package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/TacBitrange.ml.html
Source file TacBitrange.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang (* Helpers *) let is_positive e = F.p_leq F.e_zero e (* 0 <= n *) let is_negative e = F.p_lt e F.e_zero (* n < 0 *) (* Requires 2^i < n && 0 <= i < j *) let rec log2m i j n = let b = Integer.two_power_of_int j in if Integer.lt b n then log2m j (2*j) n else (* 2^i < n <= 2^j *) if Integer.equal b n then j else (* 2^i < n < 2^j *) log2d i j n (* Requires 2^i < n < 2 ^j && 0 <= i < j *) and log2d i j n = if succ i = j then i else let k = (i+j)/2 in let a = Integer.two_power_of_int k in let c = Integer.compare a n in if c > 0 then log2d i k n else (* a=2^k > n *) if c < 0 then log2d k j n else (* a=2^k < n *) k (* Theorem LAND-1: derived from Cbits.uint_land_range exists i, 0 <= e_i <= n ----------------------------- 0 <= land(e_1,...,e_n) <= n Theorem LAND-2: partially derived from Cbits.sint_land_inf forall i, -2^p <= e_i <= n < 0 ------------------------------------------- -2^p <= land(e_1,...,e_n) <= e_i <= n < 0 *) let land_leq ~positive es n = (* land(e_1,...,e_n) <= n *) if Integer.(le zero n) then (* From theorem LAND-1 when 0<=n: (exist i, 0 <= e_i <= n) |- 0 <= land(e_1,...,e_n) <= n *) let a = F.e_zint n in let case1 = F.p_any (fun e -> F.p_and (is_positive e) (F.p_leq e a)) es in if positive then case1 else (* From theorem LAND-2: when 0 <= n (forall i, e_i < 0) && -1 <= 0 <= n |- land(e_1,...e_n) <= -1 <= 0 <= n *) let case2 = F.p_any is_negative es in F.p_or case1 case2 else if positive then raise Not_found else (* From theorem LAND-2 when n<0: (forall i, e_i <= n < 0) |- land(e_1,...,e_n) <= n < 0*) let a = F.e_zint n in let case1 = F.p_any (fun e -> F.p_leq e a) es in if Integer.(lt n minus_one) then case1 else (* From theorem LAND-2: when -1 == n (forall i, e_i < 0) && -1 <= 0 <= n |- land(e_1,...e_n) <= -1 <= 0 <= n *) let case2 = F.p_any is_negative es in F.p_or case1 case2 let leq_land ~positive n es = (* n <= land(e_1,...,e_n) *) if Integer.(le n zero) then (* From theorem LAND-1 when n<=0: (exist i, n <= 0 <= e_i) |- n <= 0 <= land(e_1,...,e_n) *) F.p_any is_positive es else if positive then raise Not_found else let p = log2m 0 1 (Integer.neg n) in (* Have n <= -2^p < 0 From theorem LAND-2: when n <= -2^p < 0 (forall i, n <= -2^p <= e_i < 0) |- n <= land(e_1,...e_n) < 0 *) let a = F.e_zint Integer.(neg (two_power_of_int p)) in F.p_all (fun e -> F.p_and (is_negative e) (F.p_lt a e)) es (* Theorem LOR-1: partially derived from Cbits.uint_lor_inf forall i, 0 <= e_i <= 2^p-1 ----------------------------- forall i, 0 <= e_i <= lor(e_1,...,e_n) <= 2^p-1 Theorem LOR-2: derived from Cbits.sint_lor_range exist i, e_i <= n < 0 ----------------------------- n <= lor(e_1,...,e_n) < 0 *) let lor_leq ~positive es n = (* lor(e_1,...,e_n) <= n *) if Integer.(le zero n) then let p = log2m 0 1 (Integer.succ n) in (* Have 0 <= 2^p <= n+1, hence 0 <= 2^p-1 <= n. From theorem LOR-1 when 0 <= 2^p-1 <= n (forall i, 0<= e_i <= 2^p-1 <=n) ==> 0<=lor(e_1,...,e_n) <= 2^p-1 <=n *) let a = F.e_zint (Integer.two_power_of_int p) in let case1 = F.p_all (fun e -> F.p_and (is_positive e) (F.p_lt e a)) es in if positive then case1 else (* From theorem LOR-2 when 0<=n: (exist i, e_i < 0 <= n) |- lor(e_1,...,e_n) < 0 <= n*) let case2 = F.p_any is_negative es in F.p_or case1 case2 else raise Not_found let leq_lor ~positive n es = (* n <= lor(e_1,...,e_n) *) if Integer.(le zero n) then (* From theorem LOR-1 when 0<=n: (forall i, 0 <= n <= e_i) |- 0 <= n <= lor(e_1,...,e_n) *) let a = F.e_zint n in F.p_all (fun e -> F.p_leq a e) es else if positive then raise Not_found else (* From theorem LOR-1 when n<0: (forall i, n < 0 <= e_i) |- n < 0 <= lor(e_1,...,e_n) *) let case1 = F.p_all is_positive es in (* From theorem LOR-2 when n<0: (exist i, n <= e_i < 0) |- n <= lor(e_1,...,e_n) < 0 *) let a = F.e_zint n in let case2 = F.p_any (fun e -> F.p_and (F.p_leq a e) (is_negative e)) es in F.p_or case1 case2 (* -------------------------------------------------------------------------- *) (* --- Patterns --- *) (* -------------------------------------------------------------------------- *) type pattern = | LEQ of pattern * pattern | LT of pattern * pattern | INT | LAND | LOR type sigma = { plor : bool ; pland : bool ; mutable bound : Integer.t ; mutable terms : F.term list ; } let rec pmatch s p e = let open Qed.Logic in match p , F.repr e with | LEQ(p,q) , Leq(a,b) | LT(p,q) , Lt(a,b) -> pmatch s p a ; pmatch s q b | INT , Kint n -> s.bound <- n | LAND , Fun(f,es) when f == Cint.f_land -> s.terms <- es | LOR , Fun(f,es) when f == Cint.f_lor -> s.terms <- es | _ -> raise Exit let matches s p e = try pmatch s p e ; true with Exit -> false let patterns : (pattern * (sigma -> F.pred)) list = [ LEQ(INT,LAND) , (fun s -> leq_land ~positive:s.pland s.bound s.terms) ; LT(INT,LAND) , (fun s -> leq_land ~positive:s.pland (Integer.succ s.bound) s.terms) ; LEQ(LAND,INT) , (fun s -> land_leq ~positive:s.pland s.terms s.bound) ; LT(LAND,INT) , (fun s -> land_leq ~positive:s.pland s.terms (Integer.pred s.bound)) ; LEQ(INT,LOR) , (fun s -> leq_lor ~positive:s.plor s.bound s.terms) ; LT(INT,LOR) , (fun s -> leq_lor ~positive:s.plor (Integer.succ s.bound) s.terms) ; LEQ(LOR,INT) , (fun s -> lor_leq ~positive:s.plor s.terms s.bound) ; LT(LOR,INT) , (fun s -> lor_leq ~positive:s.plor s.terms (Integer.pred s.bound)) ; ] let select_goal ~pland ~plor g = try let s = { pland ; plor ; bound = Integer.zero ; terms = [] } in let (_,f) = List.find (fun (p,_) -> matches s p g) patterns in Some (f s) with Not_found -> None let rec split_goals ~pland ~plor others ranges = function | [] -> List.rev others , List.rev ranges | g::gs -> begin match select_goal ~pland ~plor g with | None -> split_goals ~pland ~plor (F.p_bool g::others) ranges gs | Some g' -> split_goals ~pland ~plor others (g'::ranges) gs end let range_goal g' (hs,_) = ["bit-range" , (hs,g')] let range_goals gs' (hs,_) = List.map (fun g' -> "bit-range" , (hs,g')) gs' let other_goals ps (hs,_) = List.map (fun p -> "split" , (hs,p)) ps open Tactical let positive_land = Tactical.checkbox ~id:"positive-land" ~title:"Pos." ~descr:"Requires to obtain a result from (at least one) positive operands" ~default:true () let positive_lor = Tactical.checkbox ~id:"positive-lor" ~title:"Neg." ~descr:"Restrict to obtain a positive result from (all) positive operands" ~default:true () class bitrange = object(self) inherit Tactical.make ~id:"Wp.bitrange" ~title:"Bit Range" ~descr:"Compute bounds of bitwise operators." ~params:[snd positive_land;snd positive_lor] method select feedback = function | Clause(Goal p) -> begin let goals = let e = F.e_prop p in match F.repr e with | Qed.Logic.And es -> es | Qed.Logic.Leq _ | Qed.Logic.Lt _ -> [e] | _ -> raise Not_found in let pland = self#get_field (fst positive_land) in let plor = self#get_field (fst positive_lor) in let others,ranges = split_goals ~pland ~plor [] [] goals in if ranges = [] then Tactical.Not_applicable else begin if others = [] then feedback#set_title "Split & Bit Range(s)" else feedback#set_title "Bit Range(s)" ; Tactical.Applicable (fun seq -> other_goals others seq @ range_goals ranges seq) end end | Inside(Goal p,e) -> begin let g = F.e_prop p in match F.repr g with | Qed.Logic.And es when List.memq e es -> begin let pland = self#get_field (fst positive_land) in let plor = self#get_field (fst positive_lor) in match select_goal ~pland ~plor g with | Some g' -> Tactical.Applicable(range_goal g') | None -> Tactical.Not_applicable end | _ -> Tactical.Not_applicable end | _ -> Tactical.Not_applicable end let tactical = Tactical.export (new bitrange) let strategy = Strategy.make tactical ~arguments:[] (* -------------------------------------------------------------------------- *) (* --- Auto Bitrange --- *) (* -------------------------------------------------------------------------- *) let is_bitwised e = let open Qed.Logic in match F.repr e with | Fun(f,_) -> List.memq f Cint.f_bitwised | _ -> false class autobitrange = object method id = "wp:bitrange" method title = "Auto Bit-Range" method descr = "Compute bounds of bitwise operations." method search push (seq : Conditions.sequent) = let goal = snd seq in let open Qed.Logic in match F.e_expr goal with | Lt(x,y) | Leq(x,y) when is_bitwised x || is_bitwised y -> push (strategy Tactical.(Clause (Goal goal))) | _ -> () end let () = Strategy.register (new autobitrange)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>