package grenier

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file strong.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
(* Type-level equality *)
type (_, _) eq = Refl : ('a, 'a) eq
let follow_eq (type a b) (Refl : (a, b) eq) (x : a) : b = x

(* Strongly typed ordering *)
module Order = struct type (_, _) t = Lt | Eq : ('a, 'a) t | Gt end
type ('a, 'b) order = ('a, 'b) Order.t

let order_from_comparison n =
  if n < 0 then Order.Lt
  else if n > 0 then Order.Gt
  else Order.Eq

(* Uninhabitated type *)
type void = { void : 'a. 'a }
let void v = v.void

type 'a natural = T : int -> unit natural

module Natural : sig
  type 'a t = 'a natural
  val order : 'a t -> 'b t -> ('a, 'b) order
  val lift_eq : ('a, 'b) eq -> ('a t, 'b t) eq

  val to_int : 'a t -> int

  type zero
  val zero : zero t

  type one
  val one : one t

  module type T = sig type n val n : n t end
  module Nth (N : sig val n : int end) : T
  val nth : int -> (module T)

  type ('a, 'b) sum
  val add : 'a t -> 'b t -> ('a, 'b) sum t
  val sum_comm : (('a, 'b) sum, ('b, 'a) sum) eq
  val sum_assoc : ((('a, 'b) sum, 'c) sum, ('a, ('b, 'c) sum) sum) eq

  type ('a, 'b) prod
  val mul : 'a t -> 'b t -> ('a, 'b) prod t
  val prod_comm : (('a, 'b) prod, ('b, 'a) prod) eq
  val prod_assoc : ((('a, 'b) prod, 'c) prod, ('a, ('b, 'c) prod) prod) eq
end = struct
  type 'a t = 'a natural

  let order (type a b) (T a : a t) (T b : b t) : (a, b) order =
    Order.(if a < b then Lt else if a > b then Gt else Eq)

  let lift_eq (type a b) (Refl : (a, b) eq) : (a t, b t) eq =
    Refl

  let to_int (type n) (T n : n t) = n

  type zero = unit
  let zero : zero t = T 0

  type one = unit
  let one : one t = T 1

  module type T = sig type n val n : n t end

  module Nth (N : sig val n : int end) : T = struct
    type n = unit let n : n t = T N.n
  end

  let nth n =
    let module N = struct
      type n = unit
      let n = T n
    end
    in
    (module N : T)

  type ('a, 'b) sum = unit
  let add (type a b) (T a : a t) (T b : b t) : (a, b) sum t =
    T (a + b)
  let sum_comm (type a b)
    : ((a, b) sum, (b, a) sum) eq = Refl
  let sum_assoc (type a b c)
    : (((a, b) sum, c) sum, (a, (b, c) sum) sum) eq = Refl

  type ('a, 'b) prod = unit
  let mul (type a b) (T a : a t) (T b : b t) : (a, b) prod t =
    T (a * b)
  let prod_comm (type a b)
    : ((a, b) prod, (b, a) prod) eq = Refl
  let prod_assoc (type a b c)
    : (((a, b) prod, c) prod, (a, (b, c) prod) prod) eq = Refl
end

(* Finite sets: interpret naturals as the cardinality of a set *)
module Finite : sig
  type 'n set = 'n Natural.t
  type 'n elt = private int

  module Set : sig
    module type T = Natural.T
    val cardinal : 'n set -> int
    val iter : 'n set -> ('n elt -> unit) -> unit
    val rev_iter : 'n set -> ('n elt -> unit) -> unit
    val fold_left : 'n set -> ('b -> 'n elt -> 'b) -> 'b -> 'b
    val fold_right : 'n set -> ('n elt -> 'b -> 'b) -> 'b -> 'b

    module Gensym () : sig
      type n
      val freeze : unit -> n set
      val fresh : unit -> n elt
    end
  end

  module Elt : sig
    val of_int_opt : 'n set -> int -> 'n elt option
    val of_int : 'n set -> int -> 'n elt
    val to_int : 'n elt -> int
    val compare : 'n elt -> 'n elt -> int
  end

  module Array : sig
    type ('n, 'a) t = private 'a array
    type 'a _array = A : ('n, 'a) t -> 'a _array [@@ocaml.unboxed]

    val empty : (Natural.zero, _) t
    val is_empty : ('n, 'a) t -> (Natural.zero, 'n) eq option
    val length : ('n, 'a) t -> 'n set
    external get : ('n, 'a) t -> 'n elt -> 'a = "%array_unsafe_get"
    external set : ('n, 'a) t -> 'n elt -> 'a -> unit = "%array_unsafe_set"
    val make : 'n set -> 'a -> ('n, 'a) t
    val init : 'n set -> ('n elt -> 'a) -> ('n, 'a) t
    val make_matrix : 'i set -> 'j set -> 'a -> ('i, ('j, 'a) t) t
    val append : ('n, 'a) t -> ('m, 'a) t -> (('n, 'm) Natural.sum, 'a) t
    val of_array : 'a array -> 'a _array
    module type T = sig include Natural.T type a val table : (n, a) t end
    module Of_array (A : sig type a val table : a array end) : T with type a = A.a
    val module_of_array : 'a array -> (module T with type a = 'a)
    val to_array : (_, 'a) t -> 'a array
    val all_elements : 'n set -> ('n, 'n elt) t

