package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/circuit.ml.html
Source file circuit.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** PlonK circuit generating backend for Plompiler. *) include Lang_core module Tables = Csir.Tables open Solver module CS = Csir.CS let tables = Csir.table_registry let one = S.one let mone = S.(negate one) let wql, wqr, wqo = (0, 1, 2) type scalar = X of S.t (* Wire representation. Each atom is represented by an index in the trace. *) type _ repr = | Unit : unit repr | Scalar : int -> scalar repr | Bool : int -> bool repr | Pair : 'a repr * 'b repr -> ('a * 'b) repr | List : 'a repr list -> 'a list repr type input_kind = [`InputCom | `Public | `Private] [@@deriving show] type trace_kind = [input_kind | `NoInput] [@@deriving show] let compare_trace_kind x y = let to_int = function | `InputCom -> 0 | `Public -> 1 | `Private -> 2 | `NoInput -> 3 in Int.compare (to_int x) (to_int y) module Scalar_map = Map.Make (S) (* State of the interpreter. *) type state = { nvars : int; (* Number of variables in the circuit. *) cs : CS.t; (* Constraint system. *) inputs : S.t array; (* Inputs declared for the circuit. *) input_com_sizes : int list; (* Sizes for input commitments. *) pi_size : int; (* Size of public inputs. *) input_flag : trace_kind; (* Flag indicating the type of inputs we are expecting. Inputs must come in order: (i) InputCom; (ii) Public; (iii) Private; (iv) NoInput (corresponding to intermediary variables). If we receive an input with earlier precedence than [input_flag], an error should be raised. *) check_wires : bool repr list; (* Boolean wires to be checked. If at the end of the circuit ([get_cs]) this is not empty, their conjunction will be asserted. *) delayed : state -> state * unit repr; (* Delayed computation, used to dump the implicit checks at the end. This is necessary because some implicit checks on the inputs might create intermediary variables, which would set to false the [input_flag] before some inputs are processed. *) tables : string list; solver : Solver.t; range_checks : Range_checks.t; (* label trace that creates a range-check and the size of the range-check *) range_checks_labels : (string list * int) list; (* label trace *) labels : string list; (* one and zero are used so often that it's worth reusing them across the whole circuit. Num.constant uses these two values as cache, which in turn is used by Bool.constant and Bytes.constant and leads to important reduction in circuit size. *) cache : scalar repr Scalar_map.t; } (* A Plompiler program is just a state monad. *) type 'a t = state -> state * 'a let ret : 'a -> 'a t = fun x s -> (s, x) let ( let* ) : 'a t -> ('a -> 'b t) -> 'b t = fun m f s -> let s, o = m s in f o s let unscalar (Scalar s) = s (* Monadic bind that unwraps a scalar repr. *) let ( let*& ) : scalar repr t -> (int -> 'b repr t) -> 'b repr t = fun m f -> let* m in f (unscalar m) let ( >* ) m f = let* Unit = m in f let fmap : ('a -> 'b) -> 'a t -> 'b t = fun f m -> let* m in ret (f m) let ( <$> ) m f = fmap f m let rec foldM f e l = match l with | [] -> ret e | x :: xs -> let* y = f e x in foldM f y xs let rec mapM : ('a -> 'b t) -> 'a list -> 'b list t = fun f ls -> match ls with | [] -> ret @@ [] | l :: ls -> let* o = f l in let* rest = mapM f ls in ret @@ (o :: rest) let map2M f ls rs = mapM (fun (a, b) -> f a b) (List.combine ls rs) let rec iterM f l = match l with | [] -> ret Unit | x :: xs -> let* _ = f x in iterM f xs let iter2M f ls rs = let lrs = try List.combine ls rs with Invalid_argument _ -> failwith "iter2M: inputs are of different length" in iterM (fun (a, b) -> f a b) lrs let with_bool_check : bool repr t -> unit repr t = fun c s -> let s, b = c s in ({s with check_wires = b :: s.check_wires}, Unit) module Input = struct (* Checks to be performed on an input *) type 'a implicit_check = 'a repr -> unit repr t let default_check : 'a implicit_check = fun _ -> ret Unit (* Structured inputs *) type 'a t' = | U : unit t' | S : scalar -> scalar t' | B : bool -> bool t' | P : 'a t' * 'b t' -> ('a * 'b) t' | L : 'a t' list -> 'a list t' and 'a input = 'a t' * 'a implicit_check type 'a t = 'a input let with_implicit_bool_check bc (i, a) = let check x s = ({s with delayed = s.delayed >* with_bool_check (bc x)}, Unit) in (i, fun repr -> a repr >* check repr) let with_assertion na (i, a) = let delay_assertion x s = ({s with delayed = s.delayed >* na x}, Unit) in (i, fun repr -> a repr >* delay_assertion repr) let s x = (S (X x), default_check) let scalar x = s x let to_scalar (S (X x), _) = x let bool b = (B b, default_check) let to_bool (B b, _) = b let unit = (U, default_check) let pair : 'a t -> 'b t -> ('a * 'b) t = fun (a, check_a) (b, check_b) -> (P (a, b), fun (Pair (ar, br)) -> check_a ar >* check_b br) let to_pair (P (a, b), _) = ((a, default_check), (b, default_check)) let list : 'a t list -> 'a list t = fun l -> ( L (List.map fst l), fun (List lr) -> let* _l = mapM (fun ((_, asssertion), r) -> asssertion r) (List.combine l lr) in ret Unit ) let to_list (L l, _) = List.map (fun i -> (i, default_check)) l (* Traverse the input structure, replacing the scalars with increasing indices starting from [start]. *) let rec make_repr : type a. a t' -> int -> a repr * int = fun input start -> match input with | U -> (Unit, start) | S _ -> (Scalar start, start + 1) | B _ -> (Bool start, start + 1) | P (l, r) -> let l, m = make_repr l start in let r, e = make_repr r m in (Pair (l, r), e) | L l -> let l, e = List.fold_left (fun (l, i) x -> let r, i' = make_repr x i in (r :: l, i')) ([], start) l in (List (List.rev l), e) end (* Dummy inputs, useful for computing a circuit before knowning the actual inputs. *) module Dummy = struct let scalar = Input.(S (X S.zero)) let bool = Input.B false let list n a = Input.L (List.init n (fun _ -> a)) end let rec encode : type a. a Input.t' -> S.t list = fun input -> match input with | U -> [] | S (X s) -> [s] | B b -> if b then [S.one] else [S.zero] | P (l, r) -> encode l @ encode r | L l -> List.concat_map encode l let serialize i = Array.of_list @@ encode i (* Physical equality: the reprs have the same structure and use the same wires. *) let rec eq : type a. a repr -> a repr -> bool = fun a b -> match (a, b) with | Scalar a, Scalar b | Bool a, Bool b -> a = b | Pair (al, ar), Pair (bl, br) -> eq al bl && eq ar br | List l1, List l2 -> List.for_all2 eq l1 l2 | Unit, Unit -> true let pair l r = Pair (l, r) let of_pair (Pair (l, r)) = (l, r) let to_list l = List l let of_list (List l) = l let with_label ~label m s = let s' = {s with labels = label :: s.labels} in let s'', a = m s' in ({s'' with labels = s.labels}, a) let debug _ _ = ret Unit let add_solver : solver:Solver.solver_desc -> unit repr t = fun ~solver s -> ({s with solver = Solver.append_solver solver s.solver}, Unit) let default_solver ?