package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_mod_arith.ml.html
Source file gadget_mod_arith.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2023 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Lang_core open Lang_stdlib (* This gadget implements support for non-native modular arithmetic in PlonK. We follow the techniques by Lubarov and Baylina, see: https://eprint.iacr.org/2022/1470 . To implement arithmetic over Z_m, where m is the non-native modulus, we first need to be able to represent integers in this domain. (Note that m could be greater than the native modulus.) We represent an integer over Z_m as a vector of limbs encoding its representation in a certain base. Each limb contains a native scalar which must be bounded in the range [0, base). The expected number of limbs is the first integer k such that base^k >= m. A vector of k limbs [a_{k-1}, ..., a_1, a_0] is well-formed iff for every i a_i is in [0, base). The vector encodes integer (\sum_i a_i base^i). For the sake of simplicity, we focus on modular addition over Z_m. Modular multiplication can be implemented analogously, with different bounds. Given two vectors of limbs x and y, we witness their modular addition z and add PlonK constraints that enforce the following equality over the integers: \sum_i (x_i + y_i - z_i) base^i = qm * m were qm is an integer. The above equation must hold over the integers, but we can only assert equalities modulo the native modulus, p. The technique described in 2022/1470 consists of checking the above equality modulo p, but also modulo a set of auxiliary "moduli" (lower than p, we will explain in a moment how to do this). By the Chinese Remainder Theorem, the equality must also hold modulo the lcm(p :: moduli) and here comes the trick: If there are enough moduli we will have: | \sum_i (x_i + y_i - z_i) base^i - qm * m | < lcm(p :: moduli) which means that if the above equation holds modulo lcm(p :: moduli), then it must also hold over the integers! In order to enforce that the equation holds modulo a small modulus mj in moduli, we apply the exact same technique and also compute bounds to enforce that the checked equation does not wrap-around modulo p (thus implying an equality over the integers). An important difference between our implementation and the above cited work (2022/1470) is that we compute much tighter bounds on the possible values of e.g. | \sum_i (x_i + y_i - z_i) base^i - qm * m |, which allows us to use much bigger auxiliary moduli (e.g. the base is a very good candidate auxiliary modulus), an thus many fewer auxiliary moduli. *) module type PARAMETERS = sig (* label to refer to this set of parameters *) val label : string (* modulus over which this arithmetic is defined *) val modulus : Z.t (* base for the limbs-representation of integers over Z_modulus *) val base : Z.t (* set of auxiliary moduli used to enforce modular addition constraints *) val moduli_add : Z.t list (* set of auxiliary moduli used to enforce modular multiplication constrs. *) val moduli_mul : Z.t list end module type MOD_ARITH = functor (L : LIB) -> sig open L open L.Encodings (* type of modular integers *) type mod_int val mod_int_encoding : (S.t list, mod_int repr, mod_int) encoding (* label to refer to this set of parameters *) val label : string (* modulus over which this arithmetic is defined *) val modulus : Z.t (* base for the limbs-representation of integers over Z_modulus *) val base : Z.t (* smallest integer such that base^nb_limbs >= modulus *) val nb_limbs : int (* set of auxiliary moduli used to enforce modular addition constraints *) val moduli_add : Z.t list (* set of auxiliary moduli used to enforce modular multiplication constrs. *) val moduli_mul : Z.t list (* bounds used for modular addition constraints, we refer to function [check_addition_parameters] below for details about how they are