package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/CfgCompiler.ml.html
Source file CfgCompiler.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Sigs open Cil_types open Lang let dkey = Wp_parameters.register_category "cfg_compiler" let dumpkey = Wp_parameters.register_category "cfg_compiler_dump" type mode = [ | `Tree | `Bool_Backward | `Bool_Forward ] module type Cfg = sig module S : Sigma module Node : sig type t module Map : Qed.Idxmap.S with type key = t module Set : Qed.Idxset.S with type elt = t module Hashtbl : Hashtbl.S with type key = t val pp: Format.formatter -> t -> unit val create: unit -> t val equal: t -> t -> bool end type node = Node.t val node : unit -> node module C : sig type t val equal : t -> t -> bool val create : S.t -> F.pred -> t val get : t -> F.pred val reads : t -> S.domain val relocate : S.t -> t -> t end module P : sig type t val pretty : Format.formatter -> t -> unit val create : S.t Node.Map.t -> F.pred -> t val get: t -> F.pred val reads : t -> S.domain Node.Map.t val nodes : t -> Node.Set.t val relocate : S.t Node.Map.t -> t -> t val to_condition: t -> (C.t * Node.t option) option end module T : sig type t val pretty : Format.formatter -> t -> unit (** Bundle an equation with the sigma sequence that created it. *) val create : S.t Node.Map.t -> F.term -> t val get: t -> F.term val reads : t -> S.domain Node.Map.t val relocate : S.t Node.Map.t -> t -> t val init : Node.Set.t -> (S.t Node.Map.t -> F.term) -> t val init' : Node.t -> (S.t -> F.term) -> t end module E : sig type t val pretty: Format.formatter -> t -> unit val create : S.t sequence -> F.pred -> t val get : t -> F.pred val reads : t -> S.domain val writes : t -> S.domain val relocate : S.t sequence -> t -> t end type cfg val dump_env: name:string -> cfg -> unit val output_dot: out_channel -> ?checks:P.t Bag.t -> cfg -> unit val nop : cfg val add_tmpnode: node -> cfg val concat : cfg -> cfg -> cfg val meta : ?stmt:stmt -> ?descr:string -> node -> cfg val goto : node -> node -> cfg val branch : node -> C.t -> node -> node -> cfg val guard : node -> C.t -> node -> cfg val guard' : node -> C.t -> node -> cfg val either : node -> node list -> cfg val implies : node -> (C.t * node) list -> cfg val effect : node -> E.t -> node -> cfg val assume : P.t -> cfg val havoc : node -> effects:node sequence -> node -> cfg val compile : ?name:string -> ?mode:mode -> node -> Node.Set.t -> S.domain Node.Map.t -> cfg -> F.pred Node.Map.t * S.t Node.Map.t * Conditions.sequence end module Cfg (S:Sigma) : Cfg with module S = S = struct module S = S module Node : sig type t module Map : Qed.Idxmap.S with type key = t module Set : Qed.Idxset.S with type elt = t module Hashtbl : FCHashtbl.S with type key = t val tag: t -> int val compare: t -> t -> int val equal: t -> t -> bool val pp: Format.formatter -> t -> unit val create: unit -> t val node_internal: unit -> t end = struct type t = int module I = struct type t = int let id x = x end module Map = Qed.Idxmap.Make(I) module Set = Qed.Idxset.Make(I) module Hashtbl = Datatype.Int.Hashtbl let tag = I.id let compare = Datatype.Int.compare let equal = Datatype.Int.equal let pp fmt n = if n>=0 then Format.pp_print_int fmt n else Format.fprintf fmt "int%i" (-n) let node_compter = ref (-1) let create () = incr node_compter; !node_compter let node_internal_compter = ref 0 let node_internal () = decr node_internal_compter; !node_internal_compter end let node = Node.create let identify sigma ~src ~tgt = S.iter2 (fun _chunk u v -> match u,v with | Some x , Some y -> F.Subst.add sigma (F.e_var x) (F.e_var y) | _ -> ()) src tgt module E = struct type t = S.t sequence * F.pred let pretty fmt (_seq,p) = Format.fprintf fmt "effect: @[%a@]" F.pp_pred p let get : t -> F.pred = snd let create seq p = seq,p let relocate tgt (src,p) = let sigma = Lang.sigma () in identify sigma ~src:src.pre ~tgt:tgt.pre ; identify sigma ~src:src.post ~tgt:tgt.post ; tgt , F.p_subst sigma p let reads (seq,_) = S.domain seq.pre let writes (seq,_) = S.writes seq end module C = struct type t = S.t * F.pred let get = snd let create seq p = seq,p let relocate tgt (src,p) = let sigma = Lang.sigma () in identify sigma ~src ~tgt ; tgt , F.p_subst sigma p let reads (src,_) = S.domain src let equal (s1,p1) (s2,p2) = let sigma = Lang.sigma () in identify sigma ~src:s1 ~tgt:s2 ; F.eqp (F.p_subst sigma p1) p2 end module P = struct type t = S.t Node.Map.t * F.pred let pretty fmt (m,f) = Format.fprintf fmt "%a(%a)" F.pp_pred f (Pretty_utils.pp_iter2 Node.Map.iter ~between:",@ " Node.pp (fun _ _ -> ())) m let get = snd let create smap p = smap,p let relocate tgt (src,p) = let sigma = Lang.sigma () in Node.Map.iter2 (fun n src tgt -> match src,tgt with | Some src , Some tgt -> identify sigma ~src ~tgt | Some _, None -> invalid_arg (Format.asprintf "P.relocate: tgt is smaller than src at %a" Node.pp n) | _ -> ()) src tgt ; let tgt = Node.Map.inter (fun _ _ tgt -> tgt) src tgt in tgt , F.p_subst sigma p let reads (smap,_) = Node.Map.map (fun _ s -> S.domain s) smap let nodes (smap,_) = Node.Map.fold (fun k _ acc -> Node.Set.add k acc) smap Node.Set.empty let nodes_list (smap,_) = Node.Map.fold (fun k _ acc -> k::acc) smap [] let to_condition (m,p) = let