package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.tool/lcr.ml.html
Source file lcr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
(** Incremental verification of local confluence by checking the joinability of critical pairs. - CP(l-->r, p, g-->d) = { (s(r), s(l[d]_p) | s = mgu(l|_p,g) } is the critical pair between l|_p and g. - CP*(l-->r, g-->d) = U { CP(l-->r, p, g-->d) | p in FPos(l) } - CP*(R,S) = U { CP*(l-->r, g-->d) | l-->r in R, g-->d in S } The set of critical pairs of a rewrite system R is CP(R) = CP*(R,R). We have CP(R U S) = CP*(R,R) U CP*(R,S) U CP*(S,R) U CP*(S,S). As a consequence, assuming that we already checked the local confluence of R and add a new set S of rules, we do not need to check CP*(R,R) again. Warning: we currently do not take into account the rules having higher-order pattern variables and critical pairs on AC symbols. Remark: When trying to unify a subterm of a rule LHS with the LHS of another rule, we need to rename the pattern variables of one of the LHS to avoid name clashes. To this end, we use the [shift] function below which replaces [Patt(i,n,_)] by [Patt(-i-1,n ^ "'",_)]. The printing function [subs] below takes this into account. *) open Core open Term open Print open Timed open Common open Error open Debug open Lplib open Base open Extra let log_cp = Logger.make 'k' "lcr " "local confluence" let log_cp = log_cp.pp (** [rule_of_pair ppf x] prints on [ppf] the pair of term [x] as a rule. *) let rule_of_pair : (term * term) pp = fun ppf (l,r) -> out ppf "%a ↪ %a" term l term r (** [is_ho r] says if [r] uses higher-order variables. *) let is_ho : rule -> bool = fun r -> Array.exists (fun i -> i > 0) r.arities || let rec contains_abs t = match unfold t with | Abst _ | Prod _ | LLet _ -> raise Exit | Appl(a,b) -> contains_abs a; contains_abs b | _ -> () in try List.iter (contains_abs) r.lhs; false with Exit -> true (** [is_definable s] says if [s] is definable and non opaque. *) let is_definable : sym -> bool = fun s -> (match s.sym_prop with Defin | Injec -> true | _ -> false) && not !(s.sym_opaq) (** [rule_of_def s d] creates the rule [s --> d]. *) let rule_of_def : sym -> term -> rule = fun s d -> let rhs = Bindlib.unbox (Bindlib.bind_mvar [||] (Bindlib.box d)) in {lhs=[]; rhs; arity=0; arities=[||]; vars=[||]; xvars_nb=0; rule_pos=s.sym_pos} (** [replace t p u] replaces the subterm of [t] at position [p] by [u]. *) let replace : term -> subterm_pos -> term -> term = fun t p u -> (*if Logger.log_enabled() then log_cp "replace by %a" term u;*) let rec replace t p = (*if Logger.log_enabled() then log_cp "at %a in %a" subterm_pos p term t;*) match p with | [] -> u | 0::p -> begin match unfold t with | Appl(a,b) -> mk_Appl (replace a p, b) | Abst(a,b) -> mk_Abst (replace a p, b) | Prod(a,b) -> mk_Prod (replace a p, b) | _ -> assert false end | 1::p -> begin match unfold t with | Appl(a,b) -> mk_Appl (a, replace b p) | _ -> assert false end | _ -> assert false in replace t (List.rev p) (* positions are in reverse order *) (** [occurs i t] returns [true] iff [Patt(i,_,_)] is a subterm of [t]. *) let occurs : int -> term -> bool = fun i -> let rec occ t = match unfold t with | Patt(None,_,_) -> assert false | Patt(Some