package grenier

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file valmari.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
module Fin = Strong.Finite

module type DFA = sig
  type states
  val states : states Fin.set
  type transitions
  val transitions : transitions Fin.set

  type label
  val label  : transitions Fin.elt -> label
  val source : transitions Fin.elt -> states Fin.elt
  val target : transitions Fin.elt -> states Fin.elt

end

module type INPUT = sig
  include DFA

  val initials : (states Fin.elt -> unit) -> unit
  val finals : (states Fin.elt -> unit) -> unit

  val refinements :
    refine:(iter:((states Fin.elt -> unit) -> unit) -> unit) -> unit
end

let index_transitions (type state) (type transition)
    (states : state Fin.set)
    (transitions : transition Fin.set)
    (target : transition Fin.elt -> state Fin.elt)
  : state Fin.elt -> (transition Fin.elt -> unit) -> unit
  =
  let f = Array.make (Fin.Set.cardinal states + 1) 0 in
  Fin.Set.iter transitions (fun t ->
      let state = (target t :> int) in
      f.(state) <- f.(state) + 1
    );
  for i = 0 to Fin.Set.cardinal states - 1 do
    f.(i + 1) <- f.(i + 1) + f.(i)
  done;
  let a = Array.make (Fin.Set.cardinal transitions)
      (Fin.Elt.of_int transitions 0)
  in
  Fin.Set.rev_iter transitions (fun t ->
    let state = (target t :> int) in
    let index = f.(state) - 1 in
    f.(state) <- index;
    a.(index) <- t
    );
  (fun st fn ->
     let st = (st : state Fin.elt :> int) in
     for i = f.(st) to f.(st + 1) - 1 do fn a.(i) done
  )

let discard_unreachable
    (type state) (type transition)
    (blocks : state Partition.t)
    (transitions_of : state Fin.elt -> (transition Fin.elt -> unit) -> unit)
    (target : transition Fin.elt -> state Fin.elt)
  =
  Partition.iter_marked_elements blocks 0 (fun state ->
      transitions_of state
        (fun transition -> Partition.mark blocks (target transition))
    );
  Partition.discard_unmarked blocks

module Minimize
    (Label : Map.OrderedType)
    (In: INPUT with type label := Label.t) :
sig
  include DFA with type label = Label.t

  val initials : states Fin.elt array
  val finals : states Fin.elt array

  val transport_state :
    In.states Fin.elt -> states Fin.elt option
  val transport_transition :
    In.transitions Fin.elt -> transitions Fin.elt option

  val represent_state :
    states Fin.elt -> In.states Fin.elt
  val represent_transition :
    transitions Fin.elt -> In.transitions Fin.elt
end = struct

  (* State partition *)
  let blocks = Partition.create In.states

  (* Remove states unreachable from initial state *)
  let () =
    In.initials (Partition.mark blocks);
    let transitions_source =
      index_transitions In.states In.transitions In.source in
    discard_unreachable blocks transitions_source In.target

  (* Index the set of transitions targeting a state *)
  let transitions_targeting =
    index_transitions In.states In.transitions In.target

  (* Remove states which cannot reach any final state *)
  let () =
    In.finals (Partition.mark blocks);
    discard_unreachable blocks transitions_targeting In.source

  (* Split final states *)
  let () =
    In.finals (Partition.mark blocks);
    Partition.split blocks

  (* Split explicitely refined states *)
  let () =
    let refine ~iter =
        iter (Partition.mark blocks);
        Partition.split blocks
    in
    In.refinements ~refine

  (* Transition partition *)
  let cords =
    let partition t1 t2 = Label.compare (In.label t1) (In.label t2) in
    Partition.create In.transitions ~partition

  let () =
    Partition.discard cords (fun t ->
        Partition.set_of blocks (In.source t) = -1 ||
        Partition.set_of blocks (In.target t) = -1
      )

  (* Main loop, split the sets *)
  let () =
    let block_set = ref 1 in
    let cord_set = ref 0 in
    while !cord_set < Partition.set_count cords do
      Partition.iter_elements cords !cord_set
        (fun transition -> Partition.mark blocks (In.source transition));
      Partition.split blocks;
      while !block_set < Partition.set_count blocks do
        Partition.iter_elements blocks !block_set (fun state ->
            transitions_targeting state (Partition.mark cords)
          );
        Partition.split cords;
        incr block_set;
      done;
      incr cord_set;
    done

  module States =
    Strong.Natural.Nth(struct let n = Partition.set_count blocks end)
  type states = States.n
  let states = States.n

  module Transitions = Fin.Array.Of_array(struct
      type a = In.transitions Fin.elt
      let table =
        let count = ref 0 in
        Fin.Set.iter In.transitions (fun tr ->
            if Partition.is_first blocks (In.source tr) &&
               Partition.set_of blocks (In.target tr) > -1
            then incr count
          );
        match !count with
        | 0 -> [||]
        | n -> Array.make n (Fin.Elt.of_int In.transitions 0)

      let () =
        let count = ref 0 in
        Fin.Set.iter In.transitions (fun tr ->
            if Partition.is_first blocks (In.source tr) &&
               Partition.set_of blocks (In.target tr) > -1
            then (
              let index = !count in
              incr count;
              table.(index) <- tr
            )
          );
    end)
  type transitions = Transitions.n
  let transitions = Transitions.n

  type label = Label.t

  let transport_state_unsafe =
    let table =
      Fin.Array.init In.states (Partition.set_of blocks)
    in
    Fin.Array.get table

  let represent_state =
    let table =
      Fin.Array.init states
        (fun st -> Partition.choose blocks (st : states Fin.elt :> int))
    in
    Fin.Array.get table

  let represent_transition transition =
    Fin.(Transitions.table.(transition))

  let label transition : Label.t =
    In.label (represent_transition transition)

  let source transition =
    Fin.Elt.of_int states
      (transport_state_unsafe (In.source (represent_transition transition)))

  let target transition =
    Fin.Elt.of_int states
      (transport_state_unsafe (In.target (represent_transition transition)))

  let initials =
    In.initials (Partition.mark blocks);
    let sets = Partition.marked_sets blocks in
    Partition.clear_marks blocks;
    Array.map (Fin.Elt.of_int states) (Array.of_list sets)

  let finals =
    In.finals (Partition.mark blocks);
    let sets = Partition.marked_sets blocks in
    Partition.clear_marks blocks;
    Array.map (Fin.Elt.of_int states) (Array.of_list sets)

  let transport_state state =
    match transport_state_unsafe state with
    | -1 -> None
    | n -> Some (Fin.Elt.of_int states n)

  let transport_transition =
    let table = Fin.Array.make In.transitions None in
    Fin.Array.iteri (fun tr trin ->
        assert (Fin.Array.get table trin = None);
        Fin.Array.set table trin (Some tr);
      ) Transitions.table;
    Fin.Array.get table

end
OCaml

Innovation. Community. Security.