package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/mod_arith_gates.ml.html
Source file mod_arith_gates.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2023 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Kzg.Bls open Identities module L = Plompiler.LibCircuit open Gates_common (* Modular addition over a non-native modulus: Non Arith degree : 2 nb identities : 1 + |MOD_ARITH.moduli_add| advice selectors : None equations : see lib_plompiler/gadget_mod_arith.ml *) module Make_ModAdd (MOD_ARITH : Plompiler__Gadget_mod_arith.MOD_ARITH) : Base_sig = struct module M = MOD_ARITH (L) let q_label = "q_mod_add_" ^ M.label let ( %! ) = Z.rem (* In the first row: M.nb_limbs correspond to the first input. M.nb_limbs correspond to the second input. In the second row: M.nb_limbs correspond to the output. 1 corresponds to qm variable (quotient by the main modulus). M.moduli_add correspond to tj (quotionts by the auxiliary moduli). *) let nb_used_wires = let used_fst_row = 2 * M.nb_limbs in let used_snd_row = M.nb_limbs + 1 + List.length M.moduli_add in let nb_used_wires = Int.max used_fst_row used_snd_row in assert (nb_used_wires <= Plompiler.Csir.nb_wires_arch) ; nb_used_wires (* powers of the base modulo the modulus *) let bs_mod_m = List.init M.nb_limbs (fun i -> Z.pow M.base i %! M.modulus) |> List.rev let (qm_shift, _), ts_bounds = M.bounds_add (* There are as many identities as moduli + 1, as we also have an identity on the native modulus *) let identity = (q_label, 1 + List.length M.moduli_add) let index_com = None let nb_advs = 0 let nb_buffers = 3 let gx_composition = true let polynomials_degree = (q_label, 2) :: List.init nb_used_wires (fun i -> (wire_name i, 2)) |> SMap.of_list let get_values wires wires_g = let xs = List.init M.nb_limbs (fun i -> wires.(i)) in let ys = List.init M.nb_limbs (fun i -> wires.(M.nb_limbs + i)) in let zs = List.init M.nb_limbs (fun i -> wires_g.(i)) in let qm = wires_g.(M.nb_limbs) in let ts = List.mapi (fun i _ -> wires_g.(M.nb_limbs + 1 + i)) M.moduli_add in let t_infos = List.map2 (fun tj (t_shift, _) -> Some (tj, t_shift)) ts ts_bounds in (xs, ys, zs, qm, t_infos) let equations ~q:q_mod_add ~wires ~wires_g ?precomputed_advice:_ () = (* z = (x + y) mod m let k := nb_limbs and n := |moduli| PlonK wires distribution: row i : x0 ... x_{k-1} y0 ... y_{k-1} row i+1 : z0 ... z_{k-1} qm t1 ... t_{n} *) let xs, ys, zs, qm, t_infos = get_values wires wires_g in let sum = List.fold_left Scalar.add Scalar.zero in List.map2 (fun mj t_info -> (* \sum_i ((B^i mod m) mod mj) * (x_i + y_i - z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = (tj + tj_shift) * mj *) let tj, tj_shift = match t_info with | Some (tj, tj_shift) -> (tj, tj_shift) | None -> (Scalar.zero, Z.zero) in let id_mj = let open Scalar in sum (List.map2 (fun bi_mod_m ((xi, yi), zi) -> of_z (bi_mod_m %! mj) * (xi + yi + negate zi)) bs_mod_m (List.combine (List.combine xs ys) zs)) + negate (qm * of_z (M.modulus %! mj)) + negate (of_z Z.(qm_shift * M.modulus %! mj)) + negate ((tj + of_z tj_shift) * of_z mj) in Scalar.