defined and calculated. Each integer pair (shift, bound) describes the limits of a corresponding variable v. In particular (v + shift) will be asserted to be in the interval [0, bound). *) val bounds_add : (Z.t * Z.t) * (Z.t * Z.t) list (* bounds used for modular multiplication constraints, we refer to function [check_multiplication_parameters] below for details about how they are defined and calculated. Each integer pair (shift, bound) describes the limits of a corresponding variable v. In particular (v + shift) will be asserted to be in the interval [0, bound). *) val bounds_mul : (Z.t * Z.t) * (Z.t * Z.t) list val input_mod_int : ?kind:input_kind -> Z.t -> mod_int repr t val mod_int_of_scalars : scalar list repr -> mod_int repr t val scalars_of_mod_int : mod_int repr -> scalar list repr t (* [bytes_of_mod_int padded n] returns a Boolean list representing the little endian bit decomposition of the given integer [n]. The default length of the list is [nb_limbs] * [base]. If padded is true, padding with zeros is done to get the length multiple of 8. *) val bytes_of_mod_int : ?padded:bool -> mod_int repr -> Bytes.tl repr t val constant : Z.t -> mod_int repr t val zero : mod_int repr t val one : mod_int repr t (* val assert_equal : mod_int repr -> mod_int repr -> unit repr t *) (* [equal] makes use of an internal function [assert_non_zero] which requires [modulus] to be prime. This function would need to be generalized for arbitrary moduli *) val equal : mod_int repr -> mod_int repr -> bool repr t val add : mod_int repr -> mod_int repr -> mod_int repr t val sub : mod_int repr -> mod_int repr -> mod_int repr t val mul : mod_int repr -> mod_int repr -> mod_int repr t (* Division of [x] by [y] will make the circuit unsatisfiable if there does not exist [z] such that [x = z * y (mod modulus)] or if [y = 0] *) val div : mod_int repr -> mod_int repr -> mod_int repr t val neg : mod_int repr -> mod_int repr t (* Inversion of a non-invertible value (mod [modulus]) will make the circuit unsatisfiable *) val inv : mod_int repr -> mod_int repr t val add_constant : mod_int repr -> Z.t -> mod_int repr t val mul_constant : mod_int repr -> Z.t -> mod_int repr t end (* Checks that the parameters are sound for implementing modular arithmetic, i.e., that there will be no wrap-around when checking equalities modulo the moduli and that such equalities imply an equality over the integers. This function returns a pair (qm_shift, qm_ubound): - qm_shift : a constant used in all identities related to modular addition - qm_ubound : an upper-bound on the value of the quotient qm (on div. by m) which needs to be asserted to be in the range [0, qm_ubound) This function also returns (as a second argument) a list of pairs (tj_shift, tj_ubound), one for each mj in moduli: - tj_shift : a constant used in the identity modulo mj - tj_ubound : an upper-bound on the value of the quotient tj (on div. by mj) which needs to be asserted to be in the range [0, tj_ubound) *) let check_addition_parameters ~modulus:m ~base ~nb_limbs ~moduli = (* Assert that we can encode any integer in [Z_m] with [nb_limbs] limbs of size [base]. If the following is a strict inequality, then some values in [Z_m] may have more than one representative in limbs-form. This does not harm security, but requires a dedicated mechanism for equality checking. *) assert (Z.(pow base nb_limbs >= m)) ; (* We enforce z = (x + y) mod m with the equation: \sum_i (B^i mod m) * (x_i + y_i - z_i) = qm * m In that case, we can establish the following bounds on qm: qm_min = - (B-1) * \sum_i (B^i mod m) / m qm_max = 2 * (B-1) * \sum_i (B^i mod m) / m *) let sum = List.fold_left Z.add Z.zero in let ( %! ) = Z.rem in let bs_mod_m = List.init nb_limbs (fun i -> Z.pow base i %! m) in let sum_bs_mod_m = sum bs_mod_m in let qm_min = Z.(div (neg (base - one) * sum_bs_mod_m) m) in let qm_max = Z.