l = Node.Map.fold (fun k e acc -> (k,e)::acc) m [] in match l with | [] -> Some ((S.create (),p), None) | [n,s] -> Some ((s,p), Some n) | _ -> None end module T = struct type t = S.t Node.Map.t * F.term let pretty fmt (m,f) = Format.fprintf fmt "%a(%a)" F.pp_term f (Pretty_utils.pp_iter2 Node.Map.iter ~between:",@ " Node.pp (fun _ _ -> ())) m let get = snd let create smap t = smap,t let reads (smap,_) = Node.Map.map (fun _ s -> S.domain s) smap let relocate tgt (src,p) = let sigma = Lang.sigma () in Node.Map.iter2 (fun _ src tgt -> match src,tgt with | Some src , Some tgt -> identify sigma ~src ~tgt | Some _, None -> invalid_arg "T.relocate: tgt is smaller than src" | _ -> ()) src tgt ; let tgt = Node.Map.inter (fun _ _ tgt -> tgt) src tgt in tgt , F.e_subst sigma p let init node_set f = let node_map = Node.Set.fold (fun x m -> Node.Map.add x (S.create ()) m ) node_set Node.Map.empty in let t = f node_map in (node_map,t) let init' node f = let src = S.create () in let t = f src in let node_map = Node.(Map.add node src Map.empty) in (node_map,t) end type node = Node.t type without_bindings = Without_Bindings type with_bindings = With_Bindings let _ = Without_Bindings let _ = With_Bindings type ('havoc,_) edge = | Goto of node | Branch of C.t * node option * node option | Either of node list | Implies of (C.t * node) list | Effect of E.t * node | Havoc of 'havoc * node | Binding : Passive.t * node -> ('havoc,with_bindings) edge (** Binding used for sigma merging *) type data = | Meta of stmt option * string option type ('havoc, 'bindings) env = { succs : ('havoc, 'bindings) edge Node.Map.t; datas : data Bag.t Node.Map.t; (* datas is always included in succs *) assumes : P.t Bag.t; tmpnodes : Node.Set.t; (* node that could be removed *) } type pre_env = (node sequence, without_bindings) env type restricted_env = (S.domain, without_bindings) env type localised_env = (S.domain, with_bindings) env type cfg = pre_env let iter_succs : type a b. (Node.t -> unit) -> (a,b) edge -> unit = fun f -> function | Goto n2 | Effect(_,n2) | Havoc(_,n2) -> f n2 | Branch(_,n2a,n2b) -> let f' = function None -> () | Some x -> f x in f' n2a; f' n2b | Either l -> List.iter f l | Implies l -> List.iter (fun (_,a) -> f a) l | Binding (_,n2) -> f n2 let iter_succs_e f cfg n = match Node.Map.find n cfg.succs with | exception Not_found -> () | e -> iter_succs f e let succs : type a b. (a,b) env -> Node.t -> Node.t list = fun cfg n -> match Node.Map.find n cfg.succs with | exception Not_found -> [] | Goto n2 | Effect(_,n2) | Havoc(_,n2) | Branch(_,Some n2,None) | Branch(_,None,Some n2) -> [n2] | Binding (_,n2) -> [n2] | Branch(_,Some n1,Some n2) -> [n1;n2] | Branch(_,None,None) -> [] | Either l -> l | Implies l -> List.map snd l let pretty_edge : type a. Format.formatter -> (_,a) edge -> unit = fun fmt edge -> match edge with | Goto(n) -> Format.fprintf fmt "goto(%a)" Node.pp n | Branch(c,n1,n2) -> Format.fprintf fmt "branch(%a,%a,%a)" Lang.F.pp_pred (C.get c) (Pretty_utils.pp_opt Node.pp) n1 (Pretty_utils.pp_opt Node.pp) n2 | Either l -> Format.fprintf fmt "either(%a)" (Pretty_utils.pp_list ~sep:",@ " Node.pp) l | Implies l -> Format.fprintf fmt "implies(%a)" (Pretty_utils.pp_list ~sep:",@ " (fun fmt (c,a) -> Format.fprintf fmt "%a=>%a" Lang.F.pp_pred (C.get c) Node.pp a)) l | Effect(_,n) -> Format.fprintf fmt "effect(%a)" Node.pp n | Havoc(_,n) -> Format.fprintf fmt "havoc(%a)" Node.pp n | Binding(_,n) -> Format.fprintf fmt "binding(%a)" Node.pp n let pretty_data fmt = function | Meta(s_opt,str_opt) -> Format.fprintf fmt "Meta(%a,%a)" (Pretty_utils.pp_opt ~none:"None" Cil_datatype.Stmt.pretty_sid) s_opt (Pretty_utils.pp_opt ~none:"None" Format.pp_print_string) str_opt let pretty_env : type a. Format.formatter -> (_,a) env -> unit = fun fmt env -> Context.bind Lang.F.context_pp (Lang.F.env Lang.F.Vars.empty) (fun () -> Format.fprintf fmt "@[<v>@[<3>@[succs:@]@ %a@]@,@[<3>@[datas:@]@ %a@]@,@[<3>@[assumes:@]@ %a@]@]@." (Pretty_utils.pp_iter2 ~between:"->@," ~sep:",@ " Node.Map.iter Node.pp pretty_edge) env.succs (Pretty_utils.pp_iter2 ~between:"->@," ~sep:",@ " Node.Map.iter Node.pp (Pretty_utils.pp_iter Bag.iter pretty_data)) env.datas (Pretty_utils.pp_iter ~sep:",@ " Bag.iter P.pretty) env.assumes ) () let dump_edge : type a. node -> Format.formatter -> (_, a) edge -> unit = fun n fmt edge -> let pp_edge ?(label="") n' = Format.fprintf fmt " %a -> %a [ label=\"%s\" ] ;@." Node.pp n Node.pp n' label in begin match edge with | Goto n1 -> pp_edge n1 | Branch (_, n1, n2)-> Option.iter pp_edge n1; Option.iter pp_edge n2 | Either ns -> List.iter pp_edge ns | Implies ns -> List.iter (fun (_,a) -> pp_edge a) ns | Effect (e, n') -> pp_edge ~label:(Format.asprintf "%a" E.pretty e) n' | Havoc (_, n') -> pp_edge ~label:"havoc" n' | Binding (_,n') -> pp_edge ~label:"binding" n' end let dump_node : data Bag.t -> Format.formatter -> node -> unit = fun datas fmt n -> Format.fprintf fmt " %a [ label=\"%a\n%a\" ] ;@." Node.pp n Node.pp n (Pretty_utils.pp_iter ~sep:"\n" Bag.iter pretty_data) datas let dump_succ : type a. (_, a) env -> Format.formatter -> node -> (_, a) edge -> unit = fun env fmt n e -> let datas = try Node.Map.find n env.datas with Not_found -> Bag.empty in Format.fprintf fmt "%a\n%a@\n" (dump_node datas) n (dump_edge n) e let dump_assume : Format.formatter -> P.t -> unit = let count = ref 0 in fun fmt p -> incr count; Format.fprintf fmt " subgraph cluster_%d {@\n" !count; Format.fprintf fmt " color=\"palegreen\";@\n"; Node.Map.iter (fun n _ -> Format.fprintf fmt " %a;\n" Node.pp n) (P.reads p); Format.fprintf fmt " label=\"%a\";" Lang.F.pp_pred (P.get p); Format.fprintf fmt " }@." let escape fmt = Pretty_utils.ksfprintf (fun s -> String.escaped s) fmt let output_dot : type a b. out_channel -> ?checks:_ -> (a,b) env -> unit = fun cout ?