package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.lplib/list.ml.html
Source file list.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
module L = Stdlib.List include L let zip = combine let unzip = split open Base (** [pp elt sep ppf l] prints the list [l] on the formatter [ppf] using [sep] as separator, and [elt] for printing the elements. *) let pp : 'a pp -> unit outfmt -> 'a list pp = fun elt sep -> Format.pp_print_list ~pp_sep:(unit sep) elt (** Total order on lists. *) let cmp : 'a cmp -> 'a list cmp = fun cmp_elt -> let rec cmp l l' = match l, l' with | [], [] -> 0 | [], _::_ -> -1 | _::_, [] -> 1 | x::l, x'::l' -> lex cmp_elt cmp (x,l) (x',l') in cmp (** [eq eq_elt l1 l2] tests the equality of [l1] and [l2], comparing their elements with [eq_elt]. *) let eq : 'a eq -> 'a list eq = fun eq_elt l1 l2 -> try L.for_all2 eq_elt l1 l2 with Invalid_argument _ -> false (** [find_map f l] applies [f] to the elements of [l] in order, and returns the first result of the form [Some v], or [None] if none exist. @since 4.10.0 *) let rec find_map f = function | [] -> None | x :: l -> begin match f x with | Some _ as result -> result | None -> find_map f l end (** [filter_map f l] applies [f] to every element of [l], filters out the [None] elements and returns the list of the arguments of the [Some] elements. @since 4.08.0 *) let filter_map : ('a -> 'b option) -> 'a list -> 'b list = fun f -> let rec aux accu = function | [] -> rev accu | x :: l -> match f x with | None -> aux accu l | Some v -> aux (v :: accu) l in aux [] (** [concat_map f l] gives the same result as {!concat}[ (]{!map}[ f l)]. Tail-recursive. @since 4.10.0 *) let concat_map f l = let rec aux f acc = function | [] -> rev acc | x :: l -> let xs = f x in aux f (rev_append xs acc) l in aux f [] l (** [filter_rev_map f l] is equivalent to [filter_map f (List.rev l)], but it only traverses the list once and is tail-recursive. *) let filter_rev_map : ('a -> 'b option) -> 'a list -> 'b list = fun f -> let rec aux acc = function | [] -> acc | hd :: tl -> match f hd with | Some x -> aux (x :: acc) tl | None -> aux acc tl in aux [] (** [filteri_map f l] applies [f] element wise on [l] and keeps [x] such that for [e] in [l], [f e = Some(x)]. *) let filteri_map : (int -> 'a -> 'b option) -> 'a list -> 'b list = fun f l -> let rec loop k = function | [] -> [] | h :: t -> ( match f k h with | Some x -> x :: loop (succ k) t | None -> loop (succ k) t ) in loop 0 l (** [cut l k] returns a pair of lists [(l1, l2)] such that [l1] has length [min (List.length l) k] and [l1 @ l2] is equal to [l]. *) let cut : 'a list -> int -> 'a list * 'a list = fun l k -> let rec cut acc l k = if k <= 0 then (L.rev acc, l) else match l with | [] -> (L.rev acc, l) | x :: l -> cut (x :: acc) l (k - 1) in if k <= 0 then ([], l) else cut [] l k let _ = assert (cut [1;2;3] 0 = ([], [1;2;3])); assert (cut [1;2;3] 1 = ([1], [2;3])); assert (cut [1;2;3] 2 = ([1;2], [3])); assert (cut [1;2;3] 3 = ([1;2;3], [])); assert (cut [1;2;3] 4 = ([1;2;3], [])) (** [add_array a1 a2 l] returns a list containing the elements of [l], and the (corresponding) elements of [a1] and [a2]. Note that [a1] and [a2] should have the same lenght otherwise [Invalid_argument] is raised. *) let add_array2 : 'a array -> 'b array -> ('a * 'b) list -> ('a * 'b) list = fun a1 a2 l -> let res = ref l in Array.iter2 (fun x1 x2 -> res := (x1, x2) :: !res) a1 a2; !res (** [same_length l1 l2] returns [true] whenever [l1] and [l2] are lists of the same length. The function stops as soon as possible. *) let rec same_length : 'a list -> 'b list -> bool = fun l1 l2 -> match l1, l2 with | [], [] -> true | _ :: l1, _ :: l2 -> same_length l1 l2 | _ -> false (** [max ?cmp l] finds the max of list [l] with compare function [?cmp] defaulting to [Stdlib.compare]. @raise Invalid_argument if [l] is empty. *) let max : ?cmp:('a -> 'a -> int) -> 'a list -> 'a = fun ?