(div (of_int 2 * (base - one) * sum_bs_mod_m) m) in (* We can thus restrict qm to be in [qm_min, qm_max] or any bigger interval (for correctness). In order for the interval to start at 0, let us modify the above equation as follows: \sum_i (B^i mod m) * (x_i + y_i - z_i) = (qm + qm_min) * m We can now bound this new shifted qm in the interval [0, qm_max - qm_min]. For compatibility with our range-check protocol, we will upper-bound the interval by a power of 2^15, the one immediately larger than qm_max - qm_min. (Note that qm_min is negative, thus (qm_max - qm_min) > qm_max.) We choose the next power of 2^15 as the range-check protocol will eventually be optimized (combined with Plookup) to process integers in chunks of 15 bits. Until this is done, it might be more efficient to replace 15 by 1 here. We now define: qm_shift := qm_min qm_ubound > qm_max - qm_min These values are all the information we need to remember about qm limits, again, qm will be asserted to be in the range [0, qm_ubound) and qm_shift will be used in the identities. *) let qm_shift = qm_min in let qm_ubound = Z.( shift_left one (Utils.next_multiple_of 15 @@ numbits (qm_max - qm_min + one))) in (* Now, assuming qm is restricted in [0, qm_ubound), let us bound the amount \sum_i (B^i mod m) * (x_i + y_i - z_i) - (qm + qm_shift) * m lower_bound: - (B-1) * \sum_i (B^i mod m) - (qm_ubound + qm_shift) * m upper_bound: 2 * (B-1) * \sum_i (B^i mod m) - qm_shift * m Then, if we define M := native_modulus :: moduli, lcm(M) must be larger than (upper_bound - lower_bound) to guarantee that a solution modulo lcm(M) implies a solution over the integers. *) let lower_bound = Z.((neg (base - one) * sum_bs_mod_m) - ((qm_ubound + qm_shift) * m)) in let upper_bound = Z.((of_int 2 * (base - one) * sum_bs_mod_m) - (qm_shift * m)) in let lcm_M_lbound = Z.(upper_bound - lower_bound) in if List.fold_left Z.lcm Z.one (S.order :: moduli) <= lcm_M_lbound then raise @@ Failure (Format.sprintf "Not enough moduli are provided for modular addition, try adding \ more values to [moduli_add] of the gadget for arithmetic modulo \ %s" @@ Z.to_string m) ; (* For every mj in M, we need to enforce the equation: \sum_i ((B^i mod m) mod mj) * (x_i + y_i - z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = tj * mj with the exception of the native modulus p := S.order, for which we can directly check: \sum_i ((B^i mod m) mod p) * (x_i + y_i - z_i) - (qm + qm_shift) * (m mod p) =_{p} 0 For the moduli <> p, we need to bound the corresponding auxiliary variable tj. As before, we will first bound tj in the interval [tj_min, tj_max] and then apply a small modification to shift it to the interval [0, tj_ubound) where tj_ubound is the power of 2^15 immediately above (tj_max - tj_min). *) let ts_bounds = List.map (fun mj -> (* We can establish the following bounds on tj: tj_min = (- (B-1) * (\sum_i (B^i mod m) mod mj) - qm_ubound * (m mod mj) - ((qm_shift * m) mod mj)) / mj tj_max = (2 * (B-1) * (\sum_i (B^i mod m) mod mj) - (qm_shift * m) mod mj) / mj *) let qm_shift_m_mod_mj = Z.(qm_shift * m %! mj) in let bs_mod_m_mod_mj = List.map (fun v -> v %! mj) bs_mod_m in let sum_bound = Z.((base - one) * sum bs_mod_m_mod_mj) in let tj_min = Z.( div (neg sum_bound - (qm_ubound * (m %! mj)) - qm_shift_m_mod_mj) mj) in let tj_max = Z.(div ((of_int 2 * sum_bound) - qm_shift_m_mod_mj) mj) in (* We will modify the equation on mj as follows: \sum_i ((B^i mod m) mod mj) * (x_i + y_i - z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = (tj + tj_min) * mj and bound the new tj in the interval [0, tj_ubound), where tj_ubound is the smallest power of 2^15 larger than tj_max - tj_min. We also define tj_shift := tj_min. *) let tj_shift = tj_min in let tj_ubound = Z.