(to_solve = W 2) g = let c = g.(0) in let get_sel = CS.(get_sel c.sels) in let linear = Array.init Csir.nb_wires_arch (fun i -> get_sel @@ Csir.linear_selector_name i) in Arith { wires = Array.map (fun i -> R i) c.wires; linear; qc = get_sel "qc"; qm = get_sel "qm"; qx5a = get_sel "qx5a"; qx2b = get_sel "qx2b"; to_solve; } (* Add a gate to the constraint system *) let append : CS.gate -> ?solver:Solver.solver_desc -> unit repr t = fun gate ?solver s -> let solver = match solver with | Some s -> s | None -> if Array.length gate = 1 then default_solver gate else Skip in let gate = Array.map (fun c -> Csir.CS.{c with label = c.label @ s.labels}) gate in let cs = gate :: s.cs in let solver = Solver.append_solver solver s.solver in ({s with cs; solver}, Unit) (* Add a lookup to the CS *) let append_lookup : wires:int tagged list -> table:string -> string -> unit repr t = fun ~wires ~table label s -> let rec find_index : 'a list -> int -> 'a -> int option = fun l i y -> match l with | [] -> None | x :: xs -> if x = y then Some i else find_index xs (i + 1) y in let use_table s id = match find_index s.tables 0 id with | Some i -> (s, i) | None -> let i = List.length s.tables in let tables = s.tables @ [id] in ({s with tables}, i) in let s, index = use_table s table in let wires = Array.of_list wires in let solver = Lookup {wires; table} in let wires = Array.map untag wires in let cstr = CS.new_constraint ~wires:(Array.to_list wires) ~q_plookup:S.one ~q_table:(S.of_z (Z.of_int index)) ~labels:s.labels label in let cs = [|cstr|] :: s.cs in ({s with cs; solver = Solver.append_solver solver s.solver}, Unit) (* Records inputs, for external use *) let input : type a. ?kind:input_kind -> a Input.t -> a repr t = fun ?(kind = `Private) inp -> let rec aux : type a. kind:input_kind -> a Input.t' -> a repr t = fun ~kind inp s -> if compare_trace_kind (kind :> trace_kind) s.input_flag < 0 then raise @@ Invalid_argument (Format.sprintf "Input order not respected : input_kind : %s, s.input_flag : %s; \ inputs must be declared in this order : `InputCom, `Public, \ `Private" (show_input_kind kind) (show_trace_kind s.input_flag)) ; let serialized = serialize inp in let n = Array.length serialized in let inputs = Array.append s.inputs serialized in let input_flag = (kind :> trace_kind) in let input_com_sizes = match kind with | `InputCom -> ( match s.input_com_sizes with | hd :: tl -> (hd + n) :: tl | _ -> raise @@ Failure "initialize inputs commitments with new_input_commitment") | _ -> s.input_com_sizes in let pi_size = s.pi_size + match kind with `Public -> n | _ -> 0 in match inp with | Input.U -> assert false | Input.S _ -> let r, nvars = Input.make_repr inp s.nvars in ({s with nvars; inputs; input_com_sizes; pi_size; input_flag}, r) | Input.B _ -> let Bool o, nvars = Input.make_repr inp s.nvars in let s = { s with delayed = s.delayed >* append [| CS.new_constraint ~wires:[o; o; 0] ~linear:[(wql, mone)] ~qm:one "bool"; |] ~solver:Skip; nvars; inputs; input_com_sizes; pi_size; input_flag; } in (s, Bool o) | Input.P (l, r) -> (let* l = aux ~kind l in let* r = aux ~kind r in ret @@ Pair (l, r)) s | Input.L ls -> (let* l = mapM (aux ~kind) ls in ret @@ List l) s in let inp, implicit_check = inp in let* i = with_label ~label:"Core.input" @@ aux ~kind inp in implicit_check i >* ret i let new_input_com : unit repr t = fun s -> ({s with input_com_sizes = 0 :: s.input_com_sizes}, Unit) type 'b open_input_com = 'b t let begin_input_com : 'b -> 'b open_input_com = fun b -> new_input_com >* ret b let ( |: ) : type c d. (c repr -> d) open_input_com -> c Input.t -> d open_input_com = fun v i s -> let s, f = v s in let s, r = (input ~kind:`InputCom i) s in (s, f r) let end_input_com : 'a open_input_com -> 'a t = Fun.id (* Doesn't record inputs, for interal use *) let fresh : type a. a Input.t' -> a repr t = let rec aux : type a. a Input.t' -> a repr t = fun input s -> let s = {s with input_flag = `NoInput} in match input with | Input.U | Input.S _ -> let r, nvars = Input.make_repr input s.nvars in ({s with nvars}, r) | Input.B _ -> let Bool o, nvars = Input.make_repr input s.nvars in let s, _ = append [| CS.new_constraint ~wires:[o; o; 0] ~linear:[(wql, mone)] ~qm:one "bool"; |] ~solver:Skip {s with nvars} in (s, Bool o) | Input.P (l, r) -> (let* l = aux l in let* r = aux r in ret @@ Pair (l, r)) s | Input.L ls -> (let* l = mapM aux ls in ret @@ List l) s in fun input -> with_label ~label:"Core.fresh" @@ aux input let serialize (i, _) = serialize i let deserialize : type a. S.t array -> a Input.t -> a Input.t = let rec aux : type a. S.t array -> a Input.t' -> int -> a Input.t' * int = fun a w i -> let open Input in match w with | U -> (U, i) | S _ -> let s = a.(i) in (S (X s), i + 1) | B _ -> let s = a.(i) in (B (S.is_one s), i + 1) | P (wl, wr) -> let l, i = aux a wl i in let r, i = aux a wr i in (P (l, r), i) | L ws -> let l, i = List.fold_left (fun (acc, i) w -> let x, i = aux a w i in (x :: acc, i)) ([], i) ws in (L (List.rev l), i) in fun a (w, check) -> (fst @@ aux a w 0, check) let scalar_of_bool (Bool b) = Scalar b let unsafe_bool_of_scalar (Scalar b) = Bool b let unit = Unit module Num = struct type nonrec scalar = scalar type nonrec 'a repr = 'a repr type nonrec 'a t = 'a t (* checks that 0 <= (Scalar l) < 2^nb_bits *) let range_check ~nb_bits (Scalar l) s = assert (nb_bits > 0) ; let range_checks_labels = (s.labels, nb_bits) :: s.range_checks_labels in ( { s with range_checks = Range_checks.add ~nb_bits l s.range_checks; range_checks_labels; }, Unit ) (* l ≠ 0 <=> ∃ r ≠ 0 : l * r - 1 = 0 *) let assert_nonzero (Scalar l) = let*& r = fresh Dummy.scalar in (* 0*l + 0*r + 0*0 + 1*l*r -1 = 0 *) let gate = [|CS.new_constraint ~wires:[l; r; 0] ~qc:mone ~qm:one "assert_nonzero"|] in let solver = default_solver gate ~to_solve:(W 1) in append gate ~solver let is_zero (Scalar l) = with_label ~label:"Num.is_zero" @@ let* (Bool bit) = fresh Dummy.bool in let* (Scalar r) = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[l; r; bit] ~qc:mone ~linear:[(wqo, one)] ~qm:one "is_zero"; |] in let solver = IsZero [|l; r; bit|] in append gate ~solver >* assert_nonzero (Scalar r) >* ret @@ Bool bit let is_not_zero (Scalar l) = with_label ~label:"Num.is_not_zero" @@ let* (Bool bit) = fresh Dummy.bool in let* (Scalar r) = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[l; r; bit] ~linear:[(wqo, mone)] ~qm:one "is_not_zero"; |] in let solver = IsNotZero [|l; r; bit|] in append gate ~solver >* assert_nonzero (Scalar r) >* ret @@ Bool bit let assert_bool (Scalar l) = with_label ~label:"Num.assert_bool" @@ let gate = [|CS.new_constraint ~wires:[l] ~qbool:one "assert_bool"|] in let solver = Skip in append gate ~solver let custom ?