j,_,_) -> i=j | Vari _ | Symb _ -> false | Appl(u,v) -> occ u || occ v | Abst(a,b) | Prod(a,b) -> occ a || let _,b = Bindlib.unbind b in occ b | Type -> assert false | Kind -> assert false | Meta _ -> assert false | TEnv _ -> assert false | Wild -> assert false | Plac _ -> assert false | TRef _ -> assert false | LLet _ -> assert false in occ (** [shift t] replaces in [t] every pattern index i by -i-1. *) let shift : term -> term = let rec shift : term -> tbox = fun t -> match unfold t with | Vari x -> _Vari x | Type -> _Type | Kind -> _Kind | Symb _ -> Bindlib.box t | Prod(a,b) -> _Prod (shift a) (shift_binder b) | Abst(a,b) -> _Abst (shift a) (shift_binder b) | Appl(a,b) -> _Appl (shift a) (shift b) | Meta(m,ts) -> _Meta m (Array.map shift ts) | Patt(None,_,_) -> assert false | Patt(Some i,n,ts) -> _Patt (Some(-i-1)) (n ^ "'") (Array.map shift ts) | TEnv(te,ts) -> _TEnv (shift_tenv te) (Array.map shift ts) | Wild -> _Wild | Plac b -> _Plac b | TRef r -> _TRef r | LLet(a,t,b) -> _LLet (shift a) (shift t) (shift_binder b) and shift_binder b = let x, t = Bindlib.unbind b in Bindlib.bind_var x (shift t) and shift_tenv : term_env -> tebox = function | TE_Vari x -> _TE_Vari x | TE_None -> _TE_None | TE_Some _ -> assert false in fun t -> Bindlib.unbox (shift t) (** Type for pattern variable substitutions. *) type subs = term IntMap.t let subs : term IntMap.t pp = let var ppf i = if i >= 0 then out ppf "$%d" i else out ppf "$%d'" (-i-1) in D.map IntMap.iter var " ≔ " term "; " (** [apply_subs s t] applies the pattern substitution [s] to [t]. *) let apply_subs : subs -> term -> term = fun s t -> (*if Logger.log_enabled() then log_cp "apply_subs by %a" subs s;*) let rec apply_subs t = (*if Logger.log_enabled() then log_cp "%a" term t;*) match unfold t with | Patt(None, _, _) -> assert false | Patt(Some i,_,[||]) -> begin try IntMap.find i s with Not_found -> t end | Patt(i,n,ts) -> mk_Patt (i, n, Array.map apply_subs ts) | Vari _ | Symb _ | Type | Kind -> t | Appl(u,v) -> mk_Appl (apply_subs u, apply_subs v) | Abst(a,b) -> let x,b = Bindlib.unbind b in mk_Abst (apply_subs a, bind x lift (apply_subs b)) | Prod(a,b) -> let x,b = Bindlib.unbind b in mk_Prod (apply_subs a, bind x lift (apply_subs b)) | LLet(a,t,b) -> let x,b = Bindlib.unbind b in mk_LLet (apply_subs a, apply_subs t, bind x lift (apply_subs b)) | Meta(m,ts) -> mk_Meta (m, Array.map apply_subs ts) | TEnv(te,ts) -> mk_TEnv (te, Array.map apply_subs ts) | TRef _ -> assert false | Wild -> assert false | Plac _ -> assert false in if IntMap.is_empty s then t else apply_subs t (** Type of subterm iterators. *) type iter = Pos.popt -> (sym -> subterm_pos -> term -> unit) -> term -> unit (** [iter_subterms_eq pos f p t] iterates f on all subterms of [t] headed by a defined function symbol. [p] is the position of [t] in reverse order. *) let iter_subterms_from_pos : subterm_pos -> iter = fun p _pos f t -> let rec iter p t = (*if Logger.log_enabled() then log_cp "iter_subterms_eq %a %a" subterm_pos p term t;*) let h, _ = get_args t in match unfold h with | Symb s -> if is_definable s then iter_app s p t else iter_args p t | Patt _ | Vari _ -> iter_args p t | Abst(a,b) | Prod(a,b) -> iter (0::p) a; let _,b = Bindlib.unbind