(cmp = Stdlib.compare) li -> match li with | [] -> invalid_arg "Extra.List.max" | h :: t -> let max e1 e2 = if cmp e1 e2 >= 0 then e1 else e2 in L.fold_left max h t (** [assoc_eq e k l] is [List.assoc k l] with equality function [e]. @raise Not_found if [k] is not a key of [l]. *) let assoc_eq : 'a eq -> 'a -> ('a * 'b) list -> 'b = fun eq k -> let rec loop = function | [] -> raise Not_found | (x, e) :: _ when eq x k -> e | _ :: t -> loop t in loop let assoc_eq_opt eq x l = try Some (assoc_eq eq x l) with Not_found -> None (** [remove_phys_dups l] uniqify list [l] keeping only the last element, using physical equality. *) let rec remove_phys_dups : 'a list -> 'a list = function | [] -> [] | x :: xs -> let xs = remove_phys_dups xs in if L.memq x xs then xs else x :: xs (** [destruct l i] returns a triple [(left_rev, e, right)] where [e] is the [i]-th element of [l], [left_rev] is the reversed prefix of [l] up to its [i]-th element (excluded), and [right] is the remaining suffix of [l] (starting at its [i+1]-th element). @raise Invalid_argument when [i < 0]. @raise Not_found when [i ≥ length v]. *) let destruct : 'a list -> int -> 'a list * 'a * 'a list = let rec destruct l i r = match r, i with | [], _ -> raise Not_found | v :: r, 0 -> (l, v, r) | v :: r, i -> destruct (v :: l) (i - 1) r in fun e i -> if i < 0 then invalid_arg __LOC__; destruct [] i e (** [reconstruct left_rev l right] concatenates (reversed) [left_rev], [l] and [right]. This function will typically be used in combination with {!val:destruct} to insert a sublist [l] in the place of the element at the specified position in the specified list. *) let reconstruct : 'a list -> 'a list -> 'a list -> 'a list = fun l m r -> L.rev_append l (m @ r) (** [init n f] creates a list with [f 0] up to [f n] as its elements. Note that [Invalid_argument] is raised if [n] is negative. *) let init : int -> (int -> 'a) -> 'a list = fun n f -> if n < 0 then invalid_arg "Extra.List.init"; let rec loop k = if k > n then [] else f k :: loop (k + 1) in loop 0 (** [mem_sorted cmp x l] tells whether [x] is in [l] assuming that [l] is sorted wrt [cmp]. *) let mem_sorted : 'a cmp -> 'a -> 'a list -> bool = fun cmp x -> let rec mem_sorted l = match l with | [] -> false | y :: l -> match cmp x y with 0 -> true | n when n > 0 -> mem_sorted l | _ -> false in mem_sorted (** [insert cmp x l] inserts [x] in the list [l] assuming that [l] is sorted in increasing order wrt [cmp]. *) let insert : 'a cmp -> 'a -> 'a list -> 'a list = fun cmp x -> let rec insert acc = function | y :: l' when cmp x y > 0 -> insert (y :: acc) l' | l -> L.rev_append acc (x :: l) in insert [] (* unit tests *) let _ = assert (insert Stdlib.compare 0 [1;2;3] = [0;1;2;3] && insert Stdlib.compare 2 [1;2;3] = [1;2;2;3] && insert Stdlib.compare 4 [1;2;3] = [1;2;3;4]) (** [insert_uniq cmp x l] inserts [x] in the list [l] assuming that [l] is sorted in increasing order wrt [cmp], but only if [x] does