(qc = S.zero) ?(ql = S.zero) ?(qr = S.zero) ?(qo = S.mone) ?(qm = S.zero) ?qx2b ?qx5a (Scalar l) (Scalar r) = let*& o = fresh Dummy.scalar in append [| CS.new_constraint ~wires:[l; r; o] ~qc ~linear:[(wql, ql); (wqr, qr); (wqo, qo)] ~qm ?qx2b ?qx5a "custom"; |] >* ret @@ Scalar o let assert_custom ?(qc = S.zero) ?(ql = S.zero) ?(qr = S.zero) ?(qo = S.zero) ?(qm = S.zero) (Scalar l) (Scalar r) (Scalar o) = append [| CS.new_constraint ~wires:[l; r; o] ~qc ~linear:[(wql, ql); (wqr, qr); (wqo, qo)] ~qm "assert_custom"; |] ~solver:Skip let add ?(qc = S.zero) ?(ql = S.one) ?(qr = S.one) (Scalar l) (Scalar r) = let*& o = fresh Dummy.scalar in append [| CS.new_constraint ~wires:[l; r; o] ~qc ~linear:[(wql, ql); (wqr, qr); (wqo, mone)] "add"; |] >* ret @@ Scalar o let add_constant ?(ql = S.one) (k : S.t) (Scalar l) = let*& o = fresh Dummy.scalar in append [| CS.new_constraint ~wires:[l; 0; o] ~qc:k ~linear:[(wql, ql); (wqo, mone)] "add_constant"; |] >* ret @@ Scalar o let sub (Scalar l) (Scalar r) = let*& o = fresh Dummy.scalar in append [| CS.new_constraint ~wires:[l; r; o] ~linear:[(wql, one); (wqr, mone); (wqo, mone)] "sub"; |] >* ret @@ Scalar o let mul ?(qm = one) (Scalar l) (Scalar r) = let*& o = fresh Dummy.scalar in append [|CS.new_constraint ~wires:[l; r; o] ~qm ~linear:[(wqo, mone)] "mul"|] >* ret @@ Scalar o let div ?(den_coeff = one) (Scalar l) (Scalar r) = with_label ~label:"Num.div" @@ assert_nonzero (Scalar r) >* let*& o = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[r; o; l] ~qm:den_coeff ~linear:[(wqo, mone)] "div"; |] in let solver = default_solver gate ~to_solve:(W 1) in (* r * o - l = 0 <=> o = l / r *) append gate ~solver >* ret @@ Scalar o let pow5 (Scalar l) = let*& o = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[l; 0; o] ~qx5a:one ~linear:[(wqo, mone)] "pow5"; |] in let solver = Pow5 {a = l; c = o} in append gate ~solver >* ret @@ Scalar o let constant_aux s = let*& o = fresh Dummy.scalar in append [| CS.new_constraint ~wires:[0; 0; o] ~qc:s ~linear:[(wqo, mone)] "constant_scalar"; |] >* ret (Scalar o) (* cache zero and one otherwise just add a fresh constraint *) let constant x : scalar repr t = fun st -> match Scalar_map.find_opt x st.cache with | None -> let st, o = constant_aux x st in let cache = Scalar_map.add x o st.cache in ({st with cache}, o) | Some o -> (st, o) let zero = constant S.zero let one = constant S.one end module Bool = struct type nonrec scalar = scalar type nonrec 'a repr = 'a repr type nonrec 'a t = 'a t let constant : bool -> bool repr t = fun b -> let s = if b then S.one else S.zero in let* (Scalar s) = Num.constant s in ret (Bool s) let assert_true (Bool bit) = append [| CS.new_constraint ~wires:[bit] ~qc:mone ~linear:[(wql, one)] "assert_true"; |] ~solver:Skip let assert_false (Bool bit) = append [|CS.new_constraint ~wires:[bit] ~linear:[(wql, one)] "assert_false"|] ~solver:Skip let band : bool repr -> bool repr -> bool repr t = fun (Bool l) (Bool r) -> (* NB: Here [o] is declared as a fresh scalar to avoid adding the constraint asserting it's a bool. It's safe to do so because: - We can assume that [l] and [r] are booleans - This operation is closed in {0, 1} This has additionally been proven using Z3 (see z3 directory). *) let*& o = fresh Dummy.scalar in (* o - l*r = 0 *) append [| CS.new_constraint ~wires:[l; r; o] ~qm:mone ~linear:[(wqo, one)] "band"; |] >* ret @@ Bool o let bnot (Bool b) = (* NB: Here [o] is declared as a fresh scalar to avoid adding the constraint asserting it's a bool. It's safe to do so because: - We can assume that [b] is a boolen. - This operation is closed in {0, 1} This has additionally been proven using Z3 (see z3 directory). *) let*& o = fresh Dummy.scalar in (* o - (1 - i) = 0 *) append [| CS.new_constraint ~wires:[b; 0; o] ~qc:mone ~linear:[(wql, one); (wqo, one)] "bnot"; |] >* ret @@ Bool o let xor (Bool l) (Bool r) = (* NB: Here [o] is declared as a fresh scalar to avoid adding the constraint asserting it's a bool. It's safe to do so because: - We can assume that [l] and [r] are booleans - This operation is closed in {0, 1} This has additionally been proven using Z3 (see z3 directory). *) let*& o = fresh Dummy.scalar in let mtwo = S.of_string "-2" in append [| CS.new_constraint ~wires:[l; r; o] ~linear:[(wql, one); (wqr, one); (wqo, mone)] ~qm:mtwo "xor"; |] >* ret @@ Bool o let bor (Bool l) (Bool r) = (* NB: Here [o] is declared as a fresh scalar to avoid adding the constraint asserting it's a bool. It's safe to do so because: - We can assume that [l] and [r] are booleans - This operation is closed in {0, 1} This has additionally been proven using Z3 (see z3 directory). *) let*& o = fresh Dummy.scalar in append [| CS.new_constraint ~wires:[l; r; o] ~linear:[(wql, one); (wqr, one); (wqo, mone)] ~qm:mone "nor"; |] >* ret @@ Bool o let swap : type a. bool repr -> a repr -> a repr -> (a * a) repr t = let scalar_swap (Bool b) (Scalar x) (Scalar y) = let*& u = fresh Dummy.scalar in let*& v = fresh Dummy.scalar in let solver = Swap {b; x; y; u; v} in let gate = [|CS.new_constraint ~wires:[b; x; y; u; v] ~qcond_swap:one "swap"|] in append gate ~solver >* ret @@ pair (Scalar u) (Scalar v) in let rec aux : type a. bool repr -> a repr -> a repr -> (a * a) repr t = fun b x y -> match (x, y) with | Unit, Unit -> ret (pair Unit Unit) | Scalar _, Scalar _ -> scalar_swap b x y | Bool _, Bool _ -> let* res = scalar_swap b (scalar_of_bool x) (scalar_of_bool y) in let Scalar u, Scalar v = of_pair res in ret @@ pair (Bool u) (Bool v) | Pair (x1, y1), Pair (x2, y2) -> let* res_x = aux b x1 x2 in let* res_y = aux b y1 y2 in let (u1, v1), (u2, v2) = (of_pair res_x, of_pair res_y) in ret @@ pair (pair u1 u2) (pair v1 v2) | List ls, List rs -> let* l = map2M (fun l r -> aux b l r) ls rs in let l1, l2 = List.