( shift_left one (Utils.next_multiple_of 15 @@ numbits (tj_max - tj_min + one))) in (* Now, assuming tj is restricted to [0, tj_ubound), we can bound the following amount: \sum_i ((B^i mod m) mod mj) * (x_i + y_i - z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) - (tj + tj_shift) * mj *) let lower_bound = Z.( neg sum_bound - (qm_ubound * (m %! mj)) - qm_shift_m_mod_mj - ((tj_ubound + tj_shift) * mj)) in let upper_bound = Z.((of_int 2 * sum_bound) - qm_shift_m_mod_mj - (tj_shift * mj)) in (* Assert that there will be no wrap-around *) if Z.(upper_bound - lower_bound >= S.order) then raise @@ Failure (Format.sprintf "We cannot make sure that there will be no wrap-around in \ the identities modulo %s, try replacing this modulo in \ [moduli_add] of the gadget for arithmetic modulo %s" (Z.to_string mj) (Z.to_string m)) ; (tj_shift, tj_ubound)) moduli in ((qm_shift, qm_ubound), ts_bounds) (* Checks that the parameters are sound for implementing modular arithmetic, i.e., that there will be no wrap-around when checking equalities modulo the moduli and that such equalities imply an equality over the integers. This function returns a pair (qm_shift, qm_ubound): - qm_shift : a constant used in all identities related to modular mult. - qm_ubound : an upper-bound on the value of the quotient qm (on div. by m) which needs to be asserted to be in the range [0, qm_ubound) This function also returns (as a second argument) a list of pairs (tj_shift, tj_ubound), one for each mj in moduli: - tj_shift : a constant used in the identity modulo mj - tj_ubound : an upper-bound on the value of the quotient tj (on div. by mj) which needs to be asserted to be in the range [0, tj_ubound) *) let check_multiplication_parameters ~modulus:m ~base ~nb_limbs ~moduli = (* Assert that we can encode any integer in [Z_m] with [nb_limbs] limbs of size [base]. If the following is a strict inequality, then some values in [Z_m] may have more than one representative in limbs-form. This does not harm security, but requires a dedicated mechanism for equality checking. *) assert (Z.(pow base nb_limbs >= m)) ; (* We enforce z = (x * y) mod m with the equation: \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) = qm * m In that case, we can establish the following bounds on qm: qm_min = - (B-1) * \sum_i (B^i mod m) / m qm_max = (B-1)^2 * (\sum_i \sum_j (B^{i+j} mod m)) / m *) let sum = List.fold_left Z.add Z.zero in let ( %! ) = Z.rem in let bs_mod_m = List.init nb_limbs (fun i -> Z.pow base i %! m) in let bij_mod_m = List.init nb_limbs (fun i -> List.init nb_limbs (fun j -> Z.pow base (i + j) %! m)) |> List.concat in let sum_bs_mod_m = sum bs_mod_m in let sum_bij_mod_m = sum bij_mod_m in let qm_min = Z.(div (neg (base - one) * sum_bs_mod_m) m) in let qm_max = Z.(div (pow (base - one) 2 * sum_bij_mod_m) m) in (* We can thus restrict qm to be in [qm_min, qm_max] or any bigger interval (for correctness). In order for the interval to start at 0, let us modify the above equation as follows: \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) = (qm + qm_min) * m We can now bound this new shifted qm in the interval [0, qm_max - qm_min]. For compatibility with our range-check protocol, we will upper-bound the interval by a power of 2^15, the one immediately larger than qm_max - qm_min. (Note that qm_min is negative, thus (qm_max - qm_min) > qm_max.) We choose the next power of 2^15 as the range-check protocol will eventually be optimized (combined with Plookup) to process integers in chunks of 15 bits. Until this is done, it might be more efficient to replace 15 by 1 here. We now define: qm_shift := qm_min qm_ubound > qm_max - qm_min These values are all the information we need to remember about qm limits, again, qm will be asserted to be in the range [0, qm_ubound) and qm_shift will be used in the identities. *) let qm_shift = qm_min in let qm_ubound = Z.