package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/LogicCompiler.ml.html
Source file LogicCompiler.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Compilation of ACSL Logic-Info --- *) (* -------------------------------------------------------------------------- *) open LogicUsage open LogicBuiltins open Cil_types open Cil_datatype open Clabels open Ctypes open Lang open Lang.F open Sigs open Definitions let dkey_lemma = Wp_parameters.register_category "lemma" type polarity = [ `Positive | `Negative | `NoPolarity ] module Make( M : Sigs.Model ) = struct (* -------------------------------------------------------------------------- *) (* --- Definitions --- *) (* -------------------------------------------------------------------------- *) open M type value = M.loc Sigs.value type logic = M.loc Sigs.logic type result = loc Sigs.result type sigma = M.Sigma.t type chunk = M.Chunk.t type signature = | CST of Integer.t | SIG of sig_param list and sig_param = | Sig_value of logic_var (* to be replaced by the value *) | Sig_chunk of chunk * c_label (* to be replaced by the chunk variable *) (* -------------------------------------------------------------------------- *) (* --- Registering User-Defined Signatures --- *) (* -------------------------------------------------------------------------- *) module Typedefs = WpContext.Index (struct type key = logic_type_info type data = lfun option let name = "LogicCompiler." ^ M.datatype ^ ".Typedefs" let compare = Logic_type_info.compare let pretty = Logic_type_info.pretty end) let compile_logic_type = ref (fun _ -> assert false) module Signature = WpContext.Index (struct type key = logic_info type data = signature let name = "LogicCompiler." ^ M.datatype ^ ".Signature" let compare = Logic_info.compare let pretty fmt l = Logic_var.pretty fmt l.l_var_info end) (* -------------------------------------------------------------------------- *) (* --- Utilities --- *) (* -------------------------------------------------------------------------- *) let rec wrap_lvar xs vs = match xs , vs with | x::xs , v::vs -> Logic_var.Map.add x v (wrap_lvar xs vs) | _ -> Logic_var.Map.empty let rec wrap_var xs vs = match xs , vs with | x::xs , v::vs -> Varinfo.Map.add x v (wrap_var xs vs) | _ -> Varinfo.Map.empty let rec wrap_mem = function | (label,mem) :: m -> LabelMap.add label mem (wrap_mem m) | [] -> LabelMap.empty let has_ltype ltype t = match Logic_utils.unroll_type ~unroll_typedef:false ltype with | Ltype (lt, _) -> if not (Typedefs.mem lt) then !compile_logic_type ltype ; begin match Typedefs.find lt with | Some lfun -> F.p_call lfun [t] | None -> p_true end | Ctype typ -> Cvalues.has_ctype typ t | _ -> p_true let fresh_lvar ?basename ltyp = let tau = Lang.tau_of_ltype ltyp in let x = Lang.freshvar ?basename tau in let p = has_ltype ltyp (e_var x) in Lang.assume p ; x let fresh_cvar ?basename typ = fresh_lvar ?basename (Ctype typ) (* -------------------------------------------------------------------------- *) (* --- Logic Frame --- *) (* -------------------------------------------------------------------------- *) type call = { kf : kernel_function ; formals : value Varinfo.Map.t ; mutable result : M.loc Sigs.result option ; mutable status : var option ; } type frame = { descr : string ; pool : pool ; gamma : gamma ; call : call option ; types : string list ; mutable triggers : trigger list ; mutable labels : sigma LabelMap.t ; } let pp_frame fmt f = begin Format.fprintf fmt "Frame '%s':@\n" f.descr ; LabelMap.iter (fun l m -> Format.fprintf fmt "@[<hov 4>Label '%a': %a@]@\n" Clabels.pretty l Sigma.pretty m ) f.labels ; end (* -------------------------------------------------------------------------- *) (* --- Frames Builders --- *) (* -------------------------------------------------------------------------- *) let logic_frame a types = { descr = a ; pool = Lang.new_pool () ; gamma = Lang.new_gamma () ; types = types ; triggers = [] ; call = None ; labels = LabelMap.empty ; } let call0 ?result ?status ?