package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/TacBitwised.ml.html
Source file TacBitwised.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang let range a n = let vmax = Integer.two_power_of_int n in F.p_and (F.p_leq F.e_zero a) (F.p_lt a (F.e_zint vmax)) (* starts from 0 *) let bit_test x k = Cint.l_and x (F.e_int (1 lsl k)) (* from n downto 0 *) let rec bitwise_eqs a b n = if n >= 0 then F.e_eq (bit_test a n) (bit_test b n) :: bitwise_eqs a b (n-1) else [] (* bitwise eq on n bits *) let bitwise_eq a b n = F.e_and (bitwise_eqs a b (n-1)) let rewrite descr u v = Tactical.rewrite [ descr , F.p_true , u , v ] let vrange,prange = Tactical.spinner ~id:"Wp.bitwised.range" ~vmin:0 ~vmax:64 ~default:32 ~title:"Bits" ~descr:"Size of bitwise equality." () class bitcase = object(self) inherit Tactical.make ~id:"Wp.bitwised" ~title:"Bitwise Eq." ~descr:"Decompose bitwise equality." ~params:[prange] (* range:(0 <= a < 2^n && 0 <= b < 2^n) && bitwise:(forall k; 0 <= k <= n ==> (bit(a,k) <==> bit(b,k))) |- a <= b *) method private process (feedback:Tactical.feedback) ~neq e a b = if F.is_int a && F.is_int b then let n = self#get_field vrange in let inrange = F.p_and (range a n) (range b n) in let bitwise = bitwise_eq a b n in let e' = if neq then F.e_not bitwise else bitwise in feedback#set_title "Bitwise %s. (%d bits)" (if neq then "Neq" else "Eq") n ; Tactical.Applicable (fun seq -> ("range" , (fst seq , inrange)) :: rewrite "bitwise" e e' seq) else Tactical.Not_applicable method select feedback selection = let e = Tactical.selected selection in let open Qed.Logic in match F.repr e with | Eq(a,b) -> self#process feedback ~neq:false e a b | Neq(a,b) -> self#process feedback ~neq:true e a b | _ -> Tactical.Not_applicable end let tactical = Tactical.export (new bitcase) let strategy ?(priority=1.0) selection ~nbits = Strategy.{ priority ; tactical ; selection ; arguments = [ arg vrange nbits ] ; } (* -------------------------------------------------------------------------- *) (* --- Auto Bitwise --- *) (* -------------------------------------------------------------------------- *) let is_bitwised e = let open Qed.Logic in match F.repr e with | Fun(f,_) -> List.memq f Cint.f_bitwised | _ -> false let rec lookup push clause ~nbits ~priority p = let open Qed.Logic in match F.repr p with | And ps | Or ps -> List.iter (lookup push clause ~priority ~nbits) ps | Imply(hs,p) -> List.iter (lookup push clause ~priority ~nbits) (p::hs) | Eq(x,y) | Neq(x,y) when F.is_int x && F.is_int y -> let bx = is_bitwised x in let by = is_bitwised y in if bx || by then let priority = if bx && by then priority else priority *. 0.8 in push (strategy ~priority ~nbits Tactical.(Inside(clause,p))) | _ -> () class autobitwise = object(self) method private nbits = Ctypes.i_bits (Ctypes.c_ptr ()) method id = "wp:bitwised" method title = Printf.sprintf "Auto Bitwise Eq. (%d)" self#nbits method descr = Printf.sprintf "Consider %d-bits bitwise equality." self#nbits method search push (seq : Conditions.sequent) = let goal = snd seq in let nbits = self#nbits in lookup push (Tactical.Goal goal) ~nbits ~priority:1.0 (F.e_prop goal) ; Conditions.iter (fun step -> let p = Conditions.head step |> F.e_prop in lookup push (Tactical.Step step) ~nbits ~priority:0.5 p ) (fst seq) end let () = Strategy.register (new autobitwise) (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>