(map of_pair l |> split) in ret @@ pair (List l1) (List l2) in fun b x y -> with_label ~label:"Bool.swap" @@ aux b x y let ifthenelse : type a. bool repr -> a repr -> a repr -> a repr t = let aux b l r = let* swapped = swap b l r in let _, res = of_pair swapped in ret res in fun b l r -> with_label ~label:"Bool.ifthenelse" @@ aux b l r let is_eq_const l s = with_label ~label:"Bool.is_eq_const" @@ let* diff = Num.add_constant ~ql:S.mone s l in Num.is_zero diff let band_list l = with_label ~label:"Bool.band_list" @@ match l with | [] -> constant true | hd :: tl -> let* sum = foldM Num.add (scalar_of_bool hd) (List.map scalar_of_bool tl) in is_eq_const sum (S.of_int @@ (List.length tl + 1)) module Internal = struct let bor_lookup (Bool l) (Bool r) = let* (Bool o) = fresh Dummy.bool in append_lookup ~wires:[Input l; Input r; Output o] ~table:"or" "bor lookup" >* ret @@ Bool o let xor_lookup (Bool l) (Bool r) = let* (Bool o) = fresh Dummy.bool in append_lookup ~wires:[Input l; Input r; Output o] ~table:"xor" "xor lookup" >* ret @@ Bool o let band_lookup (Bool l) (Bool r) = let* (Bool o) = fresh Dummy.bool in append_lookup ~wires:[Input l; Input r; Output o] ~table:"band" "band lookup" >* ret @@ Bool o let bnot_lookup (Bool b) = let* (Bool o) = fresh Dummy.bool in let* (Scalar zero) = fresh Dummy.scalar in append_lookup ~wires:[Input b; Input zero; Output o] ~table:"bnot" "bnot lookup" >* ret @@ Bool o end end module Limb (N : sig val nb_bits : int end) = struct let nb_bits = N.nb_bits let xor_lookup (Scalar l) (Scalar r) = let* (Scalar o) = fresh Dummy.scalar in append_lookup ~wires:[Input l; Input r; Output o] ~table:("xor" ^ Int.to_string nb_bits) ("xor lookup" ^ Int.to_string nb_bits) >* ret @@ Scalar o let band_lookup (Scalar l) (Scalar r) = let* (Scalar o) = fresh Dummy.scalar in append_lookup ~wires:[Input l; Input r; Output o] ~table:("band" ^ Int.to_string nb_bits) ("band lookup" ^ Int.to_string nb_bits) >* ret @@ Scalar o let bnot_lookup (Scalar l) = let* (Scalar o) = fresh Dummy.scalar in let* (Scalar zero) = fresh Dummy.scalar in append_lookup ~wires:[Input l; Input zero; Output o] ~table:("bnot" ^ Int.to_string nb_bits) ("bnot lookup" ^ Int.to_string nb_bits) >* ret @@ Scalar o let rotate_right_lookup (Scalar l) (Scalar r) i = let* (Scalar o) = fresh Dummy.scalar in let nb_bits_i = Int.to_string nb_bits ^ "_" ^ Int.to_string i in append_lookup ~wires:[Input l; Input r; Output o] ~table:("rotate_right" ^ nb_bits_i) ("rotate_right lookup" ^ nb_bits_i) >* ret @@ Scalar o end let hd (List l) = match l with [] -> assert false | x :: _ -> ret x let assert_equal : type a. a repr -> a repr -> unit repr t = let rec aux : type a. a repr -> a repr -> unit repr t = fun a b -> match (a, b) with | Unit, Unit -> ret Unit | Bool a, Bool b | Scalar a, Scalar b -> append [| CS.new_constraint ~wires:[0; b; a] ~linear:[(wqr, one); (wqo, mone)] "assert_equal"; |] ~solver:Skip | Pair (la, ra), Pair (lb, rb) -> aux la lb >* aux ra rb | List ls, List rs -> iter2M aux ls rs in fun a b -> with_label ~label:"Core.assert_equal" @@ aux a b let equal : type a. a repr -> a repr -> bool repr t = let rec aux : type a. a repr -> a repr -> bool repr t = fun a b -> let open Bool in let open Num in match (a, b) with | Unit, Unit -> Bool.constant true | Bool a, Bool b -> let* s = sub (Scalar a) (Scalar b) in is_zero s | Scalar _, Scalar _ -> let* s = sub a b in is_zero s | Pair (la, ra), Pair (lb, rb) -> let* le = aux la lb in let* re = aux ra rb in band le re | List ls, List rs -> let lrs = List.map2 pair ls rs in let* acc = Bool.constant true in foldM (fun acc (Pair (l, r)) -> let* e = aux l r in band acc e) acc lrs in fun a b -> with_label ~label:"Core.equal" @@ aux a b let scalar_of_limbs ~nb_bits b = let sb = of_list b in let powers = let nb_limbs = List.length sb in let base = 1 lsl nb_bits |> Z.of_int in List.init nb_limbs (fun i -> S.of_z @@ Z.pow base i) in foldM (fun acc (qr, w) -> Num.add ~qr acc w) (List.hd sb) List.(tl @@ combine powers sb) (* If [add_alpha], this function returns the binary decomposition of [l + Utils.alpha], instead of the binary decompostion of [l], where Utils.alpha is the difference between Scalar.order and its succeeding power of 2 *) let bits_of_scalar ?(shift = Z.zero) ~nb_bits (Scalar l) = with_label ~label:"Core.bits_of_scalar" @@ let* bits = fresh @@ Dummy.list nb_bits Dummy.bool in add_solver ~solver: (BitsOfS { nb_bits; shift; l; bits = List.map (fun (Bool x) -> x) @@ of_list bits; }) >* let* sum = let sbits = List.map scalar_of_bool (of_list bits) in scalar_of_limbs ~nb_bits:1 (to_list sbits) in let* l = if Z.(not @@ equal shift zero) then Num.add_constant (S.of_z shift) (Scalar l) else ret (Scalar l) in assert_equal l sum >* ret bits let limbs_of_scalar ?(shift = Z.zero) ~total_nb_bits ~nb_bits (Scalar l) = with_label ~label:"Core.limbs_of_scalar" @@ let nb_limbs = total_nb_bits / nb_bits in let* limbs = fresh @@ Dummy.list nb_limbs Dummy.scalar in add_solver ~solver: (LimbsOfS { total_nb_bits; nb_bits; shift; l; limbs = List.map (fun (Scalar x) -> x) @@ of_list limbs; }) >* let* sum = scalar_of_limbs ~nb_bits limbs in let* l = if Z.