package grenier

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file set.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
module type OrderedType = Stdlib.Set.OrderedType
module type S = Stdlib.Set.S

type +'a balset = 'a Bt1.t = private
  | Leaf
  | Node of int * 'a balset * 'a * 'a balset

module Make (O : OrderedType) :
  S with type elt = O.t
     and type t = O.t balset =
struct
  type elt = O.t

  type t = O.t balset

  let empty = Bt1.leaf

  let is_empty = function Leaf -> true | Node _ -> false

  let rec mem k = function
    | Leaf -> false
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        mem k l
      else if c > 0 then
        mem k r
      else
        true

  let singleton k =
    Bt1.node Bt1.leaf k Bt1.leaf

  let rec add k = function
    | Leaf -> singleton k
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        Bt1.node (add k l) k' r
      else if c > 0 then
        Bt1.node l k' (add k r)
      else
        Bt1.node l k r

  let rec remove k = function
    | Leaf -> raise Not_found
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        Bt1.node (remove k l) k' r
      else if c > 0 then
        Bt1.node l k' (remove k r)
      else
        Bt1.join l r

  let remove k t =
    try remove k t
    with Not_found -> t

  let rec split k = function
    | Leaf -> Bt1.leaf, false, Bt1.leaf
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        let l', v', r' = split k l in
        l', v', Bt1.join r' r
      else if c > 0 then
        let l', v', r' = split k r in
        Bt1.join l l', v', r'
      else
        (l, true, r)

  let rec union t1 t2 =
    match t1, t2 with
    | Leaf, t | t, Leaf -> t
    | t1, Node (_, l2, k2, r2) ->
      let l1, _, r1 = split k2 t1 in
      let l' = union l1 l2 in
      let r' = union r1 r2 in
      Bt1.node l' k2 r'

  let union3 l k r =
    union (add k l) r

  let cardinal = Bt1.size

  type enumeration =
    | End
    | More of elt * t * enumeration

  let rec cons_enum t e = match t with
    | Leaf -> e
    | Node (_, l, k, r) -> cons_enum l (More (k, r, e))

  let compare t1 t2 =
    if t1 == t2 then 0 else
      match Int.compare (cardinal t1) (cardinal t2) with
      | 0 ->
        let rec compare_aux = function
          | (End, End) -> 0
          | (End, _  ) | (_  , End) -> assert false
          | (More (k1, r1, e1), More (k2, r2, e2)) ->
            match O.compare k1 k2 with
            | 0 ->
              if r1 == r2 then
                compare_aux (e1, e2)
              else
                compare_aux (cons_enum r1 e1, cons_enum r2 e2)
            | n -> n
        in
        compare_aux (cons_enum t1 End, cons_enum t2 End)
      | n -> n

  let equal t1 t2 =
    t1 == t2 && Int.equal (cardinal t1) (cardinal t2) &&
    let rec equal_aux = function
      | (End, End) -> true
      | (End, _  ) | (_  , End) -> assert false
      | (More (k1, r1, e1), More (k2, r2, e2)) ->
        match O.compare k1 k2 with
        | 0 ->
          if r1 == r2 then
            equal_aux (e1, e2)
          else
            equal_aux (cons_enum r1 e1, cons_enum r2 e2)
        | _ -> false
    in
    equal_aux (cons_enum t1 End, cons_enum t2 End)

  let rec iter f = function
    | Leaf -> ()
    | Node (_, l, k, r) ->
      iter f l;
      f k;
      iter f r

  let rec fold f t acc =
    match t with
    | Leaf -> acc
    | Node (_, l, k, r) ->
      let acc = fold f l acc in
      let acc = f k acc in
      let acc = fold f r acc in
      acc

  let rec for_all f = function
    | Leaf -> true
    | Node (_, l, k, r) ->
      for_all f l &&
      f k &&
      for_all f r

  let rec exists f = function
    | Leaf -> false
    | Node (_, l, k, r) ->
      exists f l || f k || exists f r

  let rec filter f = function
    | Leaf -> Bt1.leaf
    | Node (_, l, k, r) ->
      let l' = filter f l in
      let keep = f k in
      let r' = filter f r in
      if keep
      then Bt1.node l' k r'
      else Bt1.join l' r'

  let rec filter_map f = function
    | Leaf -> Bt1.leaf
    | Node (_, l, k, r) ->
      let l' = filter_map f l in
      let k' = f k in
      let r' = filter_map f r in
      match k' with
      | None -> union l' r'
      | Some k' -> union3 l' k' r'

  let rec partition f = function
    | Leaf -> Bt1.leaf, Bt1.leaf
    | Node (_, l, k, r) ->
      let l1, l2 = partition f l in
      let side = f k in
      let r1, r2 = partition f r in
      if side then
        (Bt1.node l1 k r1, Bt1.join l2 r2)
      else
        (Bt1.join l1 r1, Bt1.node l2 k r2)

