Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage ``Z``.
Suppose ``p`` and ``q`` are original observations in disjoint clusters ``s`` and ``t``, respectively and ``s`` and ``t`` are joined by a direct parent cluster ``u``. The cophenetic distance between observations ``i`` and ``j`` is simply the distance between clusters ``s`` and ``t``.
Parameters ---------- Z : ndarray The hierarchical clustering encoded as an array (see `linkage` function). Y : ndarray (optional) Calculates the cophenetic correlation coefficient ``c`` of a hierarchical clustering defined by the linkage matrix `Z` of a set of :math:`n` observations in :math:`m` dimensions. `Y` is the condensed distance matrix from which `Z` was generated.
Returns ------- c : ndarray The cophentic correlation distance (if ``Y`` is passed). d : ndarray The cophenetic distance matrix in condensed form. The :math:`ij` th entry is the cophenetic distance between original observations :math:`i` and :math:`j`.
See Also -------- linkage: for a description of what a linkage matrix is. scipy.spatial.distance.squareform: transforming condensed matrices into square ones.
Examples -------- >>> from scipy.cluster.hierarchy import single, cophenet >>> from scipy.spatial.distance import pdist, squareform
Given a dataset ``X`` and a linkage matrix ``Z``, the cophenetic distance between two points of ``X`` is the distance between the largest two distinct clusters that each of the points:
>>> X = [0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]
``X`` corresponds to this dataset ::
x x x x x x
x x x x x x
>>> Z = single(pdist(X)) >>> Z array([ 0., 1., 1., 2.],
[ 2., 12., 1., 3.],
[ 3., 4., 1., 2.],
[ 5., 14., 1., 3.],
[ 6., 7., 1., 2.],
[ 8., 16., 1., 3.],
[ 9., 10., 1., 2.],
[11., 18., 1., 3.],
[13., 15., 2., 6.],
[17., 20., 2., 9.],
[19., 21., 2., 12.]
) >>> cophenet(Z) array(1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2.,
2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.
)
The output of the `scipy.cluster.hierarchy.cophenet` method is represented in condensed form. We can use `scipy.spatial.distance.squareform` to see the output as a regular matrix (where each element ``ij`` denotes the cophenetic distance between each ``i``, ``j`` pair of points in ``X``):
>>> squareform(cophenet(Z)) array([0., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[1., 0., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[1., 1., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 0., 1., 1., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 1., 0., 1., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 1., 1., 0., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 0., 1., 1., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 1., 0., 1., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.]
)
In this example, the cophenetic distance between points on ``X`` that are very close (i.e., in the same corner) is 1. For other pairs of points is 2, because the points will be located in clusters at different corners - thus, the distance between these clusters will be larger.