Ground.p_apply env g (* -------------------------------------------------------------------------- *) (* --- Letify --- *) (* -------------------------------------------------------------------------- *) module Sigma = Letify.Sigma module Defs = Letify.Defs let used_of_dseq ds = Array.fold_left (fun ys (_,step) -> Vars.union ys step.vars) Vars.empty ds let bind_dseq target (di,_) sigma = Letify.bind (Letify.bind sigma di target) di (Defs.domain di) let locals sigma ~target ~required ?(step=Vars.empty) k dseq = (* returns ( target , export ) *) let t = ref target in let e = ref (Vars.union required step) in Array.iteri (fun i (_,step) -> if i > k then t := Vars.union !t step.vars ; if i <> k then e := Vars.union !e step.vars ; ) dseq ; Vars.diff !t (Sigma.domain sigma) , !e let dseq_of_step sigma step = let defs = match step.condition with | Init p | Have p | When p | Core p -> Defs.extract (Sigma.p_apply sigma p) | Type _ | Branch _ | Either _ | State _ | Probe _ -> Defs.empty in defs , step let letify_assume sref (_,step) = let current = !sref in begin match step.condition with | Type _ | Branch _ | Either _ | State _ | Probe _ -> () | Init p | Have p | When p | Core p -> if Wp_parameters.Simpl.get () then sref := Sigma.assume current p end ; current let rec letify_type sigma used p = match F.p_expr p with | And ps -> p_all (letify_type sigma used) ps | _ -> let p = Sigma.p_apply sigma p in let vs = F.varsp p in if Vars.intersect used vs || Vars.is_empty vs then p else F.p_true let rec letify_seq sigma0 ~target ~export (seq : step list) = let dseq = Array.map (dseq_of_step sigma0) (Array.of_list seq) in let sigma1 = Array.fold_right (bind_dseq target) dseq sigma0 in let sref = ref sigma1 in (* with definitions *) let dsigma = Array.map (letify_assume sref) dseq in let sigma2 = !sref in (* with assumptions *) let outside = Vars.union export target in let inside = used_of_dseq dseq in let used = Vars.diff (Vars.union outside inside) (Sigma.domain sigma2) in let required = Vars.union outside (Sigma.codomain sigma2) in let sequence = Array.mapi (letify_step dseq dsigma ~used ~required ~target) dseq in let modified = ref (not (Sigma.equal sigma0 sigma1)) in (* let sequence = if Wp_parameters.Ground.get () then fst (ground_hrp sequence) else sequence in *) let sequence = flatten_sequence modified (Array.to_list sequence) in !modified , sigma1 , sigma2 , sequence and letify_step dseq dsigma ~required ~target ~used i (d,s) = let sigma = dsigma.(i) in let cond = match s.condition with | Probe(p,t) -> Probe (p,Sigma.e_apply sigma t) | State s -> State (Mstate.apply (Sigma.e_apply sigma) s) | Init p -> let p = Sigma.p_apply sigma p in let ps = Letify.add_definitions sigma d required [p] in Init (p_conj ps) | Have p -> let p = Sigma.p_apply sigma p in let ps = Letify.add_definitions sigma d required [p] in Have (p_conj ps) | Core p -> let p = Sigma.p_apply sigma p in let ps = Letify.add_definitions sigma d required [p] in Core (p_conj ps) | When p -> let p = Sigma.p_apply sigma p in let ps = Letify.add_definitions sigma d required [p] in When (p_conj ps) | Type p -> Type (letify_type sigma used p) | Branch(p,a,b) -> let p = Sigma.p_apply sigma p in let step = F.varsp p in let (target,export) = locals sigma ~target ~required ~step i dseq in let sa = Sigma.assume sigma p in let sb = Sigma.assume sigma (p_not p) in let a = letify_case sa ~target ~export a in let b = letify_case sb ~target ~export b in Branch(p,a,b) | Either cases -> let (target,export) = locals sigma ~target ~required i dseq in Either (List.map (letify_case sigma ~target ~export) cases) in update_cond s cond and letify_case sigma ~target ~export seq = let (_,_,_,s) = letify_seq sigma ~target ~export seq.seq_list in sequence s (* -------------------------------------------------------------------------- *) (* --- External Simplifier --- *) (* -------------------------------------------------------------------------- *) let equivalent_exp solvers e = List.fold_left (fun e s -> s#equivalent_exp e) e solvers let stronger_goal solvers p = List.fold_left (fun p s -> s#stronger_goal p) p solvers let weaker_hyp solvers p = List.fold_left (fun p s -> s#weaker_hyp p) p solvers let equivalent_branch solvers p = List.fold_left (fun p s -> s#equivalent_branch p) p solvers let apply_goal solvers p = let stronger_and_then_assume p = let p' = stronger_goal solvers p in List.iter (fun s -> s#assume (p_not p')) solvers; p' in match F.p_expr p with | Or ps -> let unmodified,qs = List.fold_left (fun (unmodified,qs) p -> let p' = stronger_and_then_assume p in (unmodified && (Lang.F.eqp p p')), (p'::qs)) (true,[]) ps in if unmodified then p else p_disj qs | _ -> stronger_and_then_assume p let apply_hyp modified solvers h = let weaken_and_then_assume p = let p' = weaker_hyp solvers p in if not (Lang.F.eqp p p') then modified := true; List.iter (fun s -> s#assume p') solvers; p' in let weaken p = match F.p_expr p with | And ps -> let unmodified,qs = List.fold_left (fun (unmodified,qs) p -> let p' = weaken_and_then_assume p in (unmodified && (Lang.F.eqp p p')), (p'::qs)) (true,[]) ps in if unmodified then p else p_conj qs | _ -> weaken_and_then_assume p in match h.condition with | Probe(p,t) -> update_cond h (Probe (p,equivalent_exp solvers t)) | State s -> update_cond h (State (Mstate.apply (equivalent_exp solvers) s)) | Init p -> update_cond h (Init (weaken p)) | Type p -> update_cond h (Type (weaken p)) | Have p -> update_cond h (Have (weaken p)) | When p -> update_cond h (When (weaken p)) | Core p -> update_cond h (Core (weaken p)) | Branch(p,_,_) -> List.iter (fun s -> s#target p) solvers; h | Either _ -> h let decide_branch modified solvers h = match h.condition with | Branch(p,a,b) -> let q = equivalent_branch solvers p in if q != p then ( modified := true ; update_cond h (Branch(q,a,b)) ) else h | _ -> h let add_infer modified s hs = let p = p_conj s#infer in if p != p_true then ( modified := true ; step ~descr:s#name (Have p) :: hs ) else hs type outcome = | NoSimplification | Simplified of hsp | Trivial and hsp = step list * pred let apply_simplifiers (solvers : simplifier list) (hs,g) = if solvers = [] then NoSimplification else try let modified = ref false in let solvers = List.map (fun s -> s#copy) solvers in let hs = List.map (apply_hyp modified solvers) hs in List.iter (fun s -> s#target g) solvers ; List.iter (fun s -> s#fixpoint) solvers ; let hs = List.map (decide_branch modified solvers) hs in let hs = List.fold_right (add_infer modified) solvers hs in let p = apply_goal solvers g in if p != g || !modified then Simplified (hs,p) else NoSimplification with Contradiction -> Trivial (* -------------------------------------------------------------------------- *) (* --- Sequence Builder --- *) (* -------------------------------------------------------------------------- *) let empty = { seq_size = 0 ; seq_vars = Vars.empty ; seq_core = Pset.empty ; seq_catg = TRUE ; seq_list = [] ; } let trivial = empty , F.p_true let append sa sb = if sa.seq_size = 0 then sb else if sb.seq_size = 0 then sa else let seq_size = sa.seq_size + sb.seq_size in let seq_vars = Vars.union sa.seq_vars sb.seq_vars in let seq_core = Pset.union sa.seq_core sb.seq_core in let seq_list = sa.seq_list @ sb.seq_list in let seq_catg = c_and sa.seq_catg sb.seq_catg in { seq_size ; seq_vars ; seq_core ; seq_catg ; seq_list } let concat slist = if slist = [] then empty else let seq_size = List.fold_left (fun n s -> n + s.seq_size) 0 slist in let seq_list = List.concat (List.map (fun s -> s.seq_list) slist) in let seq_vars = List.fold_left (fun w s -> Vars.union w s.seq_vars) Vars.empty slist in let seq_core = List.fold_left (fun w s -> Pset.union w s.seq_core) Pset.empty slist in let seq_catg = c_conj catg_seq slist in { seq_size ; seq_vars ; seq_core ; seq_catg ; seq_list } let seq_branch ?stmt p sa sb = sequence [step ?stmt (Branch(p,sa,sb))] (* -------------------------------------------------------------------------- *) (* --- Introduction