    val iter : ('a -> unit) -> (_, 'a) t -> unit
    val iteri : ('n elt -> 'a -> unit) -> ('n, 'a) t -> unit
    val rev_iter : ('a -> unit) -> (_, 'a) t -> unit
    val rev_iteri : ('n elt -> 'a -> unit) -> ('n, 'a) t -> unit

    val map : ('a -> 'b) -> ('n, 'a) t -> ('n, 'b) t
    val mapi : ('n elt -> 'a -> 'b) -> ('n, 'a) t -> ('n, 'b) t
    val fold_left : ('a -> 'b -> 'a) -> 'a -> ('n, 'b) t -> 'a
    val fold_right : ('b -> 'a -> 'a) -> ('n, 'b) t -> 'a -> 'a
    val iter2 : ('a -> 'b -> unit) -> ('n, 'a) t -> ('n, 'b) t -> unit
    val map2 : ('a -> 'b -> 'c) -> ('n, 'a) t -> ('n, 'b) t -> ('n, 'c)  t
    val copy : ('n, 'a) t -> ('n, 'a) t
  end
end = struct
  type 'a set = 'a Natural.t
  type 'a elt = int

  module Set = struct
    module type T = Natural.T
    let cardinal = Natural.to_int
    let iter (type n) (set : n set) f =
      for i = 0 to cardinal set - 1 do f i done
    let rev_iter (type n) (set : n set) f =
      for i = cardinal set - 1 downto 0 do f i done
    let fold_left (type n) (set : n set) f acc =
      let acc = ref acc in
      for i = 0 to cardinal set - 1 do acc := f !acc i done;
      !acc
    let fold_right (type n) (set : n set) f acc =
      let acc = ref acc in
      for i = cardinal set - 1 downto 0 do acc := f i !acc done;
      !acc

    module Gensym () = struct
      type n = unit

      let counter = ref 0
      let frozen = ref false

      let freeze () =
        frozen := true;
        T !counter

      let fresh () =
        if !frozen then
          failwith "Finite.Set.Gensym.fresh: set has is frozen";
        let result = !counter in
        incr counter;
        result
    end
  end

  module Elt = struct
    let of_int_opt (type n) (set : n set) n : n elt option =
      let c = Set.cardinal set in
      if n >= 0 && n < c then Some n else None

    let of_int (type n) (set : n set) n : n elt =
      let c = Set.cardinal set in
      if n >= 0 && n < c then n else
        Printf.ksprintf invalid_arg
          "Strong.Finite.Elt.of_int #%d %d: %d is not in [0; %d[" c n n c

    let to_int x = x

    let compare = Int.compare
  end

  module Array = struct
    type ('n, 'a) t = 'a array
    type 'a _array = A : ('n, 'a) t -> 'a _array [@@ocaml.unboxed]
    let empty : (Natural.zero, _) t = [||]
    external get : ('n, 'a) t -> 'n elt -> 'a = "%array_unsafe_get"
    external set : ('n, 'a) t -> 'n elt -> 'a -> unit = "%array_unsafe_set"
    let length (a : ('n, 'a) t) : 'n set =
      (Obj.magic (T (Array.length a) : _ natural) : _ natural)
    let is_empty = function [||] -> Some (Obj.magic Refl) | _ -> None

    let make n x = Array.make (Set.cardinal n) x
    let init n f = Array.init (Set.cardinal n) f
    let make_matrix is js v =
      Array.make_matrix (Set.cardinal is) (Set.cardinal js) v
    let append = Array.append
    let of_array arr = A arr
    module type T = sig include Natural.T type a val table : (n, a) t end

    module Of_array (A : sig type a val table : a array end)
      : T with type a = A.a =
    struct
      include Natural.Nth(struct let n = Array.length A.table end)
      type a = A.a
      let table = A.table
    end

    let module_of_array (type a) (arr : a array) : (module T with type a = a) =
      let (module Nth) = Natural.nth (Array.length arr) in
      (module struct include Nth type nonrec a = a let table = arr end)

    let to_array x = x
    let all_elements (type a) (set : a set) =
      Array.init (Set.cardinal set) (fun x -> x)

    let iter = Array.iter
    let iteri = Array.iteri

    let rev_iter f t =
      for i = Array.length t - 1 downto 0 do f (get t i) done

    let rev_iteri f t =
      for i = Array.length t - 1 downto 0 do f i (get t i) done

    let map = Array.map
    let mapi = Array.mapi
    let fold_left = Array.fold_left
    let fold_right = Array.fold_right
    let iter2 = Array.iter2
    let map2 = Array.map2
    let copy = Array.copy
  end
end
OCaml

Innovation. Community. Security.