(formals=Varinfo.Map.empty) kf = { kf ; formals ; result ; status } let call ?result kf vs = let formals = wrap_var (Kernel_function.get_formals kf) vs in let result = match result with None -> None | Some l -> Some (R_loc l) in { kf ; formals ; result ; status = None } let local ~descr = { descr ; types = [] ; pool = Lang.get_pool () ; gamma = Lang.get_gamma () ; triggers = [] ; call = None ; labels = LabelMap.empty ; } let frame kf = { descr = Kernel_function.get_name kf ; types = [] ; pool = Lang.new_pool () ; gamma = Lang.new_gamma () ; triggers = [] ; call = Some (call0 kf) ; labels = LabelMap.empty ; } let call_pre init call mem = { descr = "Pre " ^ Kernel_function.get_name call.kf ; types = [] ; pool = Lang.get_pool () ; gamma = Lang.get_gamma () ; triggers = [] ; call = Some call ; labels = wrap_mem [ Clabels.init , init ; Clabels.pre , mem ] ; } let call_post init call seq = { descr = "Post " ^ Kernel_function.get_name call.kf ; types = [] ; pool = Lang.get_pool () ; gamma = Lang.get_gamma () ; triggers = [] ; call = Some call ; labels = wrap_mem [ Clabels.init , init ; Clabels.pre , seq.pre ; Clabels.post , seq.post ; Clabels.exit , seq.post ; ] ; } (* -------------------------------------------------------------------------- *) (* --- Current Frame --- *) (* -------------------------------------------------------------------------- *) let cframe : frame Context.value = Context.create "LogicSemantics.frame" let get_frame () = Context.get cframe let in_frame f cc = Context.bind Lang.poly f.types (Context.bind cframe f (Lang.local ~pool:f.pool ~gamma:f.gamma cc)) let mk_frame ?kf ?result ?status ?formals ?(labels=LabelMap.empty) ?descr () = let call = match kf with | None -> None | Some kf -> Some (call0 ?result ?status ?formals kf) in let descr = match descr , kf with | Some descr , _ -> descr | None , None -> "<frame>" | None , Some kf -> Kernel_function.get_name kf in { descr ; labels ; call = call; pool = Lang.get_pool () ; gamma = Lang.get_gamma () ; triggers = []; types = []; } let has_at_frame frame label = assert (not (Clabels.is_here label)); LabelMap.mem label frame.labels let mem_at_frame frame label = assert (not (Clabels.is_here label)); try LabelMap.find label frame.labels with Not_found -> let s = M.Sigma.create () in frame.labels <- LabelMap.add label s frame.labels ; s let set_at_frame frame label sigma = assert (not (Clabels.is_here label)); assert (not (LabelMap.mem label frame.labels)); frame.labels <- LabelMap.add label sigma frame.labels let mem_frame label = mem_at_frame (Context.get cframe) label let get_call = function | { call = Some call } -> call | { descr } -> Wp_parameters.fatal "Frame '%s' has is outside a function definition" descr let formal x = try let f = get_call (Context.get cframe) in Some (Varinfo.Map.find x f.formals) with Not_found -> None let return_type kf = if Kernel_function.returns_void kf then Wp_parameters.fatal "Function '%s' has no result" (Kernel_function.get_name kf) ; Kernel_function.get_return_type kf let return () = return_type (get_call (Context.get cframe)).kf let result () = let f = get_call (Context.get cframe) in match f.result with | Some r -> r | None -> let tr = return_type f.kf in let basename = Kernel_function.get_name f.kf in let x = fresh_cvar ~basename tr in let r = R_var x in f.result <- Some r ; r let status () = let f = get_call (Context.get cframe) in match f.status with | Some x -> x | None -> let x = fresh_cvar ~basename:"status" Cil.intType in f.status <- Some x ; x let trigger tg = if tg <> Qed.Engine.TgAny then let f = Context.get cframe in f.triggers <- tg :: f.triggers let make_chunk_constraints f = if not (Wp_parameters.RTE.get()) then [] else LabelMap.fold (fun _ s l -> M.is_well_formed s :: l) f.labels [] let guards f = let constraints = in_frame f (fun () -> make_chunk_constraints f) () in Lang.hypotheses f.gamma @ constraints (* -------------------------------------------------------------------------- *) (* --- Environments --- *) (* -------------------------------------------------------------------------- *) type env = { vars : logic Logic_var.Map.t ; (* pure : not cvar *) lhere : sigma option ; current : sigma option ; } let mk_env ?here ?