Utilities --- *) (* -------------------------------------------------------------------------- *) let lemma ~loc g = let cc g = let hs,p = forall_intro g in let hs = List.map (fun p -> step (Have p)) hs in let hs = if Wp_parameters.CounterExamples.get () then let freevars = Vars.union (vars_list hs) (F.varsp p) in List.fold_right (fun x hs -> let p = Probe.create ~loc ~name:(Var.basename x) () in step (Probe(p,e_var x)) :: hs ) (Vars.elements freevars) hs else hs in sequence hs , p in Lang.local ~vars:(F.varsp g) cc g let introduction (hs,g) = let flag = ref false in let intro p = let q = exist_intro p in if q != p then flag := true ; q in let hj = List.map (map_step intro) hs.seq_list in let hi,p = forall_intro g in let hi = List.map (fun p -> step (Have p)) hi in if not !flag && hi == [] then if p == g then None else Some (hs , p) else Some (sequence (hi @ hj) , p) let introduction_eq s = match introduction s with | Some s' -> s' | None -> s (* -------------------------------------------------------------------------- *) (* --- Constant Folder --- *) (* -------------------------------------------------------------------------- *) module ConstantFolder = struct open Qed type sigma = { mutable cst : bool Tmap.t ; mutable dom : Vars.t ; (* support of defs *) mutable def : term Tmap.t ; (* defs *) mutable cache : F.sigma option ; (* memo *) } let rec is_cst s e = match F.repr e with | True | False | Kint _ | Kreal _ -> true | Fun(_,es) -> begin try Tmap.find e s.cst with Not_found -> let cst = List.for_all (is_cst s) es in s.cst <- Tmap.add e cst s.cst ; cst end | _ -> false let set_def s p a e = try let e0 = Tmap.find a s.def in match F.is_true (F.e_eq e e0) with | Logic.Yes -> () | Logic.No -> raise Contradiction | Logic.Maybe -> if F.compare e e0 < 0 then s.def <- Tmap.add a e s.def with Not_found -> begin s.dom <- Vars.union (F.vars a) s.dom ; s.def <- Tmap.add a e s.def ; s.def <- Tmap.add p p s.def ; s.cache <- None ; end let collect_set_def s p = Lang.iter_consequence_literals (fun literal -> match Lang.F.repr literal with | Logic.Eq(a,b) -> if is_cst s a then set_def s literal b a ; if is_cst s b then set_def s literal a b ; | _ -> ()) p let collect s = function | Have p | When p | Core p | Init p -> collect_set_def s (F.e_prop p) | Type _ | Branch _ | Either _ | State _ | Probe _ -> () let subst s = match s.cache with | Some m -> m | None -> let m = Lang.sigma () in F.Subst.add_fun m (fun e -> Tmap.find e s.def) ; s.cache <- Some m ; m let e_apply s e = F.e_subst (subst s) e let p_apply s p = F.p_subst (subst s) p let rec c_apply s = function | Probe(p,t) -> Probe (p,e_apply s t) | State m -> State (Mstate.apply (e_apply s) m) | Type p -> Type (p_apply s p) | Init p -> Init (p_apply s p) | Have p -> Have (p_apply s p) | When p -> When (p_apply s p) | Core p -> Core (p_apply s p) | Branch(p,sa,sb) -> Branch( p_apply s p , seq_apply s sa , seq_apply s sb ) | Either cs -> Either (List.map (seq_apply s) cs) and s_apply s (step : step) : step = update_cond step (c_apply s step.condition) and seq_apply s seq = sequence (List.map (s_apply s) seq.seq_list) let simplify (hs,p) = let s = { cst = Tmap.empty ; def = Tmap.empty ; dom = Vars.empty ; cache = None ; } in try List.iter (fun h -> collect s h.condition) hs ; let hs = List.map (s_apply s) hs in let p = p_apply s p in hs , p with Contradiction -> [] , F.p_true end (* -------------------------------------------------------------------------- *) (* --- Letify-Fixpoint --- *) (* -------------------------------------------------------------------------- *) let rec fixpoint limit solvers sigma s0 = if limit > 0 then compute limit solvers sigma s0 else s0 and compute limit solvers sigma s0 = Async.yield (); let s1 = if Wp_parameters.Ground.get () then ground s0 else s0 in let hs,p = ConstantFolder.simplify s1 in let target = F.varsp p in let export = Vars.empty in let modified , sigma1 , sigma2 , hs = letify_seq sigma ~target ~export hs in let p = Sigma.p_apply sigma2 p in let s2 = ground (hs , p) in if is_trivial_hsp s2 then [],p_true else if modified || (limit > 0 && not (equal_list (fst s0) (fst s2))) then fixpoint (pred limit) solvers sigma1 s2 else match apply_simplifiers solvers s2 with | Simplified s3 -> fixpoint (pred limit) solvers sigma1 s3 | Trivial -> [],p_true | NoSimplification -> s2 let letify_hsp ?