(q_mod_add * id_mj)) (Scalar.order :: M.moduli_add) (None :: t_infos) let prover_identities ~prefix_common ~prefix ~public:_ ~domain : prover_identities = fun evaluations -> let domain_size = Domain.length domain in let tmps, ids = get_buffers ~nb_buffers ~nb_ids:(snd identity) in let ({q; wires} : witness) = get_evaluations ~q_label ~prefix ~prefix_common evaluations in let q_mod_add = q in (* Note that in the prover we do not have wires_g, so we will need to compose qm & ts with gX *) let xs, ys, _zs, qm, t_infos = get_values wires wires in List.mapi (fun i (mj, t_info) -> (* id_mj := \sum_i ((B^i mod m) mod mj) * (x_i + y_i - z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) - (tj + tj_shift) * mj *) let id_mj_without_sum = (* In the case of the native modulus, we can ignore the (tj + tj_shift) component *) let tj, tj_coeff, tj_shift, tj_comp = match t_info with | Some (tj, tj_shift) -> ([tj], Scalar.[negate (of_z mj)], tj_shift, [1]) | None -> ([], [], Z.zero, []) in Evaluations.linear_c ~res:tmps.(0) ~evaluations:(qm :: tj) ~composition_gx:(1 :: tj_comp, domain_size) ~linear_coeffs:(Scalar.(negate (of_z (M.modulus %! mj))) :: tj_coeff) ~add_constant: Scalar.( negate (of_z Z.((qm_shift * M.modulus %! mj) + (tj_shift * mj)))) () in let id_mj = List.fold_left2 (fun acc bi_mod_m (xi, yi) -> (* zi is just xi composed with gX *) let zi = xi in let xi_plus_yi_minus_zi = Evaluations.linear_c ~res:tmps.(2) ~evaluations:[xi; yi; zi] ~linear_coeffs:[one; one; mone] ~composition_gx:([0; 0; 1], domain_size) () in let acc = Evaluations.linear_c ~res:tmps.(1) ~evaluations:[acc; xi_plus_yi_minus_zi] ~linear_coeffs:[one; Scalar.of_z @@ (bi_mod_m %! mj)] () in Evaluations.copy ~res:tmps.(0) acc) id_mj_without_sum bs_mod_m (List.combine xs ys) in let identity = Evaluations.mul_c ~res:ids.(i) ~evaluations:[q_mod_add; id_mj] () in (prefix @@ q_label ^ "." ^ string_of_int i, identity)) ((Scalar.order, None) :: List.combine M.moduli_add t_infos) |> SMap.of_list let verifier_identities ~prefix_common ~prefix ~public:_ ~generator:_ ~size_domain:_ : verifier_identities = fun _ answers -> let {q; wires; wires_g} = get_answers ~gx:true ~q_label ~prefix ~prefix_common answers in List.mapi (fun i id -> (prefix @@ q_label ^ "." ^ string_of_int i, id)) (equations ~q ~wires ~wires_g ()) |> SMap.of_list let cs ~q:q_mod_add ~wires ~wires_g ?precomputed_advice:_ () = (* z = (x + y) mod m let k := nb_limbs and n := |moduli| PlonK wires distribution: row i : x0 ... x_{k-1} y0 ... y_{k-1} row i+1 : z0 ... z_{k-1} qm t1 ... t_{n} *) let open L in let xs, ys, zs, qm, t_infos = get_values wires wires_g in let* zero = Num.zero in map2M (fun mj t_info -> (* \sum_i ((B^i mod m) mod mj) * (x_i + y_i - z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = (tj + tj_shift) * mj *) let tj, tj_shift = match t_info with | Some (tj, tj_shift) -> (tj, tj_shift) | None -> (zero, Z.zero) in let* id_mj = let sum_terms = List.map2 (fun bi_mod_m ((xi, yi), zi) -> let c = Scalar.of_z (bi_mod_m %! mj) in [(c, xi); (c, yi); (Scalar.negate c, zi)]) bs_mod_m (List.combine (List.combine xs ys) zs) |> List.concat in let qc = Scalar.of_z Z.(-(qm_shift * M.modulus %! mj) - (tj_shift * mj)) in let coeffs, vars = List.split @@ [ Scalar.(negate @@ of_z (M.modulus %! mj), qm); Scalar.(negate @@ of_z mj, tj); ] @ sum_terms in Num.add_list ~qc ~coeffs (to_list vars) in Num.mul q_mod_add id_mj) (Scalar.order :: M.moduli_add) (None :: t_infos) end (* Modular multiplication over a non-native modulus: Non Arith degree : 3 nb identities : 1 + |MOD_ARITH.moduli_mul| advice selectors : None equations : see lib_plompiler/gadget_mod_arith.ml *) module Make_ModMul (MOD_ARITH : Plompiler__Gadget_mod_arith.MOD_ARITH) : Base_sig = struct module M = MOD_ARITH (L) let q_label = "q_mod_mul_" ^ M.label let ( %! ) = Z.rem (* In the first row: M.nb_limbs correspond to the first input. M.nb_limbs correspond to the second input. In the second row: M.nb_limbs correspond to the output. 