(lvars=[]) () = let lvars = List.fold_left (fun lvars lv -> let x = fresh_lvar ~basename:lv.lv_name lv.lv_type in let v = Vexp(e_var x) in Logic_var.Map.add lv v lvars) Logic_var.Map.empty lvars in { lhere = here ; current = here ; vars = lvars } let getsigma = function Some s -> s | None -> Warning.error "No current memory (missing \\at)" let current e = getsigma e.current let move_at env s = { env with lhere = Some s ; current = Some s } let env_at env label = let s = if Clabels.is_here label then env.lhere else Some(mem_frame label) in { env with current = s } let mem_at env label = if Clabels.is_here label then getsigma env.lhere else mem_frame label let env_let env x v = { env with vars = Logic_var.Map.add x v env.vars } let env_letp env x p = env_let env x (Vexp (F.e_prop p)) let env_letval env x = function | Loc l -> env_let env x (Vloc l) | Val e -> env_let env x (Cvalues.plain x.lv_type e) (* -------------------------------------------------------------------------- *) (* --- Signature Generators --- *) (* -------------------------------------------------------------------------- *) let param_of_lv lv = let t = Lang.tau_of_ltype lv.lv_type in freshvar ~basename:lv.lv_name t let profile_sig lvs = List.map param_of_lv lvs , List.map (fun lv -> Sig_value lv) lvs let profile_mem l vars = let signature = profile_sig l.l_profile in if vars = [] then signature else let heap = List.fold_left (fun m x -> let obj = object_of x.vtype in M.Sigma.Chunk.Set.union m (M.domain obj (M.cvar x)) ) M.Sigma.Chunk.Set.empty vars in List.fold_left (fun acc l -> let label = Clabels.of_logic l in let sigma = Sigma.create () in M.Sigma.Chunk.Set.fold_sorted (fun chunk (parm,sigm) -> let x = Sigma.get sigma chunk in let s = Sig_chunk (chunk,label) in ( x::parm , s :: sigm ) ) heap acc ) signature l.l_labels let rec profile_env vars domain sigv = function | [] -> { vars=vars ; lhere=None ; current=None } , domain , List.rev sigv | lv :: profile -> let x = param_of_lv lv in let h = has_ltype lv.lv_type (e_var x) in let v = Cvalues.plain lv.lv_type (e_var x) in profile_env (Logic_var.Map.add lv v vars) (h::domain) ((lv,x)::sigv) profile let default_label env = function | [l] -> move_at env (mem_frame (Clabels.of_logic l)) | _ -> env (* -------------------------------------------------------------------------- *) (* --- Generic Compiler --- *) (* -------------------------------------------------------------------------- *) let occurs_pvars f p = Vars.exists f (F.varsp p) let occurs_ps x ps = List.exists (F.occursp x) ps let compile_step (tres: logic_type option) (name:string) (types:string list) (profile:logic_var list) (labels:logic_label list) (cc : env -> 'a -> 'b) (filter : 'b -> var -> bool) (data : 'a) : tau * var list * trigger list * pred list * 'b * sig_param list = let frame = logic_frame name types in in_frame frame begin fun () -> let tres = Lang.tau_of_return tres in let env,domain,sigv = profile_env Logic_var.Map.empty [] [] profile in let env = default_label env labels in let result = cc env data in let types = Lang.get_hypotheses () in let used_domain p = occurs_pvars (filter result) p in let domain = List.filter used_domain (domain @ types) in let used_var (_,x) = filter result x || occurs_ps x domain in let used = List.filter used_var sigv in let parp = List.map snd used in let sigp = List.map (fun (lv,_) -> Sig_value lv) used in let domain = make_chunk_constraints frame @ domain in let (parm,sigm) = LabelMap.fold (fun label sigma acc -> M.Sigma.Chunk.Set.fold_sorted (fun chunk acc -> if filter result (Sigma.get sigma chunk) then let (parm,sigm) = acc in let x = Sigma.get sigma chunk in let s = Sig_chunk(chunk,label) in ( x::parm , s::sigm ) else acc) (Sigma.domain sigma) acc) frame.labels (parp,sigp) in