(solvers=[]) hsp = fixpoint 10 solvers Sigma.empty hsp let rec simplify ?(solvers=[]) ?(intros=10) (seq,p0) = let hs,p = fixpoint 10 solvers Sigma.empty (seq.seq_list,p0) in let sequent = sequence hs , p in match introduction sequent with | Some introduced -> if intros > 0 then simplify ~solvers ~intros:(pred intros) introduced else introduced | None -> sequent (* -------------------------------------------------------------------------- *) (* --- Pruning --- *) (* -------------------------------------------------------------------------- *) let residual p = { id = noid ; size = 1 ; vars = F.varsp p ; stmt = None ; descr = Some "Residual" ; deps = [] ; warn = Warning.Set.empty ; condition = When p ; } let rec add_case p = function | ( { condition = (Type _) } as step ):: tail -> step :: add_case p tail | hs -> residual p :: hs let test_case p (s:hsp) = let w = letify_hsp (add_case p (fst s) , snd s) in if is_trivial_hsp w then None else Some w let tc = ref 0 let rec test_cases (s : hsp) = function | [] -> s | (p,_) :: tail -> Async.yield () ; match test_case p s , test_case (p_not p) s with | None , None -> incr tc ; [],F.p_true | Some w , None -> incr tc ; test_cases w tail | None , Some w -> incr tc ; test_cases w tail | Some _ , Some _ -> test_cases s tail let rec collect_cond m = function | When _ | Have _ | Type _ | Init _ | Core _ | State _ | Probe _ -> () | Branch(p,a,b) -> Letify.Split.add m p ; collect_seq m a ; collect_seq m b | Either cs -> List.iter (collect_seq m) cs and collect_seq m seq = collect_steps m seq.seq_list and collect_steps m steps = List.iter (fun s -> collect_cond m s.condition) steps let pruning ?(solvers=[]) seq = if is_trivial seq then seq else begin let hs = (fst seq).seq_list in let p = snd seq in ignore solvers ; let m = Letify.Split.create () in collect_steps m hs ; tc := 0 ; let hsp = test_cases (hs,p) (Letify.Split.select m) in if !tc > 0 && Wp_parameters.has_dkey dkey_pruning then if is_trivial_hsp hsp then Wp_parameters.feedback "[Pruning] Trivial" else Wp_parameters.feedback "[Pruning] %d branche(s) removed" !tc ; let hs,p = hsp in sequence hs , p end (* -------------------------------------------------------------------------- *) (* --- Cleaning --- *) (* -------------------------------------------------------------------------- *) let rec collect_cond u = function | State _ -> () | Probe(_,t) -> Cleaning.as_term u t | When p -> Cleaning.as_have u p | Have p -> Cleaning.as_have u p | Core p -> Cleaning.as_have u p | Type p -> Cleaning.as_type u p | Init p -> Cleaning.as_init u p | Branch(p,a,b) -> Cleaning.as_atom u p ; collect_seq u a ; collect_seq u b | Either cs -> List.iter (collect_seq u) cs and collect_seq u seq = collect_steps u seq.seq_list and collect_steps u steps = List.iter (fun s -> collect_cond u s.condition) steps let rec clean_cond u = function | State _ | Probe _ as cond -> cond | When p -> When (Cleaning.filter_pred u p) | Have p -> Have (Cleaning.filter_pred u p) | Core p -> Core (Cleaning.filter_pred u p) | Type p -> Type (Cleaning.filter_pred u p) | Init p -> Init (Cleaning.filter_pred u p) | Branch(p,a,b) -> Branch(p,clean_seq u a,clean_seq u b) | Either cases -> Either(List.map (clean_seq u) cases) and clean_seq u s = let s = clean_steps u s.seq_list in { seq_size = size_list s ; seq_vars = vars_list s ; seq_core = Pset.empty ; seq_catg = catg_list s ; seq_list = s } and clean_steps u = function | [] -> [] | s :: seq -> let c = clean_cond u s.condition in let seq = clean_steps u seq in match catg_cond c with | TRUE -> seq | FALSE -> [update_cond