(not @@ equal shift zero) then Num.add_constant (S.of_z shift) (Scalar l) else ret (Scalar l) in iterM (Num.range_check ~nb_bits) (of_list limbs) >* assert_equal l sum >* ret limbs module Ecc = struct let weierstrass_add (Pair (Scalar x1, Scalar y1)) (Pair (Scalar x2, Scalar y2)) = with_label ~label:"Ecc.weierstrass_add" @@ let*& x3 = fresh Dummy.scalar in let*& y3 = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[x1; x2; x3] ~qecc_ws_add:one "weierstrass-add.1"; CS.new_constraint ~wires:[y1; y2; y3] "weierstrass-add.2"; |] in let solver = Ecc_Ws {x1; x2; x3; y1; y2; y3} in append gate ~solver >* ret (Pair (Scalar x3, Scalar y3)) let edwards_add (Pair (Scalar x1, Scalar y1)) (Pair (Scalar x2, Scalar y2)) = (* Improve Me: Functorize to pass curve in parameter. *) with_label ~label:"Ecc.edwards_add" @@ let module W = Mec.Curve.Jubjub.AffineEdwards in let s_of_base s = S.of_z (W.Base.to_z s) in let a, d = (s_of_base W.a, s_of_base W.d) in let*& x3 = fresh Dummy.scalar in let*& y3 = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[x1; x2; x3] ~qecc_ed_add:one "edwards-add.1"; CS.new_constraint ~wires:[y1; y2; y3] "edwards-add.2"; |] in let solver = Ecc_Ed {x1; x2; x3; y1; y2; y3; a; d} in append gate ~solver >* ret (Pair (Scalar x3, Scalar y3)) let edwards_cond_add (Pair (Scalar x1, Scalar y1)) (Pair (Scalar x2, Scalar y2)) (Bool bit) = (* Improve Me: Functorize to pass curve in parameter. *) with_label ~label:"Ecc.edwards_cond_add" @@ let module W = Mec.Curve.Jubjub.AffineEdwards in let s_of_base s = S.of_z (W.Base.to_z s) in let a, d = (s_of_base W.a, s_of_base W.d) in let*& x3 = fresh Dummy.scalar in let*& y3 = fresh Dummy.scalar in let gate = [| CS.new_constraint ~wires:[bit; x2; y2; x1; y1] ~qecc_ed_cond_add:one "edwards-cond-add.1"; CS.new_constraint ~wires:[0; 0; 0; x3; y3] "edwards-cond-add.2"; |] in let solver = Ecc_Cond_Ed {x1; x2; x3; y1; y2; y3; bit; a; d} in append gate ~solver >* ret (Pair (Scalar x3, Scalar y3)) end module Mod_arith = struct (* Refer to [lib_plompiler/gadget_mod_arith.ml] for documentation on modular arithmetic and details about all parameters: [modulus], [nb_limbs], [base], [moduli], [qm_bound] and [ts_bounds] *) let add ?(subtraction = false) ~label ~modulus ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds (List xs) (List ys) = (* This is just a sanity check, inputs are assumed to be well-formed, in particular, their limb values are in the range [0, base) *) assert (List.compare_length_with xs nb_limbs = 0) ; assert (List.compare_length_with ys nb_limbs = 0) ; (* Assert that all bounds are compatible with our range-check protocol, which is designed to check membership in intervals of the form [0, 2^k) *) let qm_ubound = snd qm_bound in let ts_ubounds = List.map snd ts_bounds in assert (List.for_all Utils.is_power_of_2 (base :: qm_ubound :: ts_ubounds)) ; let label_suffix = if subtraction then "sub" else "add" in (* Create the corresponding constraints *) with_label ~label:("Mod_arith." ^ label_suffix) @@ let* zs = fresh @@ Dummy.list nb_limbs Dummy.scalar in let* qm = fresh Dummy.scalar in let* ts = fresh @@ Dummy.list (List.length moduli) Dummy.scalar in let inp1 = List.map unscalar xs in let inp2 = List.map unscalar ys in let out = List.map unscalar (of_list zs) in let scalar_qm = qm in let scalar_ts = of_list ts in let qm = unscalar qm in let ts = List.map unscalar scalar_ts in let gate = (* Substracions zs = xs - ys are modeled as additions xs = zs + ys. Thus, we swap inp1 (xs) and out (zs) when subtraction = true. *) let left_row1 = if subtraction then out else inp1 in let left_row2 = if subtraction then inp1 else out in [| CS.new_constraint ~wires:(left_row1 @ inp2) ~q_mod_add:[(label, one)] ("mod_arith-" ^ label_suffix ^ ".1"); CS.new_constraint ~wires:(left_row2 @ [qm] @ ts) ("mod_arith-" ^ label_suffix ^ ".2"); |] in let solver = Mod_Add { modulus; base; nb_limbs; moduli; qm_bound; ts_bounds; inp1; inp2; out; qm; ts; inverse = subtraction; } in (* The output is not assumed to be well-formed, we need to enforce this with constraints. In particular, we need to range-check every limb in the output in the range [0, base). *) iterM (Num.range_check ~nb_bits:(Z.log2 base)) (of_list zs) (* qm needs to be range-checked in the interval [0, qm_ubound) *) >* Num.range_check ~nb_bits:(Z.log2 qm_ubound) scalar_qm (* every tj needs to be range-checked in the interval [0, tj_ubound) *) >* iter2M (fun tj_ubound tj -> Num.range_check ~nb_bits:(Z.log2 tj_ubound) tj) ts_ubounds scalar_ts >* append gate ~solver >* ret zs (* This function is also used for division, since we implement division [z = x / y] as a multiplication [x = z * y]. However, one must be careful, as this does not prevent "division by 0", i.e., when [y = 0], constraint [x = z * y] is satisfiable for [x = 0]. Therefore, in the gadget for division we will need to explicitly assert that [y <> 0]. *) let mul ?(division = false) ~label ~modulus ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds (List xs) (List ys) = (* This is just a sanity check, inputs are assumed to be well-formed, in particular, their limb values are in the range [0, base) *) assert (List.compare_length_with xs nb_limbs = 0) ; assert (List.compare_length_with ys nb_limbs = 0) ; (* Assert that all bounds are compatible with our range-check protocol, which is designed to check membership in intervals of the form [0, 2^k) *) let qm_ubound = snd qm_bound in let ts_ubounds = List.map snd ts_bounds in assert (List.for_all Utils.is_power_of_2 (base :: qm_ubound :: ts_ubounds)) ; let label_suffix = if division then "div" else "mul" in (* Create the corresponding constraints *) with_label ~label:("Mod_arith." ^ label_suffix) @@ let* zs = fresh @@ Dummy.list nb_limbs Dummy.scalar in let* qm = fresh Dummy.scalar in let* ts = fresh @@ Dummy.list (List.length moduli) Dummy.scalar in let inp1 = List.map unscalar xs in let inp2 = List.map unscalar ys in let out = List.map unscalar (of_list zs) in let scalar_qm = qm in let scalar_ts = of_list ts in let qm = unscalar qm in let ts = List.map unscalar scalar_ts in let gate = (* Divisions zs = xs / ys are modeled as multiplications xs = zs * ys. Thus, we swap inp1 (xs) and out (zs) when division = true. *) let left_row1 = if division then out else inp1 in let left_row2 = if division then inp1 else out in [| CS.new_constraint ~wires:(left_row1 @ inp2) ~q_mod_mul:[(label, one)] ("mod_arith-" ^ label_suffix ^ ".1"); CS.new_constraint ~wires:(left_row2 @ [qm] @ ts) ("mod_arith-" ^ label_suffix ^ ".2"); |] in let solver = Mod_Mul { modulus; base; nb_limbs; moduli; qm_bound; ts_bounds; inp1; inp2; out; qm; ts; inverse = division; } in (* The output is not assumed to be well-formed, we need to enforce this with constraints. In particular, we need to range-check every limb in the output in the range [0, base). *) iterM (Num.range_check ~nb_bits:(Z.log2 base)) (of_list zs) (* qm needs to be range-checked in the interval [0, qm_ubound) *) >* Num.range_check ~nb_bits:(Z.log2 qm_ubound) scalar_qm (* every tj needs to be range-checked in the interval [0, tj_ubound) *) >* iter2M (fun tj_ubound tj -> Num.range_check ~nb_bits:(Z.log2 tj_ubound) tj) ts_ubounds scalar_ts >* append gate ~solver >* ret zs (* In