(checks=Bag.empty) env -> let count = let c = ref max_int in fun () -> decr c; !c in let module E = struct type t = Graph.Graphviz.DotAttributes.edge list let default = [] let compare x y = assert (x == y); 0 end in let module V = struct type t = | Node of Node.t | Assume of int * Lang.F.pred | Check of int * Lang.F.pred (* todo better saner comparison *) let tag = function | Node i -> Node.tag i | Assume (i,_) -> i | Check (i,_) -> i let pp fmt = function | Node i -> Node.pp fmt i | Assume (i,_) -> Format.fprintf fmt "ass%i" i | Check (i,_) -> Format.fprintf fmt "chk%i" i let equal x y = (tag x) = (tag y) let compare x y = Stdlib.compare (tag x) (tag y) let hash x = tag x end in let module G = Graph.Imperative.Digraph.ConcreteBidirectionalLabeled (V)(E) in let module Dot = Graph.Graphviz.Dot(struct let graph_attributes _g = [`Fontname "fixed"] let default_vertex_attributes _g = (* [`Shape `Point] *) [`Shape `Circle] let vertex_name v = Format.asprintf "cp%a" V.pp v let vertex_attributes = function | V.Node n -> [`Label (escape "%a" Node.pp n)] | V.Assume (_,p) -> [`Style `Dashed; `Label (escape "%a" Lang.F.pp_pred p)] | V.Check (_,p) -> [`Style `Dotted; `Label (escape "%a" Lang.F.pp_pred p)] let get_subgraph _ = None let default_edge_attributes _g = [] let edge_attributes ((_,e,_):G.E.t) : Graph.Graphviz.DotAttributes.edge list = e include G end) in let g = G.create () in let add_edge n1 l n2 = G.add_edge_e g (V.Node n1,l,V.Node n2) in let add_edges : type a b. Node.t -> (a,b) edge -> unit = fun n1 -> function | Goto n2 -> add_edge n1 [] n2 | Branch((_,c),n2,n2') -> let aux s = function | None -> () | Some n -> add_edge n1 [`Label (escape "%s%a" s Lang.F.pp_pred c)] n in aux "" n2; aux "!" n2' | Either l -> List.iter (add_edge n1 []) l | Implies l -> List.iter (fun (c,n) -> add_edge n1 [`Label (escape "%a" Lang.F.pp_pred (C.get c))] n) l | Effect ((_,e),n2) -> add_edge n1 [`Label (escape "%a" Lang.F.pp_pred e)] n2 | Havoc (_,n2) -> add_edge n1 [`Label (escape "havoc")] n2 | Binding (_,n2) -> add_edge n1 [`Label (escape "binding")] n2 in Node.Map.iter add_edges env.succs; (* assumes *) Bag.iter (fun (m,p) -> let n1 = V.Assume(count (), p) in let assume_label = [`Style `Dashed ] in Node.Map.iter (fun n2 _ -> G.add_edge_e g (n1,assume_label,V.Node n2)) m ) env.assumes; (* checks *) Bag.iter (fun (m,p) -> let n1 = V.Check(count (), p) in let label = [`Style `Dotted ] in Node.Map.iter (fun n2 _ -> G.add_edge_e g (V.Node n2,label,n1)) m ) checks; Dot.output_graph cout g let dump_env : type a. name:string -> (_, a) env -> unit = fun ~name env -> let file = (Filename.get_temp_dir_name ()) ^ "/cfg_" ^ name in let fout = open_out (file ^ ".dot") in if false then begin let out = Format.formatter_of_out_channel fout in Format.fprintf out "digraph %s {@\n" name; Format.fprintf out " rankdir = TB ;@\n"; Format.fprintf out " node [ style = filled, shape = circle ] ;@\n"; Node.Map.iter (dump_succ env out) env.succs; Bag.iter (dump_assume out) env.assumes; Format.fprintf out "}@."; end else begin output_dot fout env; end; close_out fout; ignore (Sys.command (Printf.sprintf "dot -Tpdf %s.dot > %s.pdf" file file)); Wp_parameters.debug ~dkey:dumpkey "Saving dump %s into %s.pdf" name file let env_union env1 env2 = { succs = Node.Map.union (fun _ _v1 _v2 -> invalid_arg "A node has more than one successor") env1.succs env2.succs; datas = Node.Map.union (fun _ -> Bag.concat) env1.datas env2.datas; assumes = Bag.concat env1.assumes env2.assumes; tmpnodes = Node.Set.union env1.tmpnodes env2.tmpnodes; } let new_env ?(succs=Node.Map.empty) ?(datas=Node.Map.empty) ?(assumes=Bag.empty) ?(tmpnodes=Node.Set.empty) () = {succs; datas; assumes; tmpnodes} let nop = new_env () let add_tmpnode node = new_env ~tmpnodes:(Node.Set.singleton node) () let concat a b = env_union a b let meta ?stmt ?descr n = let data = Meta(stmt,descr) in new_env ~datas:(Node.Map.add n (Bag.elt data) (Node.Map.empty)) () let edge n e = new_env ~succs:(Node.Map.add n e (Node.Map.empty)) () let goto node_orig node_target = edge node_orig (Goto(node_target)) let branch node_orig predicate node_target_then node_target_else = edge node_orig (Branch(predicate, Some node_target_then, Some node_target_else)) let guard node_orig predicate node_target_then = edge node_orig (Branch(predicate, Some node_target_then, None)) let guard' node_orig predicate node_target_else = edge node_orig (Branch(predicate, None, Some node_target_else )) let either node = function | [] -> nop | [dest] -> goto node dest | node_list -> edge node (Either(node_list)) let implies node = function | [] -> nop | [g,dest] -> guard node g dest | node_list -> edge node (Implies(node_list)) let effect node1 e node2 = edge node1 (Effect(e, node2)) let assume (predicate:P.t) = if F.is_ptrue (P.get predicate) = Qed.Logic.Yes then nop else new_env ~assumes:(Bag.elt predicate) () let havoc node1 ~effects:node_seq node2 = edge node1 (Havoc(node_seq,node2)) let option_bind ~f = function | None -> None | Some x -> f x let union_opt_or union d1 d2 = match d1, d2 with | Some d1, Some d2 -> Some (union d1 d2) | (Some _ as d), None | None, (Some _ as d) -> d | None, None -> None let union_opt_and union d1 d2 = match d1, d2 with | Some d1, Some d2 -> Some (union d1 d2) | _ -> None let add_only_if_alive union d1 = function | None -> None | Some d2 -> Some (union d1 d2) (** return None when post is not accessible from this node *) let rec effects : type a. (_,a) env -> node -> node -> S.domain option = fun env post node -> if node = post then Some S.empty else match Node.Map.find node env.succs with | exception Not_found -> None | Goto (node2) -> effects env post node2 | Branch (_, node2, node3) -> union_opt_or S.union (option_bind ~f:(effects env post) node2) (option_bind ~f:(effects env post) node3) | Either (l) -> (List.fold_left (fun acc node2 -> union_opt_or S.union acc (effects env post node2)) None l) | Implies (l) -> (List.fold_left (fun acc (_,node2) -> union_opt_or S.union acc (effects env post node2)) None l) | Effect (effect , node2) -> add_only_if_alive S.union (E.writes effect) (effects env post node2) | Havoc (m, node2) -> union_opt_and S.union (effects env m.post m.pre) (effects env post node2) | Binding (_,node2) -> effects env post node2 (** restrict a cfg to the nodes accessible from the pre post given, and compute havoc effect *) let restrict (cfg:pre_env) pre posts : restricted_env = let rec walk acc node : restricted_env option = if Node.Map.mem node acc.succs then Some acc else let new_env edge = new_env ~succs:(Node.Map.add node edge (Node.Map.empty)) () in let r = match Node.Map.find node cfg.succs with | exception Not_found -> None | (Goto (node2) | Effect (_ , node2)) as edge -> union_opt_and env_union (Some (new_env edge)) (walk acc node2) | Branch (pred, node2, node3) -> (* it is important to visit all the childrens *) let f acc node = match option_bind ~f:(walk acc) node with | None -> None, acc | Some acc -> node, acc in let node2, acc = f acc node2 in let node3, acc = f acc node3 in if node2 = None && node3 = None then None else Some (env_union acc (new_env (Branch(pred, node2, node3)))) | Either (l) -> let acc,l = List.fold_left (fun ((acc,l) as old) node2 -> match walk acc node2 with | None -> old | Some acc -> (acc,node2::l)) (acc,[]) l in if l = [] then None else Some (env_union acc (new_env (Either (List.rev l)))) | Implies (l) -> let acc,l = List.fold_left (fun ((acc,l) as old) ((_,node2) as e) -> match walk acc node2 with | None -> old | Some acc -> (acc,e::l)) (acc,[]) l in if l = [] then None else Some (env_union acc (new_env (Implies (List.rev l)))) | Havoc (m, node2) -> match effects cfg m.post m.pre with | None -> None | Some eff -> union_opt_and env_union (Some (new_env (Havoc(eff,node2)))) (walk acc node2) in if Node.Set.mem node posts && r = None then Some acc else r in match walk (new_env ()) pre with | None -> (new_env ()) | Some acc -> { succs = acc.succs; datas = Node.Map.inter (fun _ _ v -> v) acc.succs cfg.datas; assumes = Bag.filter (fun (seq,_) -> Node.Map.subset (fun _ _ _ -> true) seq acc.succs) cfg.assumes; tmpnodes = cfg.tmpnodes; } (** succ is decreasing for this order *) let topological (type a) (type b) (cfg:(a,b) env) = let module G = struct type t = (a,b) env module V = struct let hash = Hashtbl.hash include Node end let iter_vertex f cfg = let h = Node.Hashtbl.create 10 in let replace n = Node.Hashtbl.replace h n () in Node.Map.iter (fun k _ -> replace k; iter_succs_e replace cfg k) cfg.succs; Node.Hashtbl.iter (fun k () -> f k) h let iter_succ = iter_succs_e end in let module T = Graph.Topological.Make(G) in let h = Node.Hashtbl.create 10 in let h' = Datatype.Int.Hashtbl.create 10 in let c = ref (-1) in let l = ref [] in T.iter (fun n -> l := n::!l; incr c; Node.Hashtbl.add h n !c; Datatype.Int.Hashtbl.add h' !c n) cfg; h,h',List.rev !l (** topo_list: elements in topological order topo_order: post-order mapping nb: number of elements *) let idoms topo_list topo_order nb ~pred ~is_after = let a = Array.make nb (-1) in let iter n = let first,preds = match pred n with | [] -> topo_order n, [] | f::p -> topo_order f, List.map topo_order p in let rec find_common n1 n2 = if n1 = n2 then n1 else if is_after n1 n2 then find_common a.(n1) n2 else find_common n1 a.(n2) in let idom = List.fold_left find_common first preds in a.