tres, parm , frame.triggers , domain , result , sigm end () let cc_term : (env -> Cil_types.term -> term) ref = ref (fun _ _ -> assert false) let cc_pred : (polarity -> env -> predicate -> pred) ref = ref (fun _ _ -> assert false) let cc_logic : (env -> Cil_types.term -> logic) ref = ref (fun _ _ -> assert false) let cc_region : (env -> Cil_types.term -> loc Sigs.region) ref = ref (fun _ -> assert false) let term env t = !cc_term env t let pred polarity env t = !cc_pred polarity env t let logic env t = !cc_logic env t let region env t = !cc_region env t let reads env ts = List.iter (fun t -> ignore (logic env t.it_content)) ts let bootstrap_term cc = cc_term := cc let bootstrap_pred cc = cc_pred := cc let bootstrap_logic cc = cc_logic := cc let bootstrap_region cc = cc_region := cc let in_term t x = F.occurs x t let in_pred p x = F.occursp x p let in_reads _ _ = true let is_recursive l = if LogicUsage.is_recursive l then Rec else Def (* -------------------------------------------------------------------------- *) (* --- Compiling Lemmas --- *) (* -------------------------------------------------------------------------- *) let rec strip_forall xs p = match p.pred_content with | Pforall(qs,q) -> strip_forall (xs @ qs) q | _ -> xs , p let compile_lemma cluster name ~kind types labels lemma = let qs,prop = strip_forall [] lemma in let _,xs,tgs,domain,prop,_ = let cc_pred = pred `Positive in compile_step None name types qs labels cc_pred in_pred prop in let weak = Wp_parameters.WeakIntModel.get () in let lemma = if weak then prop else F.p_hyps domain prop in { l_name = name ; l_kind = kind ; l_triggers = [tgs] ; l_forall = xs ; l_cluster = cluster ; l_lemma = lemma ; } (* -------------------------------------------------------------------------- *) (* --- Type Signature of Logic Function --- *) (* -------------------------------------------------------------------------- *) let type_for_signature l ldef sigp = match l.l_type with | None -> () | Some tr -> match Cvalues.ldomain tr with | None -> () | Some p -> let name = "T" ^ Lang.logic_id l in let vs = List.map e_var ldef.d_params in let rec conditions vs sigp = match vs , sigp with | v::vs , Sig_value lv :: sigp -> let cond = has_ltype lv.lv_type v in cond :: conditions vs sigp | _ -> [] in let result = F.e_fun ldef.d_lfun vs in let lemma = p_hyps (conditions vs sigp) (p result) in let trigger = Trigger.of_term result in Definitions.define_lemma { l_name = name ; l_kind = Admit ; l_forall = ldef.d_params ; l_triggers = [[trigger]] ; l_cluster = ldef.d_cluster ; l_lemma = lemma ; } (* -------------------------------------------------------------------------- *) (* --- Compiling Pure Logic Function --- *) (* -------------------------------------------------------------------------- *) let compile_lbpure cluster l = let frame = logic_frame l.l_var_info.lv_name l.l_tparams in in_frame frame begin fun () -> let lfun = Lang.acsl l in let tau = Lang.tau_of_return l.l_type in let parp,sigp = Lang.local profile_sig l.l_profile in let ldef = { d_lfun = lfun ; d_types = List.length l.l_tparams ; d_params = parp ; d_cluster = cluster ; d_definition = Logic tau ; } in Definitions.update_symbol ldef ; Signature.update l (SIG sigp) ; parp,sigp end () (* -------------------------------------------------------------------------- *) (* --- Compiling Abstract Logic Function (in axiomatic with no reads) --- *) (* -------------------------------------------------------------------------- *) let compile_lbnone cluster l vars = let frame = logic_frame l.l_var_info.lv_name l.l_tparams in in_frame frame begin fun () -> let lfun = Lang.acsl l in let tau = Lang.tau_of_return l.l_type in let parm,sigm = Lang.local (profile_mem l) vars in let ldef = { d_lfun = lfun ; d_types = List.length l.l_tparams ; d_params = parm ; d_cluster = cluster ; d_definition = Logic tau ; } in Definitions.define_symbol ldef ; type_for_signature l ldef sigm ; SIG sigm end () (* -------------------------------------------------------------------------- *) (* --- Compiling