order to show that [x] is non-zero, we exhibit a value [r] such that [x * r = 1]. This is a characterization of non-zero elements when [modulus] is prime. More generally, when modulus is a prime power [modulus = p^k], [x] is non-zero iff there exists [r] such that [x * r = p^(k-1)]. For other moduli, this algorithm could be generalized when the prime factorization of [modulus] is known. *) let assert_non_zero ~label ~modulus ~is_prime ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds xs = (* For now we focus on the case when the modulus is prime, this allows us to characterize non-zero elements as elements which have an inverse. *) if not is_prime then raise @@ Failure (Format.sprintf "assert_non_zero: this function does not support arbitrary \ moduli yet; for now, the modulus is required to be prime; %s is \ composite." (Z.to_string modulus)) ; let* o = Num.constant S.one in let* z = Num.constant S.zero in let one = o :: List.init (nb_limbs - 1) (Fun.const z) |> List.rev |> to_list in let* _ = mul ~division:true ~label ~modulus ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds one xs in ret unit let is_zero ~label ~modulus ~is_prime ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds (List xs) = let mul ?(division = false) = mul ~division ~label ~modulus ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds in let assert_non_zero = assert_non_zero ~label ~modulus ~is_prime ~nb_limbs ~base ~moduli ~qm_bound ~ts_bounds in with_label ~label:"Mod_arith.is_zero" @@ (* b is the output of [is_zero]: b = 1 if x = 0 and b = 0 otherwise *) let* b = fresh Dummy.bool in let* rs = fresh @@ Dummy.list nb_limbs Dummy.scalar in let (Bool out) = b in let inp = List.map unscalar xs in let aux = List.map unscalar (of_list rs) in let solver = Mod_IsZero {modulus; base; nb_limbs; inp; aux; out} in let* (Bool not_b) = add_solver ~solver >* Bool.bnot b in let* z = Num.constant S.zero in (* [zero_or_one] represents the modular integer [0] if [x] is zero (b = 1) or the modular integer [1] if [x] is non-zero (b = 0) *) let zero_or_one = Scalar not_b :: List.init (nb_limbs - 1) (Fun.const z) |> List.rev |> to_list in (* We enforce the constraint [x * r = zero_or_one] for some [r <> 0]. Note that if [x] is zero, the only way to satisfy the above equation is to set [zero_or_one] to be [zero], that is, set [b = 1]. On the other hand, if [x <> 0], because we will enforce the constraint [r <> 0] and we are over an integral domain, the only way to satisfy the above constraint is to set [zero_or_one] to be [one], i.e. [b = 0], as desired. *) let* x_times_r = mul (List xs) rs in assert_non_zero rs >* assert_equal x_times_r zero_or_one >* ret b end module Poseidon = struct module VS = Linear_algebra.Make_VectorSpace (S) module Poly = Polynomial.MakeUnivariate (S) module Poly_Module = Linear_algebra.Make_Module (struct include Poly let eq = Poly.equal let negate p = Poly.(zero - p) let mul = Poly.( * ) end) let poseidon128_full_round ~matrix ~k (Scalar x0, Scalar x1, Scalar x2) = let*& y0 = fresh Dummy.scalar in let*& y1 = fresh Dummy.scalar in let*& y2 = fresh Dummy.scalar in let solver = Poseidon128Full {x0; y0; x1; y1; x2; y2; k; matrix} in let minv = VS.inverse matrix in let k_vec = VS.(mul minv (transpose [|k|])) in (* We enforce the following constraints: [x0 y0] with selectors {qc, qx5, qo, qrg, qog} [x1 y1 y2] with selectors {qc, qx5, qr, qo, qrg} [x2 y0 y1] with selectors {qc, qx5, qr, qo, qrg} [ y2 ] with no selectors where the selector constants are given by the inverse of the MDS matrix. In particular: y = M * x^5 + k iff M^{-1} * y - x^5 - M^{-1} * k = 0 (This allows us to have 1 power of 5 (instead of all 3) per constraint, since vector x^5 is not multiplied by M in the second representation.) *) append [| CS.new_constraint ~wires:[x0; 0; y0] ~qx5a:mone ~qc:(S.negate k_vec.(0).(0)) ~linear:[(wqo, minv.(0).(0))] ~linear_g:[(wqr, minv.(0).(1)); (wqo, minv.(0).(2))] "pos128_full.1"; CS.new_constraint ~wires:[x1; y1; y2] ~qx5a:mone ~qc:(S.negate k_vec.(1).(0)) ~linear:[(wqr, minv.(1).(1)); (wqo, minv.(1).(2))] ~linear_g:[(wqr, minv.(1).(0))] "pos128_full.2"; CS.new_constraint ~wires:[x2; y0; y1] ~qx5a:mone ~qc:(S.negate k_vec.(2).(0)) ~linear:[(wqr, minv.(2).(0)); (wqo, minv.(2).(1))] ~linear_g:[(wqr, minv.(2).(2))] "pos128_full.3"; CS.new_constraint ~wires:[0; y2; 0] "pos128_full.4"; |] ~solver >* ret @@ to_list [Scalar y0; Scalar y1; Scalar y2] let poseidon128_four_partial_rounds ~matrix ~ks (Scalar x0, Scalar x1, Scalar x2) = let*& a = fresh Dummy.scalar in let*& a_5 = fresh Dummy.scalar in let*& b = fresh Dummy.scalar in let*& b_5 = fresh Dummy.scalar in let*& c = fresh Dummy.scalar in let*& c_5 = fresh Dummy.scalar in let*& y0 = fresh Dummy.scalar in let*& y1 = fresh Dummy.scalar in let*& y2 = fresh Dummy.scalar in let k_cols = Array.init 4 (fun i -> VS.filter_cols (Int.equal i) ks) in let solver = Poseidon128Partial {a; b; c; a_5; b_5; c_5; x0; y0; x1; y1; x2; y2; k_cols; matrix} in (* We represent variables x0, x1, x2_5, a, a_5, b, b_5, c, c_5, y0, y1, y2 with monomials x, x^2, x^3, ..., x^12 respectively. *) let module SMap = Map.Make (String) in let vars = ["x0"; "x1"; "x2_5"; "a"; "a_5"; "b"; "b_5"; "c"; "c_5"; "y0"; "y1"; "y2"] in let varsMap = SMap.of_seq @@ List.(to_seq @@ mapi (fun i s -> (s, i + 1)) vars) in let var s = SMap.find s varsMap in let pvar s = Poly.of_coefficients [(S.one, var s)] in let state = [|[|pvar "x0"|]; [|pvar "x1"|]; [|pvar "x2_5"|]|] in let to_poly = Array.(map (map (fun c -> Poly.of_coefficients [(c, 0)]))) in let matrix = to_poly matrix in (* Apply partial round 0 *) let state = Poly_Module.(add (mul matrix state) @@ to_poly k_cols.(0)) in let eq1 = Poly.(state.(2).(0) - pvar "a") in state.(2) <- [|pvar "a_5"|] ; (* Apply partial round 1 *) let state = Poly_Module.(add (mul matrix state) @@ to_poly k_cols.(1)) in let eq2 = Poly.(state.(2).(0) - pvar "b") in state.(2) <- [|pvar "b_5"|] ; (* Apply partial round 2 *) let state = Poly_Module.(add (mul matrix state) @@ to_poly k_cols.(2)) in let eq3 = Poly.(state.(2).(0) - pvar "c") in state.(2) <- [|pvar "c_5"|] ; (* Apply partial round 3 *) let state = Poly_Module.(add (mul matrix state) @@ to_poly k_cols.(3)) in let eq4 = Poly.(state.(0).(0) - pvar "y0") in let eq5 = Poly.(state.(1).(0) - pvar "y1") in let eq6 = Poly.(state.(2).