(topo_order n) <- idom in List.iter iter topo_list; a let find_def ~def x t = try Node.Map.find x t with Not_found -> def let rec remove_dumb_gotos (env:restricted_env) : Node.t Node.Map.t * restricted_env = let add_map m acc = Node.Map.fold (fun n _ acc -> Node.Set.add n acc) m acc in let used_nodes = Bag.fold_left (fun acc p -> add_map (P.reads p) acc) Node.Set.empty env.assumes in let used_nodes = add_map env.datas used_nodes in let how_many_preds = Node.Hashtbl.create 10 in let incr_how_many_preds n = Node.Hashtbl.replace how_many_preds n (succ (Node.Hashtbl.find_def how_many_preds n 0)) in let subst = Node.Map.fold (fun n e acc -> iter_succs incr_how_many_preds e; match (e:(_,without_bindings) edge) with | Goto n' when not (Node.Set.mem n used_nodes) -> Node.Map.add n n' acc | Goto _ | Branch (_,_,_) | Either _ | Implies _ | Effect (_,_) | Havoc (_,_) -> acc) env.succs Node.Map.empty in let subst = let rec compress n = match Node.Map.find n subst with | exception Not_found -> n | n -> compress n in Node.Map.map (fun _ n' -> compress n') subst in let find n = find_def ~def:n n subst in (* detect either that could be transformed in branch *) let to_remove = Node.Hashtbl.create 10 in Node.Map.iter (fun _ e -> match (e:(_,without_bindings) edge) with | Either [a;b] when Node.Hashtbl.find how_many_preds a = 1 && Node.Hashtbl.find how_many_preds b = 1 && not (Node.Set.mem a used_nodes) && not (Node.Set.mem b used_nodes) && Node.Set.mem a env.tmpnodes && Node.Set.mem b env.tmpnodes && true -> begin let find_opt k m = match Node.Map.find k m with | exception Not_found -> None | v -> Some v in match find_opt a env.succs, find_opt b env.succs with | Some Branch(c,Some n1, None), Some Branch(c',None, Some n2) | Some Branch(c,None, Some n2), Some Branch(c',Some n1,None) when C.equal c c' -> let n1 = find n1 in let n2 = find n2 in let br = Branch(c,Some n1, Some n2) in Node.Hashtbl.add to_remove a br; Node.Hashtbl.add to_remove b br | _ -> () end | Goto _ | Branch (_,_,_) | Effect (_,_) | Either _ | Implies _ | Havoc (_,_) -> () ) env.succs; (* substitute and remove *) let succs = Node.Map.mapq (fun n e -> match (e:(_,without_bindings) edge) with | _ when Node.Hashtbl.mem to_remove n -> None | Goto _ when not (Node.Set.mem n used_nodes) -> None | Goto n' -> let n'' = find n' in if Node.equal n' n'' then Some e else Some (Goto n'') | Branch (c,n1,n2) -> let n1' = Option.map find n1 in let n2' = Option.map find n2 in if Option.equal Node.equal n1 n1' && Option.equal Node.equal n2 n2' then Some e else Some (Branch(c,n1',n2')) | Either l -> let l' = List.map find l in let l' = List.sort_uniq Node.compare l' in begin match l' with | [] -> assert false (* absurd: Either after restricted has at least one successor *) | [a] -> Some (Goto a) | [a;_] when Node.Hashtbl.mem to_remove a -> let br = Node.Hashtbl.find to_remove a in Some br | l' -> Some (Either l') end | Implies l -> let l' = List.map (fun (g,n) -> (g,find n)) l in Some (Implies l') | Effect (ef,n') -> let n'' = find n' in if Node.equal n' n'' then Some e else Some (Effect(ef,n'')) | Havoc (h,n') -> let n'' = find n' in if Node.equal n' n'' then Some e else Some (Havoc(h,n'')) ) env.succs in let env = {env with succs} in if Node.Map.is_empty subst then subst, env else let subst', env = remove_dumb_gotos env in let subst = Node.Map.map (fun _ n' -> find_def ~def:n' n' subst') subst in Node.Map.merge (fun _ a b -> match a, b with | Some _, Some _ -> assert false (* the elements are remove in the new env *) | Some x, None | None, Some x -> Some x | None, None -> assert false ) subst subst', env let allocate domain sigma = S.Chunk.Set.iter (fun chunk -> ignore (S.get sigma chunk)) domain let domains (env : restricted_env) reads pre : localised_env * S.t Node.Map.t = let visited = ref Node.Map.empty in let new_succs = ref Node.Map.empty in let add_edge node edge = new_succs := Node.Map.add node edge !new_succs in let add_binding_edge n (p: Passive.t) = if Passive.is_empty p then n else let n' = Node.node_internal () in add_edge n' (Binding(p,n)); n' in let rec aux node : S.t = try Node.Map.find node !visited with Not_found -> let dom = find_def ~def:S.empty node reads in let ret = match Node.Map.find node env.succs with | exception Not_found -> (* posts node *) let s1 = S.create () in allocate dom s1; s1 | Goto (node2) -> let s1 = S.copy (aux node2) in allocate dom s1; add_edge node (Goto node2); s1 | Branch (pred, node2, node3) -> let dom = (S.union (C.reads pred) dom) in begin match node2, node3 with | (None, Some next) | (Some next, None) -> let s1 = S.copy (aux next) in allocate dom s1; let pred = C.relocate s1 pred in add_edge node (Branch(pred,node2,node3)); s1 | Some node2, Some node3 -> let s2 = aux node2 in let s3 = aux node3 in let s1,p2,p3 = S.merge s2 s3 in allocate dom s1; let node2' = add_binding_edge node2 p2 in let node3' = add_binding_edge node3 p3 in let pred = C.relocate s1 pred in add_edge node (Branch(pred,Some node2',Some node3')); s1 | _ -> assert false end | Either (l) -> let s1, pl = S.merge_list (List.map aux l) in allocate dom s1; let l = List.map2 add_binding_edge l pl in add_edge node (Either l); s1 | Implies (l) -> let dom = List.fold_left (fun acc (c,_) -> S.union (C.reads c) acc) dom l in let s1, pl = S.merge_list (List.map (fun (_,n) -> aux n) l) in allocate dom s1; let l = List.map2 (fun (c,a) b -> let a = add_binding_edge a b in let c = C.relocate s1 c in (c,a)) l pl in add_edge node (Implies l); s1 | Effect (effect , node2) -> let s2 = aux node2 in let s1 = S.remove_chunks s2 (E.writes effect) in allocate dom s1; allocate (E.reads effect) s1; let effect = E.relocate {pre=s1;post=s2} effect in add_edge node (Effect(effect,node2)); s1 | Havoc (eff, node2) -> let