array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0)
Create an array.
Parameters ---------- object : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. copy : bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (`dtype`, `order`, etc.). order : 'K', 'A', 'C', 'F'
, optional Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless 'F' is specified, in which case it will be in Fortran order (column major). If object is an array the following holds.
===== ========= =================================================== order no copy copy=True ===== ========= =================================================== 'K' unchanged F & C order preserved, otherwise most similar order 'A' unchanged F order if input is F and not C, otherwise C order 'C' C order C order 'F' F order F order ===== ========= ===================================================
When ``copy=False`` and a copy is made for other reasons, the result is the same as if ``copy=True``, with some exceptions for `A`, see the Notes section. The default order is 'K'. subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement.
Returns ------- out : ndarray An array object satisfying the specified requirements.
See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value.
Notes ----- When order is 'A' and `object` is an array in neither 'C' nor 'F' order, and a copy is forced by a change in dtype, then the order of the result is not necessarily 'C' as expected. This is likely a bug.
Examples -------- >>> np.array(1, 2, 3
) array(1, 2, 3
)
Upcasting:
>>> np.array(1, 2, 3.0
) array( 1., 2., 3.
)
More than one dimension:
>>> np.array([1, 2], [3, 4]
) array([1, 2],
[3, 4]
)
Minimum dimensions 2:
>>> np.array(1, 2, 3
, ndmin=2) array([1, 2, 3]
)
Type provided:
>>> np.array(1, 2, 3
, dtype=complex) array( 1.+0.j, 2.+0.j, 3.+0.j
)
Data-type consisting of more than one element:
>>> x = np.array((1,2),(3,4)
,dtype=('a','<i4'),('b','<i4')
) >>> x'a'
array(1, 3
)
Creating an array from sub-classes:
>>> np.array(np.mat('1 2; 3 4')) array([1, 2],
[3, 4]
)
>>> np.array(np.mat('1 2; 3 4'), subok=True) matrix([1, 2],
[3, 4]
)