1 corresponds to qm variable (quotient by the main modulus). M.moduli_mul correspond to tj (quotionts by the auxiliary moduli). *) let nb_used_wires = let used_fst_row = 2 * M.nb_limbs in let used_snd_row = M.nb_limbs + 1 + List.length M.moduli_mul in let nb_used_wires = Int.max used_fst_row used_snd_row in assert (nb_used_wires <= Plompiler.Csir.nb_wires_arch) ; nb_used_wires (* powers of the base modulo the modulus *) let bs_mod_m = List.init M.nb_limbs (fun i -> Z.pow M.base i %! M.modulus) |> List.rev let bij_mod_m = List.init M.nb_limbs (fun i -> List.init M.nb_limbs (fun j -> Z.pow M.base (i + j) %! M.modulus)) |> List.concat |> List.rev let (qm_shift, _), ts_bounds = M.bounds_mul (* There are as many identities as moduli + 1, as we also have an identity on the native modulus *) let identity = (q_label, 1 + List.length M.moduli_mul) let index_com = None let nb_advs = 0 let nb_buffers = 3 let gx_composition = true let polynomials_degree = (q_label, 3) :: List.init nb_used_wires (fun i -> (wire_name i, 3)) |> SMap.of_list let get_values wires wires_g = let xs = List.init M.nb_limbs (fun i -> wires.(i)) in let ys = List.init M.nb_limbs (fun i -> wires.(M.nb_limbs + i)) in let zs = List.init M.nb_limbs (fun i -> wires_g.(i)) in let qm = wires_g.(M.nb_limbs) in let ts = List.mapi (fun i _ -> wires_g.(M.nb_limbs + 1 + i)) M.moduli_mul in let t_infos = List.map2 (fun tj (t_shift, _) -> Some (tj, t_shift)) ts ts_bounds in (xs, ys, zs, qm, t_infos) let equations ~q:q_mod_mul ~wires ~wires_g ?precomputed_advice:_ () = (* z = (x * y) mod m let k := nb_limbs and n := |moduli| PlonK wires distribution: row i : x0 ... x_{k-1} y0 ... y_{k-1} row i+1 : z0 ... z_{k-1} qm t1 ... t_{n} *) let xs, ys, zs, qm, t_infos = get_values wires wires_g in let sum = List.fold_left Scalar.add Scalar.zero in let x_times_y = List.concat_map (fun xi -> List.map (fun yj -> Scalar.(xi * yj)) ys) xs in List.map2 (fun mj t_info -> (* \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = (tj + tj_shift) * mj *) let tj, tj_shift = match t_info with | Some (tj, tj_shift) -> (tj, tj_shift) | None -> (Scalar.zero, Z.zero) in let id_mj = let open Scalar in let mod_mj v = v %! mj |> of_z in let bs_mod_m_mod_mj = List.map mod_mj bs_mod_m in let bij_mod_m_mod_mj = List.map mod_mj bij_mod_m in let sum_xy = sum @@ List.map2 Scalar.mul bij_mod_m_mod_mj x_times_y in let sum_z = sum @@ List.map2 Scalar.mul bs_mod_m_mod_mj zs in sum_xy + negate sum_z + negate (qm * mod_mj M.modulus) + negate (mod_mj Z.(qm_shift * M.modulus)) + negate ((tj + of_z tj_shift) * of_z mj) in Scalar.(q_mod_mul * id_mj)) (Scalar.order :: M.moduli_mul) (None :: t_infos) let prover_identities ~prefix_common ~prefix ~public:_ ~domain : prover_identities = fun evaluations -> let domain_size = Domain.length domain in let tmps, ids = get_buffers ~nb_buffers ~nb_ids:(snd identity) in let ({q; wires} : witness) = get_evaluations ~q_label ~prefix ~prefix_common evaluations in let q_mod_mul = q in (* Note that in the prover we do not have wires_g, so we will need to compose qm & ts with gX *) let xs, ys, _zs, qm, t_infos = get_values wires wires in (* zi is just xi composed with gX *) let zs = xs in let xy_pairs = List.concat_map (fun xi -> List.map (fun yj -> (xi, yj)) ys) xs in List.mapi (fun i (mj, t_info) -> (* id_mj := \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) - (tj + tj_shift) * mj *) let id_mj_without_sums = (* In the case of the native modulus, we can ignore the (tj + tj_shift) component *) let tj, tj_coeff, tj_shift, tj_comp = match t_info with | Some (tj, tj_shift) -> ([tj], Scalar.