s2 = aux node2 in let s1 = S.havoc s2 eff in allocate dom s1; add_edge node (Havoc(eff,node2)); s1 in visited := Node.Map.add node ret !visited; ret in ignore (aux pre); let sigmas = !visited in let new_env = {succs = !new_succs; datas = env.datas; assumes = Bag.map (fun e -> P.relocate sigmas e) env.assumes; tmpnodes = env.tmpnodes; } in new_env, sigmas let compute_preds env = let h = Node.Hashtbl.create 10 in let add = Node.Hashtbl.add h in Node.Map.iter (fun n s -> match s with | Goto n1 | Havoc (_, n1) | Effect (_,n1) | Binding (_,n1) -> add n1 n | Branch (_,Some n1,Some n2) -> add n1 n; add n2 n | Branch(_,Some n1,None) -> add n1 n | Branch(_,None,Some n1) -> add n1 n | Branch(_,None,None) -> () | Either l -> List.iter (fun n1 -> add n1 n) l | Implies l -> List.iter (fun (_,n1) -> add n1 n) l ) env.succs; h let to_sequence_bool ~mode pre posts env : Conditions.sequence * F.pred Node.Map.t = let preds = Node.Hashtbl.create 10 in let access n = Node.Hashtbl.memo preds n (fun _ -> let v = F.fresh ~basename:"node" (get_pool ()) Qed.Logic.Bool in F.p_bool (F.e_var v)) in let (!.) c = (Conditions.sequence [Conditions.step c]) in let have_access n = !. (Conditions.Have (access n)) in let add_cond ?descr ?stmt f cond = Conditions.append (Conditions.sequence [Conditions.step ?descr ?stmt cond]) f in let either = function | [] -> !. (Conditions.Have F.p_false) | [a] -> a | l -> !. (Conditions.Either l) in let f = Conditions.empty in (* The start state is accessible *) let pre = Conditions.Have (access pre) in let f = add_cond f pre in (* The posts state are accessible *) let f = Node.Set.fold (fun n f -> add_cond f (Conditions.Have (access n))) posts f in (* The assumes are true if all their nodes are accessible *) let f = Bag.fold_left (fun f p -> let nodes_are_accessible = Node.Map.fold (fun n _ acc -> F.p_and (access n) acc) (P.reads p) F.p_true in let f' = F.p_imply nodes_are_accessible (P.get p) in add_cond f (Conditions.Have f') ) f env.assumes in (* compute predecessors *) let to_sequence_basic_backward f = let predecessors = Node.Map.fold (fun n s acc -> let add acc n' p = Node.Map.change (fun _ (n,p) -> function | None -> Some (Node.Map.add n p Node.Map.empty) | Some s -> Some (Node.Map.add n p s)) n' (n,p) acc in match s with | Goto n' | Havoc (_, n') -> add acc n' F.p_true | Branch (c,Some n1,Some n2) -> let c = P.get c in add (add acc n1 c) n2 (F.p_not c) | Branch(c,Some n1,None) -> add acc n1 (P.get c) | Branch(c,None,Some n1) -> add acc n1 (F.p_not (P.get c)) | Branch(_,None,None) -> acc | Either l -> List.fold_left (fun acc e -> add acc e F.p_true) acc l | Implies l -> List.fold_left (fun acc (c,e) -> add acc e (P.get c)) acc l | Effect (e,n') -> add acc n' (E.get e) | Binding (b,n') -> let b = F.p_conj (Passive.conditions b (fun _ -> true)) in add acc n' b ) env.succs Node.Map.empty in Node.Map.fold (fun n' preds f -> let l = Node.Map.fold (fun n p acc -> (Conditions.append (have_access n) (!. (Conditions.Have p)))::acc ) preds [] in let f' = Conditions.Branch(access n', either l, Conditions.empty) in let stmt,descr = let bag = match Node.Map.find n' env.datas with | exception Not_found -> Bag.empty | bag -> bag in Bag.fold_left (fun (os,od) b -> match b with | Meta(os',od') -> (if os = None then os' else os), (if od = None then od' else od) ) (None,None) bag in add_cond ?stmt ?descr f f' ) predecessors f in (* The transitions *) let to_sequence_basic_forward f = Node.Map.fold (fun n s f -> let node_is_accessible = access n in let f' = match s with | Goto n' | Havoc (_, n') -> (* The havoc is already taken into account during {!domains} *) Conditions.Branch(node_is_accessible, have_access n', Conditions.empty) | Branch (c,Some n1,Some n2) -> Conditions.Branch(node_is_accessible, !. (Conditions.Branch((C.get c), have_access n1, have_access n2)), Conditions.empty) | Branch(c,Some n1,None) -> Conditions.Branch(node_is_accessible, Conditions.append (!. (Conditions.Have (C.get c))) (have_access n1), Conditions.empty) | Branch(c,_,Some n1) -> Conditions.Branch(node_is_accessible, Conditions.append (!. (Conditions.Have (F.p_not (C.get c)))) (have_access n1), Conditions.empty) | Branch(_,None,None) -> assert false | Either l -> let l = List.map have_access l in Conditions.Branch(node_is_accessible, either l, Conditions.empty) | Implies l -> let l = List.map (fun (c,n) -> !. (Conditions.Branch (C.get c, have_access n, Conditions.empty))) l in Conditions.Branch(node_is_accessible, Conditions.concat l, Conditions.empty) | Effect (e,n) -> Conditions.Branch(node_is_accessible, Conditions.append (!. (Conditions.Have (E.get e))) (have_access n) , Conditions.empty) | Binding (b,n') -> (* For basic: all the variables are important *) let b = !. (Conditions.Have(F.p_conj (Passive.conditions b (fun _ -> true)))) in Conditions.Branch(node_is_accessible, Conditions.append b (have_access n'), Conditions.empty) in let stmt,descr = let bag = match Node.Map.find n env.datas with | exception Not_found -> Bag.empty | bag -> bag in Bag.fold_left (fun (os,od) b -> match b with | Meta(os',od') -> (if os = None then os' else os), (if od = None then od' else od) ) (None,None) bag in add_cond ?stmt ?descr f f' ) env.succs f in let f = match mode with | `Bool_Backward -> to_sequence_basic_backward f | `Bool_Forward -> to_sequence_basic_forward f in f,Node.Hashtbl.fold Node.Map.add preds Node.Map.empty module To_tree = struct (* Use a simplified version of "A New Elimination-Based Data Flow Analysis Framework Using Annotated Decomposition Trees" where there is no loop *) type tree = { c : F.pred (** condition for this tree *) ; q : tree Queue.t (** childrens *) ; mutable fact : F.pred list (** facts at this level *) ; } [@@@ warning "-32"] let rec pp_tree ?