package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `StateSpaceContinuous
]
type t = [ `Object | `StateSpaceContinuous ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : ?kwargs:(string * Py.Object.t) list -> Py.Object.t list -> t

Continuous-time Linear Time Invariant system in state-space form.

Represents the system as the continuous-time, first order differential equation :math:`\dotx = A x + B u`. Continuous-time `StateSpace` systems inherit additional functionality from the `lti` class.

Parameters ---------- *system: arguments The `StateSpace` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation:

* 1: `lti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 4: array_like: (A, B, C, D)

See Also -------- TransferFunction, ZerosPolesGain, lti ss2zpk, ss2tf, zpk2sos

Notes ----- Changing the value of properties that are not part of the `StateSpace` system representation (such as `zeros` or `poles`) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

Examples -------- >>> from scipy import signal

>>> a = np.array([0, 1], [0, 0]) >>> b = np.array([0], [1]) >>> c = np.array([1, 0]) >>> d = np.array([0])

>>> sys = signal.StateSpace(a, b, c, d) >>> print(sys) StateSpaceContinuous( array([0, 1], [0, 0]), array([0], [1]), array([1, 0]), array([0]), dt: None )

val bode : ?w:Py.Object.t -> ?n:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies rad/s, magnitude dB and phase deg. See `bode` for details.

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt

>>> sys = signal.TransferFunction(1, 1, 1) >>> w, mag, phase = sys.bode()

>>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show()

val freqresp : ?w:Py.Object.t -> ?n:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies rad/s and complex magnitude. See `freqresp` for details.

val impulse : ?x0:Py.Object.t -> ?t:Py.Object.t -> ?n:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the impulse response of a continuous-time system. See `impulse` for details.

val output : ?x0:Py.Object.t -> u:Py.Object.t -> t:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the response of a continuous-time system to input `U`. See `lsim` for details.

val step : ?x0:Py.Object.t -> ?t:Py.Object.t -> ?n:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the step response of a continuous-time system. See `step` for details.

val to_discrete : ?method_:Py.Object.t -> ?alpha:Py.Object.t -> dt:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Returns the discretized `StateSpace` system.

Parameters: See `cont2discrete` for details.

Returns ------- sys: instance of `dlti` and `StateSpace`

val to_ss : [> tag ] Obj.t -> Py.Object.t

Return a copy of the current `StateSpace` system.

Returns ------- sys : instance of `StateSpace` The current system (copy)

val to_tf : ?kwargs:(string * Py.Object.t) list -> [> tag ] Obj.t -> Py.Object.t

Convert system representation to `TransferFunction`.

Parameters ---------- kwargs : dict, optional Additional keywords passed to `ss2zpk`

Returns ------- sys : instance of `TransferFunction` Transfer function of the current system

val to_zpk : ?kwargs:(string * Py.Object.t) list -> [> tag ] Obj.t -> Py.Object.t

Convert system representation to `ZerosPolesGain`.

Parameters ---------- kwargs : dict, optional Additional keywords passed to `ss2zpk`

Returns ------- sys : instance of `ZerosPolesGain` Zeros, poles, gain representation of the current system

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.