(0) - pvar "y2") in let eqs = let row_of_eq eq = (* This function gives coefficients in decending order of degree *) let coeffs = Poly.get_dense_polynomial_coefficients eq in List.(rev coeffs @ init (13 - List.length coeffs) (fun _ -> S.zero)) |> Array.of_list in Array.map row_of_eq [|eq1; eq2; eq3; eq4; eq5; eq6|] in let cancel i j x = let x = var x in VS.row_add ~coeff:S.(negate @@ (eqs.(i).(x) / eqs.(j).(x))) i j eqs in (* Cancel x2_5 *) cancel 1 0 "x2_5" ; cancel 2 0 "x2_5" ; cancel 3 0 "x2_5" ; cancel 4 0 "x2_5" ; cancel 5 0 "x2_5" ; (* Cancel a_5 *) cancel 2 1 "a_5" ; cancel 3 1 "a_5" ; cancel 4 1 "a_5" ; cancel 5 1 "a_5" ; (* Cancel b_5 *) cancel 3 2 "b_5" ; cancel 4 2 "b_5" ; cancel 5 2 "b_5" ; (* Cancel c_5 *) cancel 4 3 "c_5" ; (* Cancel x0 in equation 5 (b_5 comes back) *) cancel 4 2 "x0" ; VS.row_swap 2 4 eqs ; (* We enforce the following constraints: [x2 ] with selectors {qc, qx5, qlg, qrg, qog} [a x0 x1] with selectors {qc, qx5, ql, qr, qo, qlg} [b y1 x1] with selectors {qc, qx5, ql, qr, qo, qlg, qrg, qog} [c y0 a] with selectors {qc, qx5, ql, qr, qo, qlg, qrg, qog} [b x0 x1] with selectors {qc, qx5, ql, qr, qo, qlg, qrg} [c a b] with selectors {qc, qx5, ql, qr, qo, qlg, qrg, qog} [y2 x0 x1] with no selectors. *) append [| CS.new_constraint ~wires:[x2; 0; 0] ~qc:eqs.(0).(0) ~qx5a:eqs.(0).(var "x2_5") ~linear_g: [ (wql, eqs.(0).(var "a")); (wqr, eqs.(0).(var "x0")); (wqo, eqs.(0).(var "x1")); ] "pos128_4partial.1"; CS.new_constraint ~wires:[a; x0; x1] ~qc:eqs.(1).(0) ~qx5a:eqs.(1).(var "a_5") ~linear: [ (wql, eqs.(1).(var "a")); (wqr, eqs.(1).(var "x0")); (wqo, eqs.(1).(var "x1")); ] ~linear_g:[(wql, eqs.(1).(var "b"))] "pos128_4partial.2"; CS.new_constraint ~wires:[b; y1; x1] ~qc:eqs.(2).(0) ~qx5a:eqs.(2).(var "b_5") ~linear: [ (wql, eqs.(2).(var "b")); (wqr, eqs.(2).(var "y1")); (wqo, eqs.(2).(var "x1")); ] ~linear_g: [ (wql, eqs.(2).(var "c")); (wqr, eqs.(2).(var "y0")); (wqo, eqs.(2).(var "a")); ] "pos128_4partial.3"; CS.new_constraint ~wires:[c; y0; a] ~qc:eqs.(3).(0) ~qx5a:eqs.(3).(var "c_5") ~linear: [ (wql, eqs.(3).(var "c")); (wqr, eqs.(3).(var "y0")); (wqo, eqs.(3).(var "a")); ] ~linear_g: [ (wql, eqs.(3).(var "b")); (wqr, eqs.(3).(var "x0")); (wqo, eqs.(3).(var "x1")); ] "pos128_4partial.4"; CS.new_constraint ~wires:[b; x0; x1] ~qc:eqs.(4).(0) ~qx5a:eqs.(4).(var "b_5") ~linear: [ (wql, eqs.(4).(var "b")); (wqr, eqs.(4).(var "x0")); (wqo, eqs.(4).(var "x1")); ] ~linear_g:[(wql, eqs.(4).(var "c")); (wqr, eqs.(4).(var "a"))] "pos128_4partial.5"; CS.new_constraint ~wires:[c; a; b] ~qc:eqs.(5).(0) ~qx5a:eqs.(5).(var "c_5") ~linear: [ (wql, eqs.(5).(var "c")); (wqr, eqs.(5).(var "a")); (wqo, eqs.(5).(var "b")); ] ~linear_g: [ (wql, eqs.(5).(var "y2")); (wqr, eqs.(5).(var "x0")); (wqo, eqs.(5).(var "x1")); ] "pos128_4partial.6"; CS.new_constraint ~wires:[y2; x0; x1] "pos128_4partial.7"; |] ~solver >* ret @@ to_list [Scalar y0; Scalar y1; Scalar y2] end module Anemoi = struct module AnemoiPerm = Bls12_381_hash.Permutation.Anemoi let beta = AnemoiPerm.Parameters.beta let gamma = AnemoiPerm.Parameters.gamma let g = AnemoiPerm.Parameters.g let delta = AnemoiPerm.Parameters.delta (* Hash function described in https://eprint.iacr.org/2022/840.pdf *) let anemoi_round ~kx ~ky (Scalar x0, Scalar y0) = let*& w = fresh Dummy.scalar in let*& v = fresh Dummy.scalar in let*& x1 = fresh Dummy.scalar in let*& y1 = fresh Dummy.scalar in let solver = AnemoiRound {x0; y0; w; v; x1; y1; kx; ky} in (* The equations of a Anemoi round are as follows, a. x1 - u - g*v - (kx + g*ky) = 0 Corresponds to Linear layer equation (after adding the round constant to x_i ), eq.4 page 24 b. y1 - g u - (g^2+1)*v - (g*kx + (g^2+1)*ky) = 0 Corresponds to Linear layer equation (after adding the round constant to y_i ), eq.5 page 24 c. w^5 + beta y0^2 + gamma - x0 = 0 Corresponds to the first equation of S-box, eq.2 page 24 d. y0 - v - w = 0 Corresponds to the second equation of S-box layer, eq.1 page 24 e. w^5 + beta v^2 + delta - u = 0 Corresponds to the third equation of S-box, eq.3 page 24 We inlined $u$ from a. in e. and re-ordered the equations so that the variables fit in the wires. The result is as follows, 1. w^5 + beta y0^2 + gamma - x0 = 0 <- c 2. y0 - v - w = 0 <- d 3. w^5 + beta v^2 + g*v - x1 + (delta + kx + g*ky) = 0 <- e - a 4. y1 - g x1 - v - ky = 0 <- b - g * a *) append [| CS.new_constraint ~wires:[y0; y0; w] ~qc:gamma ~qm:beta ~qx5c:one ~linear_g:[(wql, mone)] "anemoi.1"; CS.new_constraint ~wires:[x0; y0; w] ~linear:[(wqr, one); (wqo, mone)] ~linear_g:[(wql, mone)] "anemoi.2"; CS.new_constraint ~wires:[v; v; w] ~qc:S.(kx + delta + (g * ky)) ~qm:beta ~qx5c:one ~linear:[(wql, g)] ~linear_g:[(wql, mone)] "anemoi.3"; CS.new_constraint ~wires:[x1; y1; v] ~qc:S.(negate ky) ~linear:[(wql, S.(negate g)); (wqr, one); (wqo, mone)] "anemoi.4"; |] ~solver >* ret @@ pair (Scalar x1) (Scalar y1) let anemoi_double_round ~kx1 ~ky1 ~kx2 ~ky2 (Scalar x0, Scalar y0) = let*& w0 = fresh Dummy.scalar in let*& w1 = fresh Dummy.scalar in let*& y1 = fresh Dummy.scalar in let*& x2 = fresh Dummy.scalar in let*& y2 = fresh Dummy.scalar in let solver = AnemoiDoubleRound {x0; y0; w0; w1; y1; x2; y2; kx1; kx2; ky1; ky2} in let two = S.(add one one) in let g2 = S.(g * g) in let g2_p_1 = S.(g2 + one) in let g_beta = S.(g * beta) in (* Equations | Wires | Selectors ------------------------------------------------------------------------------------------------------------- a <- 2. -(beta*g)*w0^2 + (2*beta*g)*w0*y0 + (g^2+1)*w0 - g*x0 - (g^2+1)*y0 + y1 + (g*gamma - delta*g - g*kx1 - (g^2+1)*ky1) | a: y0, b: w0, c: x0 | qr2=-(beta*g) qm:(2*beta*g) qr:(g^2+1) qo:-g ql:-(g^2+1) qlg:1 qc =(g*gamma - delta*g - g*kx1 - (g^2+1)*ky1) b <- 4. -(g * beta)*w1^2 + (2 * g * beta)*w1*y1 - w0 + g^2*w1 + g*x2 + y0 - (g^2+1)*y1 + (g*gamma + ky1 - delta*g - g*kx2 - g^2*ky2) | a: y1, b: w1, c: w0 | qr2=-(g*beta) qm:(2*g*beta) qo:-1 qr:g^2 qrg:g qlg:1 ql:-(g^2+1) qc:(g*gamma + ky1 - delta*g -g*kx2 - g^2*ky2) c <- 5. w1 - g*x2 - y1 + y2 - ky2 | a: y0, b: x2, c: y2 | qlg:1 qr:-g qrg:-1 qo:1 qc:-ky2 d <- 3. g*w1^5 + (g * beta)*y1^2 - w0 + y0 - y1 + (ky1 + g*gamma) | a: w1, b: y1, c: __ | ql5=g qr2=(g*beta) qlg:-1 qrg:1 qr:-1 qc:(ky1 + g*gamma) e <- 1. w0^5 + beta*y0^2 - x0 + gamma | a: w0, b: y0, c: x0 | ql5=1 qr2=beta qo:-1 qc:gamma *) let qca = S.(sub (gamma * g) ((g * (kx1 + delta)) + (g2_p_1 * ky1))) in let qcb = S.