b in iter (1::p) b | Appl _ -> assert false | Type -> assert false | Kind -> assert false | Meta _ -> assert false | TEnv _ -> assert false | Wild -> assert false | Plac _ -> assert false | TRef _ -> assert false | LLet _ -> assert false and iter_app s p t = f s p t; match unfold t with | Appl(a,b) -> iter (1::p) b; iter_app s (0::p) a | _ -> () and iter_args p t = match unfold t with | Appl(a,b) -> iter (1::p) b; iter_args (0::p) a | _ -> () in iter p t (** [iter_subterms_eq pos f t] iterates f on all subterms of [t] headed by a defined function symbol. *) let iter_subterms_eq : iter = iter_subterms_from_pos [] (** [iter_subterms pos f t] iterates f on all strict subterms of [t] headed by a defined function symbol. *) let iter_subterms : iter = fun pos f t -> (*if Logger.log_enabled() then log_cp "iter_subterms %a" term t;*) match unfold t with | Symb _ | Patt _ | Vari _ -> () | Abst(a,b) | Prod(a,b) -> iter_subterms_from_pos [0] pos f a; let _,b = Bindlib.unbind b in iter_subterms_from_pos [1] pos f b; | Appl(a,b) -> iter_subterms_from_pos [0] pos f a; iter_subterms_from_pos [1] pos f b; | Type -> assert false | Kind -> assert false | Meta _ -> assert false | TEnv _ -> assert false | Wild -> assert false | Plac _ -> assert false | TRef _ -> assert false | LLet _ -> assert false (** [unif pos t u] returns [None] if [t] and [u] are not unifiable, and [Some s] with [s] an idempotent mgu otherwise. Precondition: [l] and [r] must have distinct indexes in Patt subterms. *) let unif : Pos.popt -> term -> term -> term IntMap.t option = fun _pos t u -> let is_patt i = function Patt(Some j,_,_) -> j=i | _ -> false in let exception NotUnifiable in let rec unif s = function | [] -> s | (t, u)::l -> if Logger.log_enabled() then log_cp "unif %a ≡ %a with %a" term t term u subs s; match unfold t, unfold u with | Symb f, Symb g -> if f == g then unif s l else raise NotUnifiable | Appl(a,b), Appl(c,d) -> unif s ((a,c)::(b,d)::l) | Abst(a,b), Abst(c,d) | Prod(a,b), Prod(c,d) -> let x,b = Bindlib.unbind b in let d = Bindlib.subst d (mk_Vari x) in unif s ((a,c)::(b,d)::l) | Vari x, Vari y -> if Bindlib.eq_vars x y then unif s l else raise NotUnifiable | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false | Patt(Some i,_,ts), u | u, Patt(Some i,_,ts) -> unif_patt s i ts u l | Type, Type | Kind, Kind -> unif s l | Meta _, _ | _, Meta _ -> assert false | TEnv _, _ | _, TEnv _ -> assert false | Wild, _ | _, Wild -> assert false | Plac _, _ | _, Plac _ -> assert false | TRef _, _ | _, TRef _ -> assert false | LLet _, _ | _, LLet _ -> assert false | _ -> raise NotUnifiable and unif_patt s i ts u l = assert (Array.length ts = 0); if is_patt i u then unif s l else if occurs i u then raise NotUnifiable else let s0 = IntMap.singleton i u in let s' = IntMap.add i u (IntMap.map (apply_subs s0) s) in let f (a,b) = apply_subs s' a, apply_subs s' b in unif s' (List.map f l) in try Some (unif IntMap.empty [t,u]) with NotUnifiable -> None (* Unit tests. *) let _ = let var i = mk_Patt (Some i, string_of_int i, [||]) in let v0 = var 0 and v1 = var 1 in let sym name = create_sym [] Public Defin Eager false (Pos.none name) None mk_Type [] in let a_ = sym "a" and b_ = sym "b" and s_ = sym "s" and