( shift_left one (Utils.next_multiple_of 15 @@ numbits (qm_max - qm_min + one))) in (* Now, assuming qm is restricted in [0, qm_ubound), let us bound the amount \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) - (qm + qm_shift) * m lower_bound: - (B-1) * \sum_i (B^i mod m) - (qm_ubound + qm_shift) * m upper_bound: (B-1)^2 * (\sum_i \sum_j (B^{i+j} mod m)) - qm_shift * m Then, if we define M := native_modulus :: moduli, lcm(M) must be larger than (upper_bound - lower_bound) to guarantee that a solution modulo lcm(M) implies a solution over the integers. *) let lower_bound = Z.((neg (base - one) * sum_bs_mod_m) - ((qm_ubound + qm_shift) * m)) in let upper_bound = Z.((pow (base - one) 2 * sum_bij_mod_m) - (qm_shift * m)) in let lcm_M_lbound = Z.(upper_bound - lower_bound) in if List.fold_left Z.lcm Z.one (S.order :: moduli) <= lcm_M_lbound then raise @@ Failure (Format.sprintf "Not enough moduli are provided for modular multiplication, try \ adding more values to [moduli_mul] of the gadget for arithmetic \ modulo %s" @@ Z.to_string m) ; (* For every mj in M, we need to enforce the equation: \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = tj * mj with the exception of the native modulus p := S.order, for which we can directly check: \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_j) - (\sum_i (B^i mod m) * z_i) - (qm + qm_shift) * (m mod p) =_{p} 0 For the moduli <> p, we need to bound the corresponding auxiliary variable tj. As before, we will first bound tj in the interval [tj_min, tj_max] and then apply a small modification to shift it to the interval [0, tj_ubound) where tj_ubound is the power of 2^15 immediately above (tj_max - tj_min). *) let ts_bounds = List.map (fun mj -> (* We can establish the following bounds on tj: tj_min = (- (B-1) * (\sum_i (B^i mod m) mod mj) - qm_ubound * (m mod mj) - ((qm_shift * m) mod mj)) / mj tj_max = ((B-1)^2 * (\sum_i \sum_j ((B^{i+j} mod m) mod mj)) - (qm_shift * m) mod mj) / mj *) let qm_shift_m_mod_mj = Z.(qm_shift * m %! mj) in let bs_mod_m_mod_mj = List.map (fun v -> v %! mj) bs_mod_m in let bij_mod_m_mod_mj = List.map (fun v -> v %! mj) bij_mod_m in let sum_bound_min = Z.((base - one) * sum bs_mod_m_mod_mj) in let sum_bound_max = Z.(pow (base - one) 2 * sum bij_mod_m_mod_mj) in let tj_min = Z.( div (neg sum_bound_min - (qm_ubound * (m %! mj)) - qm_shift_m_mod_mj) mj) in let tj_max = Z.(div (sum_bound_max - qm_shift_m_mod_mj) mj) in (* We will modify the equation on mj as follows: \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_i) - (\sum_i (B^i mod m) * z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) = (tj + tj_min) * mj and bound the new tj in the interval [0, tj_ubound), where tj_ubound is the smallest power of 2^15 larger than tj_max - tj_min. We also define tj_shift := tj_min. *) let tj_shift = tj_min in let tj_ubound = Z.( shift_left one (Utils.next_multiple_of 15 @@ numbits (tj_max - tj_min + one))) in (* Now, assuming tj is restricted to [0, tj_ubound), we can bound the following amount: \sum_i (\sum_j (B^{i+j} mod m) * x_i * y_i) - (\sum_i (B^i mod m) * z_i) - qm * (m mod mj) - ((qm_shift * m) mod mj) - (tj + tj_shift) * mj *) let lower_bound = Z.( neg sum_bound_min - (qm_ubound * (m %! mj)) - qm_shift_m_mod_mj - ((tj_ubound + tj_shift) * mj)) in let upper_bound = Z.(sum_bound_max - qm_shift_m_mod_mj - (tj_shift * mj)) in (* Assert that there will be no wrap-around *) if Z.(upper_bound - lower_bound >= S.order) then raise @@ Failure (Format.sprintf "We cannot make sure that there will be no wrap-around in \ the identities modulo %s, try replacing this modulo in \ [moduli_mul] of the gadget for arithmetic modulo %s" (Z.to_string mj) (Z.to_string m)) ; (tj_shift, tj_ubound)) moduli in ((qm_shift, qm_ubound), ts_bounds) module Make (Params : PARAMETERS) : MOD_ARITH = functor (L : LIB) -> struct open L open L.Encodings include Params type mod_int = scalar list let mod_int_encoding = atomic_list_encoding scalar_encoding let nb_limbs = Utils.min_nb_limbs ~modulus ~base let is_prime = not (Z.probab_prime modulus 50 = 0) let bounds_add = check_addition_parameters ~modulus ~base ~nb_limbs ~moduli:moduli_add let bounds_mul = check_multiplication_parameters ~modulus ~base ~nb_limbs ~moduli:moduli_mul let scalar_limbs_of_z n = let n = Z.rem n modulus in let n = if Z.