s c] | KEEP | MAYBE -> update_cond s c :: seq let clean (s,p) = let u = Cleaning.create () in Cleaning.as_atom u p ; collect_steps u s.seq_list ; sequence (clean_steps u s.seq_list) , p (* -------------------------------------------------------------------------- *) (* --- Filter Used Variables --- *) (* -------------------------------------------------------------------------- *) module Filter = struct module Gmap = Qed.Mergemap.Make(Fun) module Gset = Qed.Mergeset.Make(Fun) module Fset = Qed.Mergeset.Make(Field) module FP = struct type t = Gset.t * Fset.t let empty = Gset.empty , Fset.empty let union (a,u) (b,v) = Gset.union a b , Fset.union u v let subset (a,u) (b,v) = Gset.subset a b && Fset.subset u v let intersect (a,u) (b,v) = Gset.intersect a b || Fset.intersect u v end type used = { mutable fixpoint : bool ; mutable footprint : FP.t Tmap.t ; (* memoized by terms *) mutable footcalls : Fset.t Gmap.t ; (* memorized by function *) mutable gs : FP.t ; (* used in sequent *) mutable xs : Vars.t ; (* used in sequent *) } [@@@ warning "-32"] let pp_gset fmt (u,v) = begin Format.fprintf fmt "@[<hov 2>{" ; Gset.iter (fun f -> Format.fprintf fmt "@ %a" Lang.Fun.pretty f) u ; Format.fprintf fmt "," ; Fset.iter (fun f -> Format.fprintf fmt "@ %a" Lang.Field.pretty f) v ; Format.fprintf fmt " }@]" ; end let pp_used fmt used = begin Format.fprintf fmt "@[<hov 2>{" ; Vars.iter (fun x -> Format.fprintf fmt "@ %a" Lang.F.Var.pretty x) used.xs ; Format.fprintf fmt "," ; Gset.iter (fun f -> Format.fprintf fmt "@ %a" Lang.Fun.pretty f) (fst used.gs) ; Format.fprintf fmt "," ; Fset.iter (fun f -> Format.fprintf fmt "@ %a" Lang.Field.pretty f) (snd used.gs) ; Format.fprintf fmt " }@]" ; end [@@@ warning "+32"] let fsetmap phi es = List.fold_left (fun fs e -> Fset.union fs (phi e)) Fset.empty es let rec gvars_of_term ~deep m t = try Tmap.find t m.footprint with Not_found -> let collect_subterms acc = let gs = ref acc in let collect m gs e = gs := FP.union !gs (gvars_of_term ~deep m e) in F.lc_iter (collect m gs) t ; let s = !gs in m.footprint <- Tmap.add t s m.footprint ; s in match F.repr t with | Fun(f,[]) -> Gset.singleton f , Fset.empty | Fun(f,_) when not deep || is_coloring_lfun f -> Gset.empty , fset_of_lfun ~deep m f | Fun(f,_) -> collect_subterms (Gset.empty , fset_of_lfun ~deep m f) | Rget(_,fd) -> Gset.empty , Fset.singleton fd | Rdef fts -> Gset.empty , List.fold_left (fun fs (f,_) -> Fset.add f fs) Fset.empty fts | _ -> collect_subterms FP.empty and gvars_of_pred m p = gvars_of_term m (F.e_prop p) and fset_of_tau (t : Lang.tau) = match t with | Qed.Logic.Array(ta,tb) -> Fset.union (fset_of_tau ta) (fset_of_tau tb) | Qed.Logic.Record fts -> fsetmap (fun (f,t) -> Fset.add f (fset_of_tau t)) fts | Qed.Logic.Data(adt,ts) -> Fset.union (fsetmap fset_of_tau ts) (fset_of_adt adt) | _ -> Fset.empty and fset_of_adt adt = fsetmap fset_of_field (Lang.fields_of_adt adt) and fset_of_field fd = let tf = Lang.tau_of_field fd in Fset.add fd (fset_of_tau tf) and fset_of_lemma ~deep m d = snd (gvars_of_pred ~deep m d.Definitions.l_lemma) and fset_of_var x = fset_of_tau (F.tau_of_var x) and fset_of_lfun ~deep m f = try Gmap.find f m.footcalls with Not_found -> (* bootstrap recursive calls *) m.footcalls <- Gmap.add f Fset.empty m.footcalls ; let fs = try let open Definitions in let d = Definitions.find_symbol f in let ds = fsetmap fset_of_var d.d_params in let df = match d.d_definition with | Logic _ -> Fset.empty | Function(_,_,t) -> snd (gvars_of_term ~deep m t) | Predicate(_,p) -> snd (gvars_of_pred ~deep m p) | Inductive ds -> fsetmap (fset_of_lemma ~deep m) ds in Fset.union ds df with Not_found -> Fset.empty in m.footcalls <- Gmap.add f fs m.footcalls ; fs let collect_term m t = begin m.gs <- FP.union m.gs (gvars_of_term ~deep:true m t) ; m.xs <- Vars.union m.xs (F.vars t) ; end let collect_have m p = begin m.gs <- FP.union m.gs (gvars_of_pred ~deep:true m p) ; m.xs <- Vars.union m.xs (F.varsp p) ; end let rec