f_ = sym "f" in let app s ts = add_args (mk_Symb s) ts in let a = app a_ [] and b = app b_ [] and s t = app s_ [t] and f t u = app f_ [t; u] in let open IntMap in let unif = unif None in assert (unif v0 v0 = Some empty); assert (unif a a = Some empty); assert (unif (s v0) v1 = Some (add 1 (s v0) empty)); assert (unif (f (s v0) v1) (f v1 (s v0)) = Some (add 1 (s v0) empty)); assert (unif a b = None); assert (unif v0 (s v0) = None) (** [can_handle sr] says if the sym_rule [sr] can be handled. *) let can_handle : sym_rule -> bool = fun (s,r) -> not (s.sym_mstrat = Sequen || is_modulo s || is_ho r) (** [iter_rules h rs] iterates function [f] on every rule of [rs]. *) let iter_rules : (rule -> unit) -> sym -> rule list -> unit = fun h -> let rec iter = function | r::rs -> if not (is_ho r) then h r; iter rs | _ -> () in fun s rs -> if not (is_modulo s) then iter rs (** [iter_sym_rules h rs] iterates function [f] on every rule of [rs]. *) let iter_sym_rules : (sym_rule -> unit) -> sym_rule list -> unit = fun h -> let rec iter = function | [] -> () | r::rs -> if can_handle r then h r; iter rs in iter (** [iter_rules_of_sym h s] iterates [f] on every rule of [s]. *) let iter_rules_of_sym : (rule -> unit) -> sym -> unit = fun h s -> if not (is_modulo s) then match !(s.sym_def) with | None -> List.iter (fun r -> if not (is_ho r) then h r) !(s.sym_rules) | Some d -> h (rule_of_def s d) (** Type of rule identifiers. Hack: we use the rule position to distinguish between user-defined and generated rules (in completion), by giving a unique negative start_line to every generated rule. *) type rule_id = Pos.pos (** [id_sym_rule r] returns the rule id of [r]. *) let id_sym_rule : sym_rule -> rule_id = fun (_,r) -> match r.rule_pos with Some p -> p | _ -> assert false (** [new_rule_id()] generates a new unique rule id. *) let new_rule_id : unit -> rule_id = let open Stdlib in let n = ref 0 in fun () -> decr n; {fname=None; start_line=(!n); start_col=0; end_line=0; end_col=0} (** [is_generated i] says if [i] is a generated rule id. *) let is_generated : rule_id -> bool = fun p -> p.start_line < 0 (** [int_of_rule_id i] returns a unique integer from [i]. /!\ [i] must be a generated rule. *) let int_of_rule_id : rule_id -> int = fun i -> assert (is_generated i); i.start_line (** Type of functions on critical pairs. *) type cp_fun = Pos.popt (* position for error messages *) -> rule_id -> term -> term (* rule l --> r *) -> subterm_pos -> term (* subterm position p and subterm l_p *) -> rule_id -> term -> term (* rule g --> d *) -> subs (* mgu(l_p,g) *) -> unit (** Type of functions on critical pair candidates. *) type cp_cand_fun = Pos.popt -> rule_id -> term -> term -> subterm_pos -> term -> rule_id -> term -> term -> unit (** [cp_cand_fun] turns a cp_fun into a cp_cand_fun. *) let cp_cand_fun : cp_fun -> cp_cand_fun = fun h pos i l r p l_p j g d -> Option.iter (h pos i l r p l_p j g d) (unif pos l_p g) (** [iter_cps_with_rule iter_subterms h pos sr1 sr2] applies [h] on all the critical pairs between all the subterms of the [sr1] LHS and the [sr2] LHS using the iterator [iter_subterms]. *) let iter_cps_with_rule : iter -> cp_fun -> Pos.popt -> sym_rule -> sym_rule -> unit = fun iter_subterms h pos lr gd -> (*if Logger.log_enabled() then log_cp "iter_cps_with_rule@.