  let of_list l =
    List.fold_left (fun t a -> add a t) empty l

  let elements t =
    let rec aux t acc = match t with
      | Leaf -> acc
      | Node (_, l, k, r) ->
        aux l (k :: aux r acc)
    in
    aux t []

  let rec min_elt = function
    | Leaf -> raise Not_found
    | Node (_, Leaf, k, _) -> k
    | Node (_, l, _, _) -> min_elt l

  let rec min_elt_opt = function
    | Leaf -> None
    | Node (_, Leaf, k, _) -> Some k
    | Node (_, l, _, _) -> min_elt_opt l

  let rec max_elt = function
    | Leaf -> raise Not_found
    | Node (_, _, k, Leaf) -> k
    | Node (_, _, _, r) -> max_elt r

  let rec max_elt_opt = function
    | Leaf -> None
    | Node (_, _, k, Leaf) -> Some k
    | Node (_, _, _, r) -> max_elt_opt r

  let choose = min_elt
  let choose_opt = min_elt_opt

  let rec find k = function
    | Leaf -> raise Not_found
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        find k l
      else if c > 0 then
        find k r
      else
        k'

  let rec find_opt k = function
    | Leaf -> None
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        find_opt k l
      else if c > 0 then
        find_opt k r
      else
        Some k'

  let rec find_first_opt f = function
    | Leaf -> None
    | Node (_, l, k', r) ->
      if f k' then
        match find_first_opt f l with
        | None -> Some k'
        | Some _ as result -> result
      else
        find_first_opt f r

  let find_first f t =
    match find_first_opt f t with
    | None -> raise Not_found
    | Some kv -> kv

  let rec find_last_opt f = function
    | Leaf -> None
    | Node (_, l, k', r) ->
      if f k' then
        match find_last_opt f r with
        | None -> Some k'
        | Some _ as result -> result
      else
        find_last_opt f l

  let find_last f t =
    match find_last_opt f t with
    | None -> raise Not_found
    | Some kv -> kv

  let rec map f = function
    | Leaf -> Bt1.leaf
    | Node (_, l, k, r) ->
      let l' = map f l in
      let k' = f k in
      let r' = map f r in
      union3 l' k' r'

  let rec seq_enum enum () =
    match enum with
    | End -> Seq.Nil
    | More (k, r, e) ->
      Seq.Cons (k, seq_enum (cons_enum r e))

  let to_seq = function
    | Leaf -> Seq.empty
    | t -> seq_enum (cons_enum t End)

  let rec snoc_enum t e = match t with
    | Leaf -> e
    | Node (_, l, k, r) -> snoc_enum r (More (k, l, e))

  let to_rev_seq = function
    | Leaf -> Seq.empty
    | t ->
      let rec seq enum () =
        match enum with
        | End -> Seq.Nil
        | More (k, r, e) ->
          Seq.Cons (k, seq (snoc_enum r e))
      in
      seq (snoc_enum t End)

  let rec cons_from k e = function
    | Leaf -> e
    | Node (_, l, k', r) ->
      let c = O.compare k k' in
      if c < 0 then
        cons_from k (More (k', r, e)) l
      else if c > 0 then
        cons_from k e r
      else
        More (k', r, e)

  let to_seq_from k t =
    seq_enum (cons_from k End t)

  let add_seq seq t =
    Seq.fold_left (fun t k -> add k t) t seq

  let of_seq seq =
    add_seq seq empty

  let subset t1 t2 =
    cardinal t1 <= cardinal t2 &&
    let rec aux = function
      | Bt1.Leaf -> true
      | Bt1.Node (_, l, k, r) -> mem k t2 && aux l && aux r
    in
    aux t1

  let rec disjoint t1 t2 =
    match t1, t2 with
    | Leaf, _ | _, Leaf -> true
    | Node (_, l1, k1, r1), t2 ->
      let l2, k2, r2 = split k1 t2 in
      not k2 &&
      disjoint l1 l2 &&
      disjoint r1 r2

  let rec diff t1 t2 =
    match t1, t2 with
    | Leaf, _ -> Bt1.leaf
    | t1, Leaf -> t1
    | Node (_, l1, k, r1), t2 ->
      let l2, drop, r2 = split k t2 in
      let l = diff l1 l2 in
      let r = diff r1 r2 in
      if drop then
        Bt1.join l r
      else
        Bt1.node l k r

  let rec inter t1 t2 =
    match t1, t2 with
    | Leaf, _ | _, Leaf -> empty
    | Node (_, l1, k1, r1), t2 ->
      let l2, keep, r2 = split k1 t2 in
      let l = inter l1 l2 in
      let r = inter r1 r2 in
      if keep then
        Bt1.node l k1 r
      else
        Bt1.join l r

  let to_list = elements
end
OCaml

Innovation. Community. Security.