(compare n zero) < 0 then Z.(n + modulus) else n in Utils.z_to_limbs ~len:nb_limbs ~base n |> List.map S.of_z let input_mod_int ?(kind = `Private) n = let ns = scalar_limbs_of_z n in let* i = Input.(list @@ List.map scalar ns) |> input ~kind in (* Assert well-formedness: range-check all limbs in [0, base) *) assert (Utils.is_power_of_2 Params.base) ; iterM (Num.range_check ~nb_bits:(Z.log2 Params.base)) (of_list i) >* ret i let mod_int_of_scalars ls = assert (List.compare_length_with (of_list ls) nb_limbs = 0) ; iterM (Num.range_check ~nb_bits:(Z.log2 Params.base)) (of_list ls) >* ret ls let scalars_of_mod_int n = ret n let pad_bytes b = let len8 = Bytes.length b mod 8 in if len8 = 0 then ret b else let* b_false = Bool.constant false in let zeros = List.init (8 - len8) (fun _i -> b_false) in ret @@ to_list (of_list b @ zeros) (* n is in a big-endian form = [n_k; ..; n_0] *) let bytes_of_mod_int ?(padded = false) n = let nb_bits = Z.log2 base in let* sn = scalars_of_mod_int n in let* bln = mapM (bits_of_scalar ~nb_bits) (List.rev @@ of_list sn) in let bln = List.map of_list bln in let res = to_list (List.concat bln) in if padded then pad_bytes res else ret res let constant n = mapM Num.constant @@ scalar_limbs_of_z n <$> to_list let zero = constant Z.zero let one = constant Z.one let add = Mod_arith.add ~subtraction:false ~label ~modulus ~nb_limbs ~base ~moduli:moduli_add ~qm_bound:(fst bounds_add) ~ts_bounds:(snd bounds_add) let sub = Mod_arith.add ~subtraction:true ~label ~modulus ~nb_limbs ~base ~moduli:moduli_add ~qm_bound:(fst bounds_add) ~ts_bounds:(snd bounds_add) let mul = Mod_arith.mul ~division:false ~label ~modulus ~nb_limbs ~base ~moduli:moduli_mul ~qm_bound:(fst bounds_mul) ~ts_bounds:(snd bounds_mul) let div xs ys = let moduli = moduli_mul in let qm_bound = fst bounds_mul in let ts_bounds = snd bounds_mul in Mod_arith.assert_non_zero ~label ~modulus ~is_prime ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds ys >* Mod_arith.mul ~division:true ~label ~modulus ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds xs ys let neg xs = let* zs = zero in sub zs xs let inv xs = let* os = one in (* We do not need to assert that [x <> 0], because the equation enforced by [Mod_arith.mul] will be [1 = z * x], which is unsatisfiable if [x = 0], because we are in an integral domain. *) Mod_arith.mul ~division:true ~label ~modulus ~nb_limbs ~base ~moduli:moduli_mul ~qm_bound:(fst bounds_mul) ~ts_bounds:(snd bounds_mul) os xs let equal xs ys = let* diff = sub xs ys in Mod_arith.is_zero ~label ~modulus ~is_prime ~nb_limbs ~base ~moduli:moduli_mul ~qm_bound:(fst bounds_mul) ~ts_bounds:(snd bounds_mul) diff let add_constant xs n = let* n = constant n in add xs n let mul_constant xs n = let* n = constant n in mul xs n end module ArithMod25519 = Make (struct let label = "25519" let modulus = Z.(shift_left one 255 - of_int 19) let base = Z.(shift_left one 85) (* We want the moduli to be as large as possible (to reach the lcm bound with as few moduli as possible). But they cannot be too large (or else we will not be able to prevent wrap-arounds). The base := 2^85 is a fantastic modulus for algebra over 2^255-19, since it is much larger than what it is usually possible, but there is no wrap-around in its identity because its powers are small modulo 2^255-19. *) let moduli_add = [base] let moduli_mul = [base; Z.(base - one)] end) module ArithMod64 = Make (struct let label = "64" let modulus = Z.(shift_left one 64) let base = Z.(shift_left one 64) let moduli_add = [] let moduli_mul = [] end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>