package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/StmtSemantics.ml.html
Source file StmtSemantics.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Sigs open Cil_types open Cil_datatype open Clabels let not_yet = Wp_parameters.not_yet_implemented module Make(Compiler:Sigs.Compiler) = struct module Compiler = Compiler module Cfg = CfgCompiler.Cfg(Compiler.M.Sigma) module M = Compiler.M module Sigma = Compiler.M.Sigma module C = Compiler.C module L = Compiler.L module A = Compiler.A type node = Cfg.node type goal = { goal_pred : Cfg.P.t; goal_prop : WpPropId.prop_id; } type cfg = Cfg.cfg type paths = { paths_cfg : cfg; paths_goals : goal Bag.t; } type env = { flow : node LabelMap.t ; kf : Kernel_function.t; result : Lang.F.var; return : typ ; (** used for substituting directly values without going through terms. Good for memory models, avoid unneeded conversions. *) subst_formals: (exp * node) Varinfo.Map.t; status : Lang.F.var; } exception LabelNotFound of c_label (* -------------------------------------------------------------------------- *) (* --- Env Utilities --- *) (* -------------------------------------------------------------------------- *) let result env = env.result let bind l n env = { env with flow = LabelMap.add l n env.flow } let (@^) cfg1 cfg2 = { paths_cfg = Cfg.concat cfg1.paths_cfg cfg2.paths_cfg; paths_goals = Bag.concat cfg1.paths_goals cfg2.paths_goals; } let (@*) env lns = let flow = List.fold_left (fun flow (l, n) -> LabelMap.add l n flow) env.flow lns in { env with flow } let (@:) env lbl = try LabelMap.find lbl env.flow with Not_found -> raise (LabelNotFound lbl) let (@-) env f = { env with flow = LabelMap.filter (fun lbl _ -> f lbl) env.flow } let empty_env kf = let return = Kernel_function.get_return_type kf in let result = Lang.freshvar ~basename:"result" (Lang.tau_of_ctype return) in let status = Lang.freshvar ~basename:"status" Qed.Logic.Int in let env = {flow = LabelMap.empty; kf; result; status; return; subst_formals = Varinfo.Map.empty} in env @* [ Clabels.init, Cfg.node (); Clabels.exit, Cfg.node(); ] (* -------------------------------------------------------------------------- *) (* --- Paths & Cfg Utilities --- *) (* -------------------------------------------------------------------------- *) let paths_of_cfg cfg = { paths_cfg = cfg; paths_goals = Bag.empty; } let nop = Cfg.nop |> paths_of_cfg let add_tmpnode n = Cfg.add_tmpnode n |> paths_of_cfg let goto n1 n2 = (Cfg.goto n1 n2) |> paths_of_cfg let meta ?stmt ?descr n = (Cfg.meta ?stmt ?descr n) |> paths_of_cfg let guard nc c nt = (Cfg.guard nc c nt) |> paths_of_cfg let guard' nc c nt = (Cfg.guard' nc c nt) |> paths_of_cfg let either n ns = (Cfg.either n ns) |> paths_of_cfg let implies n ns = (Cfg.implies n ns) |> paths_of_cfg let effect n1 e n2 = (Cfg.effect n1 e n2) |> paths_of_cfg let assume p = (Cfg.assume p) |> paths_of_cfg let current env sigma = Cfg.Node.(Map.add (env @: Clabels.here) sigma Map.empty) let goals_nodes goals = Bag.fold_left (fun acc g -> Cfg.Node.Map.fold (fun n _ acc -> Cfg.Node.Set.add n acc) (Cfg.P.reads g.goal_pred) acc ) Cfg.Node.Set.empty goals (* -------------------------------------------------------------------------- *) (* --- Sequence & Parallel Compilation --- *) (* -------------------------------------------------------------------------- *) let rec sequence f env = function | [] -> goto (env @: Clabels.here) (env @: Clabels.next) | [ elt ] -> f env elt | stmt :: stmts -> let n = Cfg.node () in let paths = f (bind Clabels.next n env) stmt in paths @^ (sequence f (bind Clabels.here n env) stmts) let choice ?