(pad : (string * string)= ("", "")) (tree : tree) : unit = let pd, pc = pad in Format.printf "%sNode condition: %a @." pd Lang.F.pp_pred tree.c; Format.printf "%sNode fact:%a@." pd (Pretty_utils.pp_list ~sep:"," ~pre:"[" ~suf:"]" Lang.F.pp_pred) tree.fact; let n = Queue.length tree.q - 1 in let _ = Queue.fold ( fun i c -> let pad = (pc ^ (if i = n then "`-- " else "|-- "), pc ^ (if i = n then " " else "| ")) in pp_tree ~pad c; i+1 ) 0 tree.q in () let pp_idoms fmt a = Pretty_utils.pp_array ~sep:";@ " (fun fmt i j -> Format.fprintf fmt "%i -> %i" i j) fmt a [@@@ warning "+32"] type env_to_sequence_tree = { env: localised_env; pred: Node.t -> Node.t list; (** predecessors *) topo_order : Node.t -> int; (** topological order *) get_idom_forward: Node.t -> Node.t; (** Immediate dominator forward *) get_idom_backward: int -> int; (** Immediate dominator backward *) full_conds: Lang.F.pred Node.Hashtbl.t; (** For each node we are going to compute different formulas Necessary conditions of the node from start *) conds: Lang.F.pred Node.Hashtbl.t; (** Necessary conditions from its forward idiom *) subtrees: tree Node.Hashtbl.t; (** To which subtree corresponds this node *) root: tree; (** Root the full tree *) eithers: Lang.F.pred Node.Hashtbl.t Node.Hashtbl.t; (** Variable used for the non-deterministic choice of either *) } let is_after n1 n2 = n1 > n2 let is_before n1 n2 = n1 < n2 let create_env_to_sequence_tree env = (* Compute topological order for immediate dominator computation and the main iteration on nodes *) let node_int,int_node,ordered = topological env in let nb = Node.Hashtbl.length node_int in (* We compute the forward immediate dominators (path that use succ) and the backward immediate dominators (path that use pred) *) let predecessors = compute_preds env in let pred n = Node.Hashtbl.find_all predecessors n in let succ n = succs env n in let topo_order = Node.Hashtbl.find node_int in let idoms_forward = idoms ordered topo_order nb ~pred ~is_after in let idoms_backward = idoms (List.rev ordered) topo_order nb ~pred:succ ~is_after:is_before in let get_idom_forward n = Datatype.Int.Hashtbl.find int_node idoms_forward.(topo_order n) in (* Format.printf "@[ordered: %a@]@." (Pretty_utils.pp_list ~sep:"@ " (fun fmt n -> Format.fprintf fmt "%a (%i)" Node.pp n (Node.Hashtbl.find node_int n))) ordered; * Format.printf "@[pred: %a@]@." * (Pretty_utils.pp_iter2 ~sep:"@ " ~between:":" Node.Hashtbl.iter Node.pp Node.pp) predecessors; * Format.printf "@[idoms forward: @[@[%a@]@]@." _pp_idoms idoms_forward; * Format.printf "@[idoms backward: @[@[%a@]@]@." _pp_idoms idoms_backward; *) { env; pred; topo_order; get_idom_forward; get_idom_backward = (fun i -> idoms_backward.(i)); full_conds = Node.Hashtbl.create 10; conds = Node.Hashtbl.create 10; subtrees = Node.Hashtbl.create 10; root = {c = Lang.F.p_true; q = Queue.create (); fact = [] }; eithers = Node.Hashtbl.create 10; }, ordered let either env n last = let h = Node.Hashtbl.memo env.eithers n (fun _ -> Node.Hashtbl.create 10) in Node.Hashtbl.memo h last (fun _ -> let v = F.fresh ~basename:"node" (get_pool ()) Qed.Logic.Bool in F.p_bool (F.e_var v) ) (** For a node n *) let iter env n = let idom = env.get_idom_forward n in let rec get_cond acc n' = if n' = idom then acc else let acc = F.p_and acc (Node.Hashtbl.find env.conds n') in get_cond acc (env.get_idom_forward n') in (* find all the conditions that keep the path toward n, i.e. the condition of the nodes that are not dominated backwardly (for which not all the nodes goes to n) *) let rec find_frontiere last acc n' = if (env.topo_order n) <= env.get_idom_backward (env.topo_order n') then let cond = get_cond F.p_true n' in let branch = match Node.Map.find n' env.env.succs with | exception Not_found -> F.p_true | Goto _ | Havoc (_, _) -> F.p_true | Branch (c,Some n'',Some _) when Node.equal n'' last -> C.get c | Branch (c,Some _,Some n'') when Node.equal n'' last -> F.p_not (C.get c) | Branch (_,_,_) -> F.p_true | Either _ -> either env n' last | Implies l -> List.fold_left (fun acc (c,n) -> if n = last then C.get c else acc) F.p_true l | Effect (_,_) -> F.p_true | Binding (_,_) -> F.p_true in F.p_or acc (F.p_and branch cond) else List.fold_left (find_frontiere n') acc (env.pred n') in let c, q = if Node.equal idom n then (* it is the root *) begin Node.Hashtbl.add env.full_conds n F.p_true; Node.Hashtbl.add env.conds n F.p_true; F.p_true, env.root.q end else let c = List.fold_left (find_frontiere n) F.p_false (env.pred n) in (* Format.printf "for %a c=%a@." Node.pp n Lang.F.pp_pred c; *) Node.Hashtbl.add env.conds n c; Node.Hashtbl.add env.full_conds n (F.p_and c (Node.Hashtbl.find env.full_conds idom)); let p = Node.Hashtbl.find