[negate (of_z mj)], tj_shift, [1]) | None -> ([], [], Z.zero, []) in Evaluations.linear_c ~res:tmps.(0) ~evaluations:(qm :: tj) ~composition_gx:(1 :: tj_comp, domain_size) ~linear_coeffs:(Scalar.(negate (of_z (M.modulus %! mj))) :: tj_coeff) ~add_constant: Scalar.( negate (of_z Z.((qm_shift * M.modulus %! mj) + (tj_shift * mj)))) () in let id_mj_without_sum_z = List.fold_left2 (fun acc bij_mod_m (xi, yj) -> let xiyj = Evaluations.mul_c ~res:tmps.(2) ~evaluations:[xi; yj] () in let acc = Evaluations.linear_c ~res:tmps.(1) ~evaluations:[acc; xiyj] ~linear_coeffs:[one; Scalar.of_z (bij_mod_m %! mj)] () in Evaluations.copy ~res:tmps.(0) acc) id_mj_without_sums bij_mod_m xy_pairs in let id_mj = List.fold_left2 (fun acc bi_mod_m zi -> let acc = Evaluations.linear_c ~res:tmps.(1) ~evaluations:[acc; zi] ~linear_coeffs:[one; Scalar.(negate @@ of_z (bi_mod_m %! mj))] ~composition_gx:([0; 1], domain_size) () in Evaluations.copy ~res:tmps.(0) acc) id_mj_without_sum_z bs_mod_m zs in let identity = Evaluations.mul_c ~res:ids.(i) ~evaluations:[q_mod_mul; id_mj] () in (prefix @@ q_label ^ "." ^ string_of_int i, identity)) ((Scalar.order, None) :: List.combine M.moduli_mul t_infos) |> SMap.of_list let verifier_identities ~prefix_common ~prefix ~public:_ ~generator:_ ~size_domain:_ : verifier_identities = fun _ answers -> let {q; wires; wires_g} = get_answers ~gx:true ~q_label ~prefix ~prefix_common answers in List.mapi (fun i id -> (prefix @@ q_label ^ "." ^ string_of_int i, id)) (equations ~q ~wires ~wires_g ()) |> SMap.of_list let cs ~q:q_mod_mul ~wires ~wires_g ?precomputed_advice:_ () = (* z = (x * y) mod m let k := nb_limbs and n := |moduli| PlonK wires distribution: row i : x0 ... x_{k-1} y0 ... y_{k-1} row i+1 : z0 ... z_{k-1} qm t1 ... t_{n} *) let open L in let xs, ys, zs, qm, t_infos = get_values wires wires_g in let xy_pairs = List.concat_map (fun xi -> List.map (fun yj -> (xi, yj)) ys) xs in let* xys = mapM (fun (xi, yj) -> Num.mul xi yj) xy_pairs in let* zero = Num.constant Scalar.zero in map2M (fun mj t_info -> (* \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = (tj + tj_shift) * mj *) let tj, tj_shift = match t_info with | Some (tj, tj_shift) -> (tj, tj_shift) | None -> (zero, Z.zero) in let* id_mj = let xy_terms = List.map2 (fun bij_mod_m xiyj -> (Scalar.of_z (bij_mod_m %! mj), xiyj)) bij_mod_m xys in let z_terms = List.map2 (fun bi_mod_m zi -> (Scalar.(negate @@ of_z (bi_mod_m %! mj)), zi)) bs_mod_m zs in let sum_terms = xy_terms @ z_terms in let qc = Scalar.of_z Z.(-(qm_shift * M.modulus %! mj) - (tj_shift * mj)) in let coeffs, vars = List.split @@ [ Scalar.(negate @@ of_z (M.modulus %! mj), qm); Scalar.(negate @@ of_z mj, tj); ] @ sum_terms in Num.add_list ~qc ~coeffs (to_list vars) in Num.mul q_mod_mul id_mj) (Scalar.order :: M.moduli_mul) (None :: t_infos) end module AddMod25519 = Make_ModAdd (Plompiler.ArithMod25519) module MulMod25519 = Make_ModMul (Plompiler.ArithMod25519) module AddMod64 = Make_ModAdd (Plompiler.ArithMod64) module MulMod64 = Make_ModMul (Plompiler.ArithMod64)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>