(pre=Clabels.here) ?(post=Clabels.next) f env = let pre_node = env @: pre in let apply f env elt = let n = Cfg.node () in n, f (bind pre n env) elt in let rec aux env ns = function | [] -> goto (env @: pre) (env @: post) | [ elt ] -> let n, paths = apply f env elt in paths @^ either pre_node (n :: ns) | elt :: elts -> let n, paths = apply f env elt in paths @^ (aux env (n :: ns) elts) in aux env [] (** executed possibly at the same time *) let parallel ?(pre=Clabels.here) ?(post=Clabels.next) f env = let pre_node = env @: pre in let apply f env elt = let n = Cfg.node () in n, f (bind pre n env) elt in let rec aux env ns = function | [] -> goto (env @: pre) (env @: post) | [ elt ] -> let n, (c,paths) = apply f env elt in paths @^ implies pre_node ((c,n) :: ns) | elt :: elts -> let n, (c,paths) = apply f env elt in paths @^ (aux env ((c,n) :: ns) elts) in aux env [] (* -------------------------------------------------------------------------- *) (* --- Compiler: Scope --- *) (* -------------------------------------------------------------------------- *) let scope env sc xs = let post = Sigma.create () in let pre = M.alloc post xs in let seq = { pre ; post } in let p = Lang.F.p_conj (M.scope seq sc xs) in let e = Cfg.E.create seq p in let descr = Format.asprintf "%s scope [%a]: @[%a@]" (match sc with Leave -> "Leaving" | Enter -> "Entering") (Pretty_utils.pp_iter ~sep:"; @" List.iter Varinfo.pretty) xs Cfg.E.pretty e in meta ~descr (env @: Clabels.here) @^ effect (env @: Clabels.here) e (env @: Clabels.next) (* -------------------------------------------------------------------------- *) (* --- Compiler: Assignment --- *) (* -------------------------------------------------------------------------- *) let set env lv exp = let here = Sigma.create () in let loc = C.lval here lv in let value = C.exp here exp in let obj = Ctypes.object_of (Cil.typeOfLval lv) in let next = Sigma.havoc here (M.domain obj loc) in let sequence = { pre=here ; post=next } in let ps = match value with | Loc ptr -> M.copied sequence obj loc ptr | Val term -> M.stored sequence obj loc term in let ps = List.map Cvalues.equation ps in let e = Cfg.E.create sequence (Lang.F.p_conj ps) in let descr = Format.asprintf "Set: @[%a = %a@]" Printer.pp_lval lv Printer.pp_exp exp in meta ~descr (env @: Clabels.here) @^ effect ( env @: Clabels.here ) e (env @: Clabels.next) (* -------------------------------------------------------------------------- *) (* --- Compiler: Return --- *) (* -------------------------------------------------------------------------- *) let return env e_opt = goto (env @: Clabels.here) (env @: Clabels.next) @^ match e_opt with | None -> nop | Some exp -> let rtyp = env.return in let here = Sigma.create () in let value = C.return here rtyp exp in let p = Lang.F.p_equal (Lang.F.e_var env.result) value in assume (Cfg.P.create (current env here) p) (* -------------------------------------------------------------------------- *) (* --- Compiler: Assertion --- *) (* -------------------------------------------------------------------------- *) let mk_frame ~descr env = let nsigmas = LabelMap.fold (fun _ (n : node) (nmap : M.sigma Cfg.Node.Map.t) -> if Cfg.Node.Map.mem n nmap then nmap else Cfg.Node.Map.add n (Sigma.create ()) nmap) env.flow Cfg.Node.Map.empty in let lsigmas = LabelMap.map (fun n -> try Cfg.Node.Map.find n nsigmas with Not_found -> assert false (* by nsigmas *)) env.flow in let frame_formals = L.mk_frame ~kf:env.kf ~descr:"frame_formals" ~labels:LabelMap.empty () in let formals = Varinfo.Map.map (fun (exp,n) -> try let here = Cfg.Node.Map.find n nsigmas in L.in_frame frame_formals (C.exp here) exp with Not_found -> Wp_parameters.fatal "node of formals not present in labels. normal?" ) env.subst_formals in let frame = L.mk_frame ~labels:lsigmas ~kf:env.kf ~result:(Sigs.R_var env.result) ~status:env.status ~formals ~descr () in frame, nsigmas, lsigmas let pred : env -> Sigs.polarity -> predicate -> _ = fun env polarity p -> (* Format.printf "env.flow: %a@." *) (* (Pretty_utils.pp_iter2 LabelMap.iter Label.pretty Cfg.Node.pp) *) (* env.flow; *) let frame, nsigmas, lsigmas = mk_frame ~descr:"pred" env in try let here = LabelMap.find Clabels.here lsigmas in let lenv = L.mk_env ~here () in let pred = L.in_frame frame (L.pred polarity lenv) p in (* Remove the sigmas not used for the compilation, but here must stay *) let nsigmas = Cfg.Node.Map.filter (fun _ s -> s == here || not (Sigma.Chunk.Set.is_empty (Sigma.domain s)) ) nsigmas in (Cfg.P.create nsigmas pred) with Not_found -> Wp_parameters.fatal "Error during compilation" let assert_ env p prop_id = let pos = pred env `Positive p.ip_content.tp_statement in let env' = env @* [Clabels.here, env @: Clabels.next ] in let neg = pred env' `Negative p.ip_content.tp_statement in let goal = { goal_pred = pos; goal_prop = prop_id; } in { paths_goals = Bag.elt goal; paths_cfg = Cfg.goto (env @: Clabels.here) (env @: Clabels.next); } @^ assume neg let assume_ : env -> Sigs.polarity -> predicate -> paths = fun env polarity p -> assume (pred env polarity p) (* -------------------------------------------------------------------------- *) (* --- Compiler: Function Call --- *) (* -------------------------------------------------------------------------- *) let rec call_kf : env -> lval option -> kernel_function -> exp list -> paths = fun env lvr kf es -> let pre_node = Cfg.node () in let post_node = Cfg.node () in let return_node = Cfg.node () in let next_node = env @: Clabels.next in let exit_stop = Cfg.node () in (* Caller's context: sigma, frame and actuals evaluated to this sigma *) let cfg_enter_scope = scope (env @* [Clabels.next,pre_node]) (* Clabels.here is here *) Enter (Kernel_function.get_formals kf) in let cfg_leave_scope = scope (env @* [Clabels.here,post_node;Clabels.next,return_node]) Leave (Kernel_function.get_formals kf) in let cfg_contract env = spec env (Annotations.funspec kf) in let result env = match lvr with | None -> goto (env @: Clabels.here) (env @: Clabels.next) | Some lv -> let pre = Sigma.create () in let tr = Cil.typeOfLval lv in let obj = Ctypes.object_of tr in let loc = C.lval pre lv in let post = Sigma.havoc pre (M.domain obj loc) in let vr = M.load post obj loc in let p = C.equal_typ tr vr (C.cast tr env.return (Val (Lang.F.e_var env.result))) in let e = Cfg.E.create { pre; post } p in effect (env @: Clabels.here) e (env @: Clabels.next) in let old_status = env.status in let exit_status (env:env) = let p = Lang.F.p_equal (Lang.F.e_var old_status) (Lang.F.e_var env.status) in let s = M.Sigma.create () in let e = Cfg.E.create {pre=s;post=s} p in effect (env @: Clabels.here) e (env @: Clabels.next) in let subst_formals = List.fold_left2 (fun acc v e -> Varinfo.Map.add v (e,pre_node) acc) Varinfo.Map.empty (Kernel_function.get_formals kf) es in let env_call = { (empty_env kf) with subst_formals } @* [Clabels.init, env @: Clabels.init; Clabels.pre, pre_node; Clabels.here, pre_node; Clabels.next, post_node; Clabels.post, post_node; Clabels.exit, env @: Clabels.exit] in (* TODO: Call inlining. *) nop @^ cfg_enter_scope @^ cfg_contract env_call @^ cfg_leave_scope @^ result (env_call @* [(Clabels.here, return_node); (Clabels.next, next_node)]) @^ exit_status (env_call @* [(Clabels.here, exit_stop); (Clabels.next, env @: Clabels.exit)]) and call : env -> lval option -> exp -> exp list -> paths = fun env lv e es -> match Kernel_function.get_called e with | Some kf -> call_kf env lv kf es | None -> not_yet "[StmtSemantics] Call through a function pointer." (* -------------------------------------------------------------------------- *) (* --- Compiler: Instruction --- *) (* -------------------------------------------------------------------------- *) and instr : env -> instr -> paths = fun env -> function | Set (lv, e, _) -> set env lv e | Call (lv, e, es, _) -> call env lv e es | Asm _ -> not_yet "[StmtSemantics] Inline Asm." | Local_init (v, ConsInit(f, args, kind), loc) -> Cil.treat_constructor_as_func (fun lv e es _ -> call env lv e es) v f args kind loc | Local_init (vi, AssignInit init, _) -> let here = Sigma.create () in let next = Sigma.create () in (*TODO: make something of warnings *) let init = C.init ~sigma:next vi (Some init) in let hyp_value = Lang.F.p_all (fun (_, h) -> fst h) init in let hyp_init = Lang.F.p_all (fun (_, h) -> snd h) init in let hyp = Lang.F.p_and hyp_init hyp_value in effect (env @: Clabels.here) (Cfg.E.create {pre=here; post=next} hyp) (env @: Clabels.next) | Skip _ | Code_annot _ -> goto (env @: Clabels.here) (env @: Clabels.next) (* -------------------------------------------------------------------------- *) (* --- Compiler: Annotations --- *) (* -------------------------------------------------------------------------- *) and spec : env -> spec -> paths = fun env spec -> let pre_cond env p prop_id = assert_ env p prop_id in let post_cond termination_kind env (tk, ip) = if tk = termination_kind then assume_ env `Positive ip.ip_content.tp_statement else nop in let behavior env b = let nrequires = Cfg.node () in let nassigns = Cfg.node () in let assume = let p = pred (env @* [Clabels.here, env @: Clabels.pre]) `Negative (Ast_info.behavior_assumes b) in match Cfg.P.to_condition p with | Some (c,None) -> c | Some (c,Some n) when Cfg.Node.equal n (env @: Clabels.pre) -> c | _ -> not_yet "assume of behaviors with labels: %a" Cfg.P.pretty p in let post_normal_behavior = Cfg.node () in let post_normal_env = env @* [Clabels.here, nassigns; Clabels.post, post_normal_behavior] in let post_at_exit_behavior = Cfg.node () in let post_at_exit_env = env @* [Clabels.here, nassigns; Clabels.exit, post_at_exit_behavior] in assume, sequence (fun env ip -> (* TODO: Kglobal is it always Kglobal ? *) let prop_id = WpPropId.mk_pre_id env.kf Kglobal b ip in pre_cond env ip prop_id) (env @* [Clabels.next, nrequires]) b.b_requires @^ assigns (env @* [Clabels.here, nrequires; Clabels.next, nassigns]) b.b_assigns @^ either nassigns [post_normal_behavior;post_at_exit_behavior] @^ List.fold_left (fun acc post -> acc @^ post_cond Normal post_normal_env