not occur in [l]. *) let insert_uniq : 'a cmp -> 'a -> 'a list -> 'a list = fun cmp x -> let exception Found in let rec insert acc l = match l with | [] -> L.rev_append acc [x] | y :: l' -> begin let n = cmp x y in match n with | 0 -> raise Found | _ when n > 0 -> insert (y :: acc) l' | _ -> L.rev_append acc (x :: l) end in fun l -> try insert [] l with Found -> l (* unit tests *) let _ = assert (let l = [2;4;6] in insert_uniq Stdlib.compare 1 l = [1;2;4;6] && insert_uniq Stdlib.compare 3 l = [2;3;4;6] && insert_uniq Stdlib.compare 7 l = [2;4;6;7] && insert_uniq Stdlib.compare 4 l == l) (** [split_last l] returns [(l',x)] if [l = append l' [x]], and @raise Invalid_argument otherwise. *) let split_last : 'a list -> 'a list * 'a = fun l -> match rev l with | hd::tl -> (rev tl, hd) | [] -> invalid_arg "split_last: empty list" (** [rev_mapi f [x1;..;xn]] returns [f (n-1) xn; ..; f 0 x1]. *) let rev_mapi f = let rec aux acc i l = match l with | [] -> acc | x::l -> aux (f i x :: acc) (i+1) l in aux [] 0 (** [swap i xs] put the i-th element (counted from 0) of [xs] at the head. @raise Invalid_argument if the i-th element does not exist. *) let swap : int -> 'a list -> 'a list = fun i xs -> let rec swap acc i xs = match (i, xs) with | (0, x::xs) -> x :: rev_append acc xs | (i, x::xs) -> swap (x::acc) (i-1) xs | (_, _ ) -> invalid_arg (__LOC__ ^ "swap") in swap [] i xs (** [fold_left_while f cond a [b1 b2 ..]] computes (f..(f (f a b1) b2)..bm) where [cond] is true for b1..bm and false for b_m+1 or bm is last element *) let rec fold_left_while f cond acc l = match l with | x :: _ when not (cond x) -> acc | x :: xs -> fold_left_while f cond (f acc x) xs | [] -> acc (** [remove_first f l] removes from [l] the first element satisfying [f]. *) let remove_first : ('a -> bool) -> 'a list -> 'a list = fun f -> let rec rem acc = function | [] -> rev acc | x::l -> if f x then rev_append acc l else rem (x::acc) l in rem [] (** [remove_heads n xs] remove the min(n,length xs) elements of [xs]. *) let rec remove_heads n = function | _ :: xs when n > 0 -> remove_heads (n - 1) xs | xs -> xs (** [split f l] returns the tuple [(l1,x,l2)] such that [x] is the first element of [l] satisying [f], [l1] is the sub-list of [l] preceding [x], and [l2] is the sub-list of [l] following [x]: [l = l1 :: x :: l2]. @raise Not_found if there is no element of [l] satisying [f]. *) let split : ('a -> bool) -> 'a list -> 'a list * 'a * 'a list = fun f -> let rec split acc = function | [] -> raise Not_found | x::m -> if f x then (L.rev acc, x, m) else split (x::acc) m in split [] (** [iter_head_tail f l] iterates [f] on all pairs (head, tail) of [l]. *) let rec iter_head_tail : ('a -> 'a list -> unit) -> 'a list -> unit = fun f l -> match l with | [] -> () | h::t -> f h t; iter_head_tail f t (** [sequence_opt l] is [Some [x1; x2; ...]] if all elements of [l] are of the form [Some xi], and [None] if there is a [None] in [l]. *) let sequence_opt : 'a option list -> 'a list option = fun l -> fold_right (fun elt acc -> Option.Applicative.(pure cons <*> elt <*> acc)) l (Option.Monad.return []) (** [pos f xs] returns the position (counting from 0) of the first element of [xs] which satisfies [f], or raise [Not_found]. *) let pos : ('a -> bool) -> 'a list -> int = fun f -> let rec pos k = function | [] -> raise Not_found | x::xs -> if f x then k else pos (k+1) xs in pos 0
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>