%a@.%a" Print.rule lr Print.rule gd;*) let l = lhs lr and r = rhs lr and g = lhs gd and d = rhs gd in let l = shift l and r = shift r in let i = id_sym_rule lr and j = id_sym_rule gd in let f _ p l_p = cp_cand_fun h pos i l r p l_p j g d in iter_subterms pos f l (** [iter_cps_of_rules h pos rs] applies [h] on all the critical pairs of [rs] with itself. *) let iter_cps_of_rules : cp_fun -> Pos.popt -> sym_rule list -> unit = fun h pos rs -> let f r rs = if can_handle r then begin iter_cps_with_rule iter_subterms h pos r r; iter_sym_rules (iter_cps_with_rule iter_subterms_eq h pos r) rs end in List.iter_head_tail f rs (** [typability_constraints pos t] returns [None] if [t] is not typable, and [Some s] where [s] is a substitution implied by the typability of [t]. *) let typability_constraints : Pos.popt -> term -> subs option = fun pos t -> (* Replace Patt's by Meta's. *) let open Stdlib in let p = new_problem() and p2m : meta IntMap.t ref = ref IntMap.empty and m2p : (int * string) MetaMap.t ref = ref MetaMap.empty in if Logger.log_enabled() then log_cp "typability_constraints %a" term t; let rec patt_to_meta : term -> term = fun t -> match unfold t with | Patt(Some i,n,[||]) -> let m = match IntMap.find_opt i !p2m with | Some m -> m | None -> let m_typ = LibMeta.fresh p mk_Type 0 in let typ = mk_Meta(m_typ,[||]) in let m = LibMeta.fresh p typ 0 in p2m := IntMap.add i m !p2m; m2p := MetaMap.add m (i,n) !m2p; m in mk_Meta(m,[||]) | Appl(a,b) -> mk_Appl_not_canonical(patt_to_meta a, patt_to_meta b) | Symb _ | Vari _ -> t | Abst(a,b) -> let x,b = Bindlib.unbind b in mk_Abst(patt_to_meta a, bind x lift_not_canonical (patt_to_meta b)) | _ -> assert false in let t = patt_to_meta t in match Infer.infer_noexn p [] t with | None -> if Logger.log_enabled() then log_cp "not typable"; None | _ -> (* Replace unsolved metas by symbols. *) let s2p : int SymMap.t ref = ref SymMap.empty in let meta_to_sym : meta -> unit = fun m -> try let i,n = MetaMap.find m !m2p in let s = create_sym (Sign.current_path()) Public Defin Eager false (Pos.none n) None mk_Kind [] in let t = Bindlib.unbox (Bindlib.bind_mvar [||] (_Symb s)) in Timed.(m.meta_value := Some t); s2p := SymMap.add s i !s2p with Not_found -> () in MetaSet.iter meta_to_sym Timed.(!p).metas; if Logger.log_enabled() then log_cp "meta_to_sym %a" problem p; (* Try to solve constraints. *) match Unif.solve_noexn ~type_check:false p with | false -> if Logger.log_enabled() then log_cp "unsolvable constraints"; None | true -> if Logger.log_enabled() then log_cp "after solve %a" problem p; (* Function replacing generated symbols by their corresponding Patt. *) let rec sym_to_patt : term -> term = fun t -> match unfold t with | Symb s -> begin match SymMap.find_opt s !s2p with | Some i -> mk_Patt(Some i, s.sym_name, [||]) | None -> t end | Appl(a,b) -> mk_Appl_not_canonical(sym_to_patt a, sym_to_patt b) | _ -> t in (* Function converting a pair of terms into a rule, if possible. *) let rule_of_terms : term -> term -> sym_rule option = fun l r -> match get_args_len l with | Symb s, lhs, arity -> let vars = [||] and rule_pos = Some (new_rule_id()) in let rhs = Bindlib.unbox (Bindlib.bind_mvar vars (Bindlib.box r)) in let r = {lhs; rhs; arity; arities=[||]; vars; xvars_nb=0; rule_pos} in Some (s,r) | _ -> None in (* Turn constraints into rules. *) let add_constr : sym_rule IntMap.t -> constr -> sym_rule IntMap.t = fun rule_map (_,l,r) -> let l,r = if Term.cmp l r > 0 then l,r else r,l in match rule_of_terms l r with | Some x -> let i = id_sym_rule x in IntMap.add (int_of_rule_id i) x rule_map | _ -> rule_map in let rule_map = List.fold_left add_constr IntMap.empty Timed.(!p).unsolved in (* [completion_step rule_map] computes a possibly new rule map by simplifying [rule_map]. In case no rule has been removed or added, the resulting map is physically equal to [rule_map]. *) let completion_step : sym_rule IntMap.t -> sym_rule IntMap.t = fun rule_map -> if Logger.log_enabled() then log_cp "completion_step %a" (D.intmap sym_rule) rule_map; let new_rule_map = ref rule_map and modified = ref false in let remove_rule i = new_rule_map := IntMap.remove (int_of_rule_id i) !new_rule_map; modified := true in let add_rule l r = match rule_of_terms l r with | Some x -> let i = id_sym_rule x in new_rule_map := IntMap.add (int_of_rule_id i) x !new_rule_map; modified := true | None -> () in let cp_fun _pos i l r p _l_p _j _g d s = assert (s = IntMap.empty); remove_rule i; let l' = replace l p d in match cmp l' r with | 0 -> () | n when n > 0 -> add_rule l' r | _ -> add_rule r l' in let rs = IntMap.fold (fun _ r rs -> r::rs) rule_map [] in iter_cps_of_rules cp_fun pos rs; if !modified then !new_rule_map else rule_map in (* Completion. *) let rec complete : sym_rule IntMap.t -> sym_rule IntMap.t = fun rule_map -> let new_rule_map = completion_step rule_map in if new_rule_map == rule_map then rule_map else complete new_rule_map in let rule_map = complete rule_map in (* Turn completed rules into a substitution. *) let f _ ((s,_) as x) subs = match SymMap.find_opt s !s2p with | Some i -> IntMap.add i (sym_to_patt (rhs x)) subs | None -> subs in let s = IntMap.fold f rule_map IntMap.empty in if Logger.log_enabled() then log_cp "typing subs %a" subs s; Some s (** [check_cp pos _ l r p l_p _ g d s] checks that, if [l_p] and [g] are unifiable with mgu [s], then [s(r)] and [s(l[d]_p)] are joinable. Precondition: [l] and [r] must have distinct indexes in Patt subterms. *) let check_cp : cp_fun = fun pos _ l r p l_p _ g d s -> if Logger.log_enabled() then log_cp (Color.blu "check_cp \ @[<v>l ≔ %a@ r ≔ %a@ p ≔ %a@ l_p ≔ %a@ g ≔ %a@ d ≔ %a@ s ≔ %a@]") term l term r subterm_pos p term l_p term g term d subs s; let t = apply_subs s l in match typability_constraints pos t with | None -> () | Some s' -> let t = apply_subs s' t in let r1 = apply_subs s' (apply_subs s r) and r2 = apply_subs s' (apply_subs s (replace l p d)) in Console.out 2 "@[<v>Critical pair:@ \ t ≔ %a@ \ t ↪[] %a@ \ with %a@ \ t ↪%a %a@ \ with %a@]" term t term r1 rule_of_pair (l,r) subterm_pos p term r2 rule_of_pair (g,d); if not (Eval.eq_modulo [] r1 r2) then wrn pos "@[<v>Unjoinable critical pair:@ \ t ≔ %a@ \ t ↪[] %a ↪* %a@ \ with %a@ \ t ↪%a %a ↪* %a@ \ with %a@]" term t term r1 term (Eval.snf [] r1) rule_of_pair (l,r) subterm_pos p term r2 term (Eval.snf [] r2) rule_of_pair (g,d) (** [check_cps_subterms_eq pos sr1] checks the critical pairs between all the subterms of the [sr1] LHS and all the possible rule LHS's. *) let check_cps_subterms_eq : Pos.popt -> sym_rule -> unit = fun pos ((_,x) as lr) -> (*if Logger.log_enabled() then log_cp "check_cps_subterms_eq@.