post) nop b.b_post_cond @^ List.fold_left (fun acc post -> acc @^ post_cond Exits post_at_exit_env post) nop b.b_post_cond @^ goto post_normal_behavior (env @: Clabels.post) @^ goto post_at_exit_behavior (env @: Clabels.exit) in let env = env @* [Clabels.here, env @: Clabels.pre; Clabels.next, env @: Clabels.post] in parallel behavior env spec.spec_behavior and assigns : env -> assigns -> paths = fun env a -> let frame, _, _ = mk_frame ~descr:"assigns" env in let lenv = L.mk_env () in (* TODO: lenv for ghost code. *) let here = Sigma.create () in let = L.in_frame frame (L.assigned_of_assigns lenv) a in match authorized_region with | None -> goto (env @: Clabels.here) (env @: Clabels.next) | Some region -> let domain = A.domain region in let next = M.Sigma.havoc here domain in let seq = { pre = here; post = next } in let preds = A.apply_assigns seq region in effect (env @: Clabels.here) (Cfg.E.create seq (Lang.F.p_conj preds)) (env @: Clabels.next) and froms : env -> from list -> paths = fun env froms -> assigns env (Writes froms) (* -------------------------------------------------------------------------- *) (* --- Automaton --- *) (* -------------------------------------------------------------------------- *) let pref v1 v2 = let open Interpreted_automata in match v1.vertex_info, v2.vertex_info with | NoneInfo, NoneInfo -> 0 | NoneInfo, _ -> -1 | _ , NoneInfo -> 1 | LoopHead i, LoopHead j -> Stdlib.compare j i module Automata = Interpreted_automata.UnrollUnnatural.Version type nodes = { global: node Automata.Hashtbl.t; local: node Automata.Map.t; } let get_node nodes v = try Automata.Map.find v nodes.local with Not_found -> Automata.Hashtbl.memo nodes.global v (fun _ -> Cfg.node ()) let add_local nodes v n = {nodes with local = Automata.Map.add v n nodes.local} let transition : env -> nodes -> Automata.t Interpreted_automata.transition -> paths = fun env nodes tr -> let open Interpreted_automata in match tr with | Skip | Enter { blocals = [] } | Leave { blocals = [] } -> goto (env @: Clabels.here) (env @: Clabels.next) | Enter {blocals} -> scope env Sigs.Enter blocals | Leave {blocals} -> scope env Sigs.Leave blocals | Return (r,_) -> return env r | Prop ({kind = Assert|Invariant} as a, _) -> let env = Logic_label.Map.fold (fun logic_label vertex acc -> let c_label = Clabels.of_logic logic_label in let node = get_node nodes vertex in bind c_label node acc ) a.labels env in assert_ env a.predicate (WpPropId.mk_property a.property) | Prop ({kind = Assume} as a, _)-> let env = Logic_label.Map.fold (fun logic_label vertex acc -> let c_label = Clabels.of_logic logic_label in let node = get_node nodes vertex in bind c_label node acc ) a.labels env in assume (pred env `Negative a.predicate.ip_content.tp_statement) @^ goto (env @: Clabels.here) (env @: Clabels.next) | Prop _ -> not_yet "[StmtSemantics] Annots other than 'assert'" | Guard (exp,b,_) -> let here = Sigma.create () in let cond = C.cond here exp in let condition = Cfg.C.create here cond in (if b = Then then guard else guard') (env @: Clabels.here) condition (env @: Clabels.next) | Instr (i,_) -> instr env i let rec get_invariants g n (l:Automata.t Wto.partition) = let open Interpreted_automata in let open Interpreted_automata.UnrollUnnatural in match l, G.succ_e g n with | (Wto.Node a)::l, [(_,{edge_transition = (Prop({kind=Assert|Invariant|Assume|Check},_) | Skip) as t},b)] when Automata.equal a b -> let