collect_condition m = function | Probe(_,t) -> collect_term m t | Have p | When p | Core p -> collect_have m p | Type _ | Init _ | State _ -> () | Branch(p,sa,sb) -> collect_have m p ; collect_seq m sa ; collect_seq m sb | Either cs -> List.iter (collect_seq m) cs and collect_step m s = collect_condition m s.condition and collect_seq m s = List.iter (collect_step m) s.seq_list let rec filter_pred m p = match F.p_expr p with | And ps -> F.p_all (filter_pred m) ps | _ -> if Vars.subset (F.varsp p) m.xs then begin let gs = gvars_of_pred ~deep:false m p in if FP.subset gs m.gs then p else if FP.intersect gs m.gs then (m.fixpoint <- false ; m.gs <- FP.union gs m.gs ; p) else p_true end else p_true let rec filter_steplist m = function | [] -> [] | s :: w -> match s.condition with | State _ | Probe _ | Have _ | When _ | Core _ | Branch _ | Either _ -> s :: filter_steplist m w | Type p -> let p = filter_pred m p in let w = filter_steplist m w in if p != F.p_true then let s = update_cond s (Type p) in s :: w else w | Init p -> let p = filter_pred m p in let w = filter_steplist m w in if p != F.p_true then let s = update_cond s (Init p) in s :: w else w let make (seq,g) = let m = { gs = FP.empty ; xs = Vars.empty ; fixpoint = false ; footprint = Tmap.empty ; footcalls = Gmap.empty ; } in List.iter (collect_step m) seq.seq_list ; collect_have m g ; Kernel.debug ~level:3 "Collected %a" pp_used m ; let rec loop () = m.fixpoint <- true ; let hs' = filter_steplist m seq.seq_list in if m.fixpoint then ( sequence hs' , g ) else loop () in loop () end let filter = Filter.make (* -------------------------------------------------------------------------- *) (* --- Filter Parasite Definitions --- *) (* -------------------------------------------------------------------------- *) module Parasite = struct open Qed.Logic type usage = Used | Def of F.term type domain = usage Vmap.t [@@@ warning "-32"] let pretty fmt w = Format.fprintf fmt "@[<hov 2>{" ; Vmap.iter (fun x u -> match u with | Used -> Format.fprintf fmt "@ %a" F.pp_var x | Def e -> Format.fprintf fmt "@ @[<hov 2>%a:=%a;@]" F.pp_var x F.pp_term e ) w ; Format.fprintf fmt " }@]" [@@@ warning "+32"] let cyclic w x e = let m = ref Vars.empty in let once x = if Vars.mem x !m then false else (m := Vars.add x !m ; true) in let rec walk_y w x y = if F.Var.equal x y then raise Exit ; if once x then let r = try Vmap.find x w with Not_found -> Used in match r with Used -> () | Def e -> walk_e w x e and walk_e w x e = Vars.iter (walk_y w x) (F.vars e) in try walk_e w x e ; false with Exit -> true (* let pivots w a b = let rec collect xs e = match F.repr e with | Fvar x -> x :: xs | Add es -> List.fold_left collect xs es | _ -> xs in let define w a b = let xs = collect [] a in let def r x = x , F.e_sub r (F.e_var x) in let filter w (x,e) = acyclic w x e in if xs = [] then [] else List.filter (filter w) (List.map (def (F.e_sub b a)) xs) in define w a b @ define w b a *) let rec add_used (w : domain) xs = Vars.fold add_usedvar xs w and add_usedvar x w = try match Vmap.find x w with | Used -> w | Def e -> add_used (Vmap.add x Used w) (F.vars e) with Not_found -> Vmap.add x Used w let add_def (w : domain) x e = try let xs = F.vars e in if cyclic w x e then add_used (add_usedvar x w) xs else match Vmap.find x w with | Used -> add_used w xs | Def e0 -> if F.equal e0 e then w else add_used (Vmap.add x Used w) xs with Not_found -> Vmap.add x (Def e) w let kind x w = try Some (Vmap.find x w) with Not_found -> None let add_eq (w : domain) x y = match kind x w , kind y w with | None , None -> let cmp = F.Var.compare x y in if cmp > 0 then add_def w x (F.e_var y) else if cmp < 0 then add_def w y (F.e_var x) else w | None , Some Used -> add_def w x (F.e_var y) | Some Used , None -> add_def w y (F.e_var x) | Some(Def e),(None | Some Used) | (None|Some Used),Some (Def e) -> add_usedvar x (add_usedvar y (add_used w (F.vars e))) | Some Used,Some Used -> w | Some(Def a),Some(Def b) -> let xs = Vars.union (F.vars a) (F.vars b) in add_usedvar x (add_usedvar y (add_used w xs)) let branch p wa wb = let pool = ref (F.varsp p) in let w0 = Vmap.union (fun _x u v -> match u,v with | Used,Used -> Used | Def a,Def b -> Def( F.e_if (F.e_prop p) a b ) | Def e,Used | Used,Def e -> pool := Vars.union !pool (F.vars e) ; Used ) wa wb in add_used w0 !pool let rec usage w p = match F.repr p with | And ps -> List.fold_left usage w ps | Eq(a,b) -> begin match F.repr a , F.repr b with | Fvar x , Fvar y -> add_eq w x y | Fvar x , _ -> add_def w x b | _ , Fvar y -> add_def w y a | _ -> add_used w (F.vars p) end | _ -> add_used w (F.vars p) let rec collect_step w s = match s.condition with | Type _ | State _ -> w | Probe(_,t) -> usage w t | Have p | Core p | Init p | When p -> usage w (F.e_prop p) | Branch(p,a,b) -> let wa = collect_seq w a in let wb = collect_seq w b in branch p wa wb | Either ws -> List.fold_left collect_seq w ws and collect_seq w s = List.fold_left collect_step w s.seq_list let parasites w = Vmap.fold (fun x u xs -> match u with Used -> xs | Def _ -> Vars.add x xs) w Vars.empty let rec filter xs p = match F.p_expr p with | And ps -> p_all (filter xs) ps | _ -> if Vars.intersect (F.varsp p) xs then F.p_true else p let filter (hs,g) = let w = collect_seq (add_used Vmap.empty (F.varsp g)) hs in let xs = parasites w in if Vars.is_empty xs then (hs,g) else map_sequence (filter xs) hs , g end let parasite = Parasite.filter module InitFilter = struct let add_state filter s = s :: filter let rec collect_step filter s = match s.condition with | State s -> add_state filter s | Have _ | Core _ | Init _ | When _ | Type _ | Probe _ -> filter | Branch(_p,a,b) -> collect_seq (collect_seq filter a) b | Either ws -> List.fold_left collect_seq filter ws and collect_seq filter s = List.fold_left collect_step filter s.seq_list exception Found let has_init filter pred = let visited = ref Tset.empty in let rec term_is_init_in_states states t = let raise_if_is_init t s = if Lang.F.is_primitive t then () else match Mstate.lookup s t with | Mlval(_, KInit) | Mchunk(_, KInit) -> raise Found | _ -> () in if Tset.mem t !visited then () else begin visited := Tset.add t !visited ; List.iter (raise_if_is_init t) states ; Lang.F.lc_iter (term_is_init_in_states states) t end in try term_is_init_in_states filter (F.e_prop pred) ; false with Found -> true let rec do_filter filter p = let on_sub_nodes = do_filter filter in match F.p_expr p with | And ps -> p_all on_sub_nodes ps | If(e,a,b) -> F.p_if e (on_sub_nodes a) (on_sub_nodes b) | _ when has_init filter p -> p_true | _ -> p let filter (hs, g) = let filter = collect_seq [] hs in if has_init filter g then (hs, g) else map_sequence (do_filter filter) hs, g end let init_filter = InitFilter.filter (* -------------------------------------------------------------------------- *) (* --- Finalization --- *) (* -------------------------------------------------------------------------- *) let close_cond = function | Type _ when Wp_parameters.SimplifyType.get () -> p_true | c -> pred_cond c let closure = ref [] let at_closure f = closure := f::!closure let alter_closure sequent = List.fold_left (fun seq f -> f seq) sequent !closure let hyps s = List.map (fun s -> close_cond s.condition) s.seq_list let head s = match s.condition with | Have p | When p | Core p | Init p | Type p | Branch(p,_,_) -> p | Either _ | State _ | Probe _ -> p_true let have s = match s.condition with | Have p | When p | Core p | Init p | Type p -> p | Branch _ | Either _ | State _ | Probe _ -> p_true let condition s = F.p_conj (hyps s) let property sequent = let s,goal = alter_closure sequent in (F.p_hyps (hyps s) goal) (* -------------------------------------------------------------------------- *) (* --- Visitor --- *) (* -------------------------------------------------------------------------- *) let list seq = seq.seq_list let iter f seq = List.iter f seq.seq_list (* -------------------------------------------------------------------------- *) (* --- Probes --- *) (* -------------------------------------------------------------------------- *) let probes seq = let pool = ref Probe.Map.empty in let rec collect_step s = match s.condition with | Probe(p,t) -> pool := Probe.Map.add p t !pool | Branch(_,a,b) -> collect_seq a ; collect_seq b | Either cs -> List.iter collect_seq cs | _ -> () and collect_seq s = List.iter collect_step s.seq_list in collect_seq seq ; !pool (* -------------------------------------------------------------------------- *) (* --- Index --- *) (* -------------------------------------------------------------------------- *) let rec index_list k = function | [] -> k | s::w -> index_list (index_step k s) w and index_step k s = s.id <- k ; let k = succ k in match s.condition with | Have _ | When _ | Type _ | Core _ | Init _ | State _ | Probe _ -> k | Branch(_,a,b) -> index_list (index_list k a.seq_list) b.seq_list | Either cs -> index_case k cs and index_case k = function | [] -> k | c::cs -> index_case (index_list k c.seq_list) cs let steps seq = index_list 0 seq.seq_list let index (seq,_) = ignore (steps seq) (* -------------------------------------------------------------------------- *) (* --- Access --- *) (* -------------------------------------------------------------------------- *) let rec at_list k = function | [] -> assert false | s::w -> if k = 0 then s else let n = s.size in if k < n then at_step (k-1) s.condition else at_list (k - n) w and at_step k = function | Have _ | When _ | Type _ | Core _ | Init _ | State _ | Probe _ -> assert false | Branch(_,a,b) -> let n = a.seq_size in if k < n then at_list k a.seq_list else at_list (k-n) b.seq_list | Either cs -> at_case k cs and at_case k = function | [] -> assert false | c::cs -> let n = c.seq_size in if k < n then at_list k c.seq_list else at_case (k - n) cs let step_at seq k = if 0 <= k && k < seq.seq_size then at_list k seq.seq_list else raise Not_found (* -------------------------------------------------------------------------- *) (* --- Insertion --- *) (* -------------------------------------------------------------------------- *) let in_sequence_add_list ~replace = let rec in_list k h w = if k = 0 then List.rev_append (List.rev h) (if replace then match w with | [] -> assert false | _::w -> w else w) else match w with | [] -> assert false | s::w -> let n = s.size in if k < n then let cond = in_step (k-1) h s.condition in update_cond s cond :: w else s :: in_list (k-n) h w and in_step k h = function | Have _ | When _ | Type _ | Core _ | Init _ | State _ | Probe _ -> assert false | Branch(p,a,b) -> let n = a.seq_size in if k < n then Branch(p,in_sequence_add_list k h a,b) else Branch(p,a,in_sequence_add_list (k-n) h b) | Either cs -> Either (in_case k h cs) and in_case k h = function | [] -> assert false | c::cs -> let n = c.seq_size in if k < n then in_sequence_add_list k h c :: cs else c :: in_case (k-n) h cs and in_sequence_add_list k h s = sequence (in_list k h s.seq_list) in in_sequence_add_list let in_sequence ~replace id h = in_sequence_add_list ~replace id [h] let size seq = seq.seq_size let insert ?at step sequent = let seq,goal = sequent in let at = match at with None -> seq.seq_size | Some k -> k in if 0 <= at && at <= seq.seq_size then in_sequence ~replace:false at step seq , goal else raise Not_found let replace ~at step sequent = let seq,goal = sequent in if 0 <= at && at <= seq.seq_size then in_sequence ~replace:true at step seq , goal else raise Not_found let replace_by_step_list ~at step_list sequent = let seq,goal = sequent in if 0 <= at && at <= seq.seq_size then in_sequence_add_list ~replace:true at step_list seq , goal else raise Not_found (* -------------------------------------------------------------------------- *) (* --- Replace --- *) (* -------------------------------------------------------------------------- *) let subst f s = map_sequent (Lang.p_subst f) s (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>