%a@.%a" Print.rule lr Print.rule gd;*) let l = shift (lhs lr) and r = shift (rhs lr) in let i = id_sym_rule lr in let f s p l_p = match !(s.sym_def) with | Some d -> let j = match s.sym_pos with Some p -> p | None -> assert false in cp_cand_fun check_cp pos i l r p l_p j (mk_Symb s) d (*FIXME? what if s is applied to some arguments? *) | None -> let h y = let gd = (s, y) in let j = id_sym_rule gd in cp_cand_fun check_cp pos i l r p l_p j (lhs gd) (rhs gd) in match p with | [] -> let h y = if y != x then h y in iter_rules h s !(s.sym_rules); | _ -> iter_rules h s !(s.sym_rules) in iter_subterms_eq pos f l (** [check_cps_sign_with pos sign sym_map] checks all the critical pairs between all the rules of the signature and [sym_map]. *) let check_cps_sign_with : Pos.popt -> Sign.t -> rule list SymMap.t -> unit = fun pos sign sym_map -> let f s' rs' = match SymMap.find_opt s' !(sign.Sign.sign_cp_pos) with | None -> () | Some cps -> let h (i,l,r,p,l_p) = let h' r' = let i = match i with Some p -> p | None -> assert false in let gd = (s',r') in let j = id_sym_rule gd in cp_cand_fun check_cp pos i l r p l_p j (lhs gd) (rhs gd) in List.iter h' rs' in List.iter h cps in SymMap.iter f sym_map (** [check_cps pos sign srs sym_map] checks all the critical pairs generated by adding [srs]. *) let check_cps : Pos.popt -> Sign.t -> sym_rule list -> rule list SymMap.t -> unit = fun pos sign srs sym_map -> (* Verification of CP*(S,S). *) iter_cps_of_rules check_cp pos srs; (* Verification of CP*(S,R). /!\ Here, we use the fact that decision trees include new rules for testing joinability, but new rules have not been added in the symbols yet. *) iter_sym_rules (check_cps_subterms_eq pos) srs; (* Verification of CP*(R,S). *) check_cps_sign_with pos sign sym_map; let f path str_map = if path != Ghost.sign.sign_path && str_map <> StrMap.empty then let sign = try Path.Map.find path !Sign.loaded with Not_found -> assert false in check_cps_sign_with pos sign sym_map in Path.Map.iter f !(sign.sign_deps) (** [update_cp_pos pos map rs] extends [map] by mapping every definable symbol s' such that there is a rule l-->r of [rs] and a position p of l such that l_p is headed by s' to (l,r,p,l_p). *) let update_cp_pos : Pos.popt -> cp_pos list SymMap.t -> rule list SymMap.t -> cp_pos list SymMap.t = let add_elt : sym -> 'a -> 'a list SymMap.t -> 'a list SymMap.t = fun s x map -> let h = function None -> Some[x] | Some xs -> Some(x::xs) in SymMap.update s h map in fun pos cp_pos_map rules_map -> let open Stdlib in let map = ref cp_pos_map in let f s rs = let h ({rule_pos=i;_} as r) = let lr = (s,r) in let l = lhs lr and r = rhs lr in let h' s' p l_p = map := add_elt s' (i,l,r,p,l_p) !map (*if Logger.log_enabled() then log_cp "add_cp_pos %a ↪ %a, %a, %a" term l term r subterm_pos p term l_p*) in iter_subterms_eq pos h' l in iter_rules h s rs in SymMap.iter f rules_map; !map
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>