(sub ((gamma * g) + ky1) ((g * (kx2 + delta)) + (g2 * ky2))) in let qcd = S.(ky1 + (g * gamma)) in append [| CS.new_constraint ~wires:[y0; w0; x0] ~qx2b:S.(negate g_beta) ~qm:S.(two * g_beta) ~linear:[(wql, S.(negate g2_p_1)); (wqr, g2_p_1); (wqo, S.(negate g))] ~linear_g:[(wql, S.one)] ~qc:qca "anemoi_double.a"; CS.new_constraint ~wires:[y1; w1; w0] ~qx2b:S.(negate g_beta) ~qm:S.(two * g_beta) ~linear:[(wql, S.(negate g2_p_1)); (wqr, g2); (wqo, mone)] ~linear_g:[(wql, one); (wqr, g)] ~qc:qcb "anemoi_double.b"; CS.new_constraint ~wires:[y0; x2; y2] ~linear:[(wqr, S.(negate g)); (wqo, one)] ~linear_g:[(wql, one); (wqr, mone)] ~qc:S.(negate ky2) "anemoi_double.c"; CS.new_constraint ~wires:[w1; y1; y1] ~qx5a:g ~qx2b:g_beta ~linear:[(wqr, mone)] ~linear_g:[(wql, mone); (wqr, one)] ~qc:qcd "anemoi_double.d"; CS.new_constraint ~wires:[w0; y0; x0] ~qx5a:one ~qx2b:beta ~linear:[(wqo, mone)] ~qc:gamma "anemoi_double.e"; |] ~solver >* ret @@ pair (Scalar x2) (Scalar y2) let anemoi_custom ~kx1 ~ky1 ~kx2 ~ky2 (Scalar x0, Scalar y0) = with_label ~label:"custom_anemoi" @@ let*& x1 = fresh Dummy.scalar in let*& y1 = fresh Dummy.scalar in let*& x2 = fresh Dummy.scalar in let*& y2 = fresh Dummy.scalar in let precomputed_advice = [("qadv0", kx1); ("qadv1", ky1); ("qadv2", kx2); ("qadv3", ky2)] in let gate = [| CS.new_constraint ~wires:[0; x1; y1; x0; y0] ~q_anemoi:one ~precomputed_advice "custom_anemoi.1"; CS.new_constraint ~wires:[0; 0; 0; x2; y2] "custom_anemoi.2"; |] in let solver = AnemoiCustom {x0; y0; x1; y1; x2; y2; kx1; kx2; ky1; ky2} in append gate ~solver >* ret @@ pair (Scalar x2) (Scalar y2) end (* Forces the delayed checks, and computes the conjunction of check wires. *) let get_checks_wire s = let s, Unit = s.delayed s in let s, w = Bool.band_list s.check_wires s in ({s with check_wires = []; delayed = ret Unit}, w) (* Run the monad *) let get f = let s, res = f { nvars = 0; cs = []; inputs = Array.init 0 (fun _ -> S.zero); input_com_sizes = []; pi_size = 0; input_flag = `InputCom; tables = []; solver = Solver.empty_solver; delayed = ret Unit; check_wires = []; range_checks = Range_checks.empty; range_checks_labels = []; labels = []; cache = Scalar_map.empty; } in let s, Unit = s.delayed s in let s, res = match s.check_wires with | [] -> (s, res) | ws -> let s, w = Bool.band_list ws s in let s, Unit = Bool.assert_true w s in (s, res) in let solver = {s.solver with final_size = s.nvars; initial_size = Array.length s.inputs} in let s = {s with solver} in (s, res) let get_inputs f = let s, _ = get f in (s.inputs, s.pi_size) type cs_result = { nvars : int; free_wires : int list; cs : Csir.CS.t; public_input_size : int; input_com_sizes : int list; tables : Csir.Table.t list; (* wire index * (plonk index * bound) *) range_checks : (int * (int * int) list) list; range_checks_labels : (string list * int) list; solver : Solver.t; } [@@deriving repr] let cs_ti_t = Repr.pair Csir.CS.t Optimizer.trace_info_t (* Converting range-checks (given as a list of (plompiler index * bound)) to something that PlonK can understand : (wire name * (wire index * bound)). We go through each wire & each constraint, we take the plompiler index of this wire at this constraint, and look for it in the plompiler range-checks ; if this index is range-checked, it will be formatted as (wire name * (plonk gate index * bound)) *) let to_plonk_range_checks plomp_range_checks cs = let range_checks = let cs = Array.concat cs in (* This function puts all the range-checks that can be written with the given [wire] in their PlonK form in [all_found_rc], and removes them from [pending_rc] *) let rec format_rc (pending_rc, all_found_rc) wire = (* We went through all wires *) if wire = Csir.nb_wires_arch then (* We assert that all pending range-checks have been processed *) if not (Range_checks.is_empty pending_rc) then (* Probably not all inputs are constrained, i.e., they are unused *) failwith "to_plonk_range_checks : not all range-checks can be converted \ into Plonk representation !" else all_found_rc else let pending_rc, found_rc = (* Go through all constraints of the CS *) Array.fold_left (fun (pending_rc, found_rc) (i, (constr : CS.raw_constraint)) -> (* idx is the plompiler index corresponding to [wire] in the [i]-th constraint [constr] *) let idx = constr.wires.(wire) in match Range_checks.find_opt idx pending_rc with | None -> (* [idx] is not range-checked, everything is returned unchanged *) (pending_rc, found_rc) | Some bound -> (* [idx] is range-checked, it’s removed from [pending_rc] & ([wire] * (index of the gate [idx] * [bound]) is added to [found_rc] *) let pending_rc = Range_checks.remove idx pending_rc in let found_rc = (i, bound) :: found_rc in (pending_rc, found_rc)) (pending_rc, []) (Array.mapi (fun i c -> (i, c)) cs) in format_rc (pending_rc, (wire, found_rc) :: all_found_rc) (wire + 1) in format_rc (plomp_range_checks, []) 0 in (* Remove empty lists from range checks, in order to avoid useless iterations in PlonK & make the number of wires range-checked more easily computable *) List.filter (fun (_, r) -> r <> []) range_checks let get_cs ?(optimize = false) f : cs_result = let s, _ = get f in let ts = List.map (fun t_id -> Tables.find t_id tables) s.tables in let cs, solver, free_wires = if optimize then let path = Utils.circuit_path (Utils.get_circuit_id s.cs) in let cs, ti = if Sys.file_exists path then ( (* If defined, load it up *) let inc = open_in path in let size = in_channel_length inc in let buffer = Bytes.create size in really_input inc buffer 0 (in_channel_length inc) ; close_in inc ; Utils.of_bytes cs_ti_t buffer) else let nb_inputs = Array.length s.inputs in let o = Optimizer.optimize ~nb_inputs ~range_checks:s.range_checks s.cs in let serialized = Utils.to_bytes cs_ti_t o in let outc = open_out_bin path in output_bytes outc serialized ; close_out outc ; o in (cs, Solver.append_solver (Updater ti) s.solver, ti.free_wires) else (s.cs, s.solver, []) in let range_checks = to_plonk_range_checks s.range_checks cs in let range_checks_labels = List.map (fun (label, nb) -> (List.rev label, nb)) s.range_checks_labels in { nvars = s.nvars; free_wires; cs; tables = ts; public_input_size = s.pi_size; input_com_sizes = List.rev s.input_com_sizes; solver; range_checks; range_checks_labels; }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>