env.subtrees idom in c,p.q in let fact = match Node.Map.find n env.env.succs with | exception Not_found -> F.p_true | Goto _ | Havoc (_, _) -> F.p_true | Branch (c,Some _,None) -> C.get c | Branch (c,None,Some _) -> F.p_not (C.get c) | Branch (_,_,_) -> F.p_true | Either _ -> F.p_true | Implies _ -> F.p_true | Effect (e,_) -> E.get e | Binding (b,_) -> F.p_conj (Passive.conditions b (fun _ -> true)) in (* Format.printf "Here: For %a idoms=%a c=%a fact=%a@." Node.pp n Node.pp idom F.pp_pred c F.pp_pred fact; *) let t = {c = c; q = Queue.create (); fact = [fact]} in Queue.push t q; Node.Hashtbl.add env.subtrees n t let add_cond ?descr ?stmt f cond = match cond with | Conditions.Have c when F.is_ptrue c = Qed.Logic.Yes -> f | _ -> Conditions.append (Conditions.sequence [Conditions.step ?descr ?stmt cond]) f let access env n = Node.Hashtbl.find env.full_conds n let get_latest_node env = function | [] -> env.root | a::l -> let n = List.fold_left (fun a e -> if env.topo_order a < env.topo_order e then e else a ) a l in Node.Hashtbl.find env.subtrees n (** Add each assume to the sub-tree corresponding to the latest node it uses. The assumes are true if all their nodes are accessible *) let add_assumes_fact env = Bag.iter (fun p -> let nodes = P.nodes_list p in let nodes_are_accessible = (* TODO: don't add the condition of access of the node that are dominators of latest *) List.fold_left (fun acc n -> F.p_and (access env n) acc) F.p_true nodes in let f' = F.p_imply nodes_are_accessible (P.get p) in let t = get_latest_node env nodes in t.fact <- f' :: t.fact ) env.env.assumes (** convert the tree to formula *) let rec convert t f = let f' = if t.fact = [] then Conditions.empty else List.fold_left (fun acc e -> add_cond acc (Conditions.Have e)) Conditions.empty t.fact in let f' = Queue.fold (fun f' t -> convert t f') f' t.q in match F.is_ptrue t.c with | Qed.Logic.Yes -> Conditions.concat [f;f'] | Qed.Logic.No -> f | Qed.Logic.Maybe -> add_cond f (Conditions.Branch(t.c,f',Conditions.empty)) let to_sequence_tree _ posts env = let env,ordered = create_env_to_sequence_tree env in (* Iterate in topo order the vertex. Except for root, the tree of the vertex is the one of its immediate dominator forward. *) List.iter (iter env) ordered; let f = Conditions.empty in (* The posts state are accessible *) let f = Node.Set.fold (fun n f -> add_cond f (Conditions.Have (access env n))) posts f in (* For all either one of the condition is true *) let f = Node.Hashtbl.fold (fun _ h f -> let p = Node.Hashtbl.fold (fun _ t p -> F.p_or p t) h F.p_false in add_cond f (Conditions.Have p) ) env.eithers f in add_assumes_fact env; let f = convert env.root f in f, Node.Hashtbl.fold Node.Map.add env.full_conds Node.Map.empty end let compile : ?name:string -> ?mode:mode -> node -> Node.Set.t -> S.domain Node.Map.t -> cfg -> F.pred Node.Map.t * S.t Node.Map.t * Conditions.sequence = fun ?(name="cfg") ?(mode=`Bool_Forward) pre posts user_reads env -> if Wp_parameters.has_dkey dkey then Format.printf "@[0) pre:%a post:%a@]@." Node.pp pre (Pretty_utils.pp_iter ~sep:"@ " Node.Set.iter Node.pp) posts; if Wp_parameters.has_dkey dkey then Format.printf "@[1) %a@]@." pretty_env env; (* restrict environment to useful node and compute havoc effects *) let env = restrict env pre posts in if Wp_parameters.has_dkey dkey then Format.printf "@[2) %a@]@." pretty_env env; if Node.Map.is_empty env.succs then Node.Map.empty,Node.Map.empty, Conditions.sequence [Conditions.step (Conditions.Have(F.p_false))] else (* Simplify *) let subst,env = if true then remove_dumb_gotos env else Node.Map.empty, env in let pre = find_def ~def:pre pre subst in (* Substitute in user_reads *) let user_reads = Node.Map.fold (fun n n' acc -> match Node.Map.find n user_reads with | exception Not_found -> acc | domain -> let domain' = try S.union (Node.Map.find n' acc) domain with Not_found -> domain in Node.Map.add n' domain' acc) subst user_reads in (* For each node what must be read for assumes *) let reads = Bag.fold_left (fun acc e -> Node.Map.union (fun _ -> S.union) acc (P.reads e)) user_reads env.assumes in (* compute sigmas and relocate them *) let env, sigmas = domains env reads pre in if Wp_parameters.has_dkey dkey then Format.printf "@[3) %a@]@." pretty_env env; if Wp_parameters.has_dkey dumpkey then dump_env ~name env; let f, preds = match mode with | `Tree -> (* Add a unique post node *) let final_node = node () in let env = Node.Set.fold (fun p cfg -> let s = {pre=S.create();post=S.create()} in let e = s,Lang.F.p_true in let goto = effect p e final_node in concat goto cfg ) posts env in To_tree.to_sequence_tree pre posts env | (`Bool_Backward | `Bool_Forward) as mode -> to_sequence_bool ~mode pre posts env in let predssigmas = Node.Map.merge (fun _ p s -> Some (Option.value ~default:F.p_false p, Option.value ~default:(S.create ()) s)) preds sigmas in (* readd simplified nodes *) let predssigmas = Node.Map.fold (fun n n' acc -> Node.Map.add n (Node.Map.find n' predssigmas) acc ) subst predssigmas in let preds = Node.Map.map(fun _ (x,_) -> x) predssigmas in let sigmas = Node.Map.map(fun _ (_,x) -> x) predssigmas in preds,sigmas,f end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>