invs,l = get_invariants g b l in (t,a)::invs,l | _ -> [],(Wto.Node n)::l let as_assumes l = let open Interpreted_automata in List.map (function | (Prop({kind=Assume},_),_) as t -> t | (Prop({kind=Assert|Invariant} as a,s),b) -> (Prop ({a with kind=Assume},s),b) | (Prop({kind=Check},_),b) -> (Skip,b) | (Skip,_) as t -> t | _ -> assert false ) l let automaton : env -> Interpreted_automata.automaton -> paths = fun env a -> let open Interpreted_automata in let binder = M.configure_ia a in let bind = binder.bind in let wto = WTO.partition ~pref ~init:a.entry_point ~succs:(G.succ a.graph) in let index = Compute.build_wto_index_table wto in (* let cout = open_out "/tmp/automata.dot" in Interpreted_automata.output_to_dot cout ~wto ~number:`Vertex a; close_out cout; *) let open UnrollUnnatural in let g = unroll_unnatural_loop a wto index in let here = (a.entry_point,Vertex.Set.empty) in let next = (a.return_point,Vertex.Set.empty) in let wto = WTO.partition ~pref:(fun _ _ -> 0) (* natural loops keep their heads *) ~succs:(UnrollUnnatural.G.succ g) ~init:here in let do_node nodes v paths = let n = get_node nodes v in let l,paths = G.fold_succ_e (fun (_,e,v2) (l,paths) -> let n2' = Cfg.node () in let n2 = get_node nodes v2 in (n2'::l, transition (env @* [Clabels.here,n2';Clabels.next,n2]) nodes e.edge_transition @^ add_tmpnode n2' @^ paths) ) g v ([],paths) in (either n l) @^ paths in let rec do_list ~fresh_nodes paths nodes n1 = function | [] -> (n1,paths) | (t,b)::l -> let n2, nodes = if fresh_nodes then let n2 = Cfg.node () in let nodes = add_local nodes b n2 in n2, nodes else (get_node nodes b), nodes in let paths = paths @^ transition (env @* [Clabels.here,n1;Clabels.next,n2]) nodes t in do_list ~fresh_nodes paths nodes n2 l in let rec component nodes paths = function | Wto.Node ((n, _) as v) -> bind n (do_node nodes v) paths | Wto.Component ((n, _) as v, l) -> let do_component (v, l) = assert (not (Automata.Map.mem v nodes.local)); let invariants,l = get_invariants g v l in let n = get_node {nodes with local = Automata.Map.empty} v in (* initialization *) let n,paths = do_list ~fresh_nodes:true paths nodes n invariants in (* preservation *) let n_loop = Cfg.node () in let _,paths = do_list ~fresh_nodes:true paths nodes n_loop invariants in (* arbitrary number of loop *) let n_havoc = Cfg.node () in let havoc = Cfg.havoc n ~effects:{pre=n_havoc;post=n_loop} n_havoc in let paths = (havoc |> paths_of_cfg) @^ paths in (* body *) let invariants_as_assumes = as_assumes invariants in let _,paths = do_list ~fresh_nodes:false paths (add_local nodes v n_havoc) n_havoc invariants_as_assumes in partition (add_local nodes v n_loop) paths l in bind n do_component (v, l) and partition nodes paths l = List.fold_left (component nodes) paths l in let nodes = { global = Automata.Hashtbl.create 10; local = Automata.Map.empty } in Automata.Hashtbl.add nodes.global here (env @: Clabels.here); Automata.Hashtbl.add nodes.global next (env @: Clabels.next); partition nodes nop wto (** connect init to here. [is_pre_main] indicate if here is the pre-state of main. *) let init ~is_pre_main env = let ninit = (env @: Clabels.init) in let sinit = Sigma.create () in (* todo Globals.is_entry_point kf, need to test that seq.pre is the start of the function *) (* todo warning *) let cfg_init = Globals.Vars.fold_in_file_order (fun var initinfo cfg -> if var.vstorage = Extern then cfg else let init = C.init ~sigma:sinit var initinfo.init in let hvalue = Lang.F.p_all (fun (_, h) -> fst h) init in let hinit = Lang.F.p_all (fun (_, h) -> snd h) init in let h = Lang.F.p_and hvalue hinit in let h = Cfg.P.create (Cfg.Node.Map.add ninit sinit Cfg.Node.Map.empty) h in assume h ) nop in if is_pre_main then cfg_init @^ goto ninit (env @: Clabels.here) else let nconst = Cfg.Node.create () in let sconst = Sigma.havoc_any ~call:false sinit in let havoc = Cfg.E.create {pre=sinit; post=sconst} Lang.F.p_true in let consts = if Wp_parameters.Init.get () then Globals.Vars.fold_in_file_order (fun var _ cfg -> if Cil.isGlobalInitConst var then let h = (C.unchanged sconst sinit var) in let h = Cfg.P.create (Cfg.Node.Map.add ninit sinit (Cfg.Node.Map.add nconst sconst Cfg.Node.Map.empty)) h in cfg @^ assume h else cfg ) nop else nop in cfg_init @^ effect ninit havoc nconst @^ consts @^ goto nconst (env @: Clabels.here) let pre_spec env spec = let pre_cond polarity env p = assume_ (env @* [Clabels.here, env @: Clabels.pre]) polarity p in let behavior env b = let assume = let p = pred env `Negative (Ast_info.behavior_assumes b) in match Cfg.P.to_condition p with | Some (c,None) -> c | Some (c,Some n) when Cfg.Node.equal n (env @: Clabels.here) -> c | _ -> not_yet "assume of behaviors with labels: %a" Cfg.P.pretty p in assume, List.fold_left (fun acc ip -> acc @^ pre_cond `Negative env ip.ip_content.tp_statement) nop b.b_requires @^ goto (env @: Clabels.here) (env @: Clabels.next) in parallel behavior env spec.spec_behavior let post_normal_spec env spec = let post_cond termination_kind env (tk, ip) propid = if tk = termination_kind then assert_ env ip propid else nop in let behavior env b = let assume = let p = pred (env @* [Clabels.here, env @: Clabels.pre]) `Negative (Ast_info.behavior_assumes b) in match Cfg.P.to_condition p with | Some (c,None) -> c | Some (c,Some n) when Cfg.Node.equal n (env @: Clabels.pre) -> c | _ -> not_yet "assume of behaviors with labels: %a" Cfg.P.pretty p in assume, sequence (fun env post -> let propid = WpPropId.mk_fct_post_id env.kf b post in post_cond Normal env post propid) env b.b_post_cond in let env = env in parallel behavior env spec.spec_behavior let compute_kf kf = let open Interpreted_automata in let autom = Compute.get_automaton ~annotations:true kf in (* let cout = open_out (Format.sprintf "/tmp/cfg_automata_%s.dot" (Kernel_function.get_name kf)) in * Interpreted_automata.Compute.output_to_dot cout autom; * close_out cout; *) let binder = M.configure_ia autom in let bind = binder.bind in let spec = Annotations.funspec kf in (* start and end nodes of pre(resp. post)-conditions. *) let pres = { pre = Cfg.node (); post = Cfg.node () } in let posts = { pre = Cfg.node (); post = Cfg.node () } in let env = empty_env kf @* [Clabels.pre,pres.post;Clabels.post,posts.pre] in (* initialization *) let init = init ~is_pre_main:(CfgInfos.is_entry_point kf) (env @* [Clabels.here,pres.pre]) in (* pre-condition *) let pre = bind autom.entry_point @@ pre_spec (env @* [Clabels.here,pres.pre;Clabels.next,pres.post]) in (* code *) let paths = automaton (env @* [Clabels.here,pres.post;Clabels.next,posts.pre]) autom in (* post-condition *) let post = bind autom.return_point @@ post_normal_spec (env @* [Clabels.here,posts.pre;Clabels.next,posts.post]) in init @^ pre spec @^ paths @^ post spec, env @: Clabels.init end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>