Logic Function with Reads --- *) (* -------------------------------------------------------------------------- *) let compile_lbreads cluster l ts = let lfun = Lang.acsl l in let name = l.l_var_info.lv_name in let tau,xs,_,_,(),s = compile_step l.l_type name l.l_tparams l.l_profile l.l_labels reads in_reads ts in let ldef = { d_lfun = lfun ; d_types = List.length l.l_tparams ; d_params = xs ; d_cluster = cluster ; d_definition = Logic tau ; } in Definitions.define_symbol ldef ; type_for_signature l ldef s ; SIG s (* -------------------------------------------------------------------------- *) (* --- Compiling Recursive Logic Body --- *) (* -------------------------------------------------------------------------- *) let compile_rec name l cc filter data = let tau = l.l_type in let types = l.l_tparams in let profile = l.l_profile in let labels = l.l_labels in let result = compile_step tau name types profile labels cc filter data in if LogicUsage.is_recursive l then begin let (_,_,_,_,_,s) = result in Signature.update l (SIG s) ; compile_step tau name types profile labels cc filter data end else result (* -------------------------------------------------------------------------- *) (* --- Compiling Logic Function with Definition --- *) (* -------------------------------------------------------------------------- *) let compile_lbterm cluster l t = let name = l.l_var_info.lv_name in let tau,xs,_,_,r,s = compile_rec name l term in_term t in match F.repr r with | Qed.Logic.Kint c -> CST c | _ -> let ldef = { d_lfun = Lang.acsl l ; d_types = List.length l.l_tparams ; d_params = xs ; d_cluster = cluster ; d_definition = Function(tau,is_recursive l,r) ; } in Definitions.define_symbol ldef ; SIG s (* -------------------------------------------------------------------------- *) (* --- Compiling Logic Predicate with Definition --- *) (* -------------------------------------------------------------------------- *) let compile_lbpred cluster l p = let lfun = Lang.acsl l in let name = l.l_var_info.lv_name in let cc_pred = pred `Positive in let _,xs,_,_,r,s = compile_rec name l cc_pred in_pred p in let ldef = { d_lfun = lfun ; d_types = List.length l.l_tparams ; d_params = xs ; d_cluster = cluster ; d_definition = Predicate(is_recursive l,r) ; } in Definitions.define_symbol ldef ; SIG s let heap_case labels_used support = function | Sig_value _ -> support | Sig_chunk(chk,l_case) -> let l_ind = try LabelMap.find l_case labels_used with Not_found -> LabelSet.empty in let l_chk = try Heap.Map.find chk support with Not_found -> LabelSet.empty in Heap.Map.add chk (LabelSet.union l_chk l_ind) support (* -------------------------------------------------------------------------- *) (* --- Compiling Inductive Logic --- *) (* -------------------------------------------------------------------------- *) let compile_lbinduction cluster l cases = (* unused *) (* Temporarily defines l to reads only its formals *) let parp,sigp = compile_lbpure cluster l in (* Compile cases with default definition and collect used chunks *) let support = List.fold_left (fun support (case,labels,types,lemma) -> let _,_,_,_,_,s = let cc_pred = pred `Positive in compile_step l.l_type case types [] labels cc_pred in_pred lemma in let labels_used = LogicUsage.get_induction_labels l case in List.fold_left (heap_case labels_used) support s) Heap.Map.empty cases in (* Make signature with collected chunks *) let (parm,sigm) = let frame = logic_frame l.l_var_info.lv_name l.l_tparams in in_frame frame (fun () -> Heap.Map.fold_sorted (fun chunk labels acc -> let basename = Chunk.basename_of_chunk chunk in let tau = Chunk.tau_of_chunk chunk in LabelSet.fold (fun label (parm,sigm) -> let x = Lang.freshvar ~basename tau in x :: parm , Sig_chunk(chunk,label) :: sigm ) labels acc) support (parp,sigp) ) () in (* Set global Signature *) let lfun = Lang.acsl l in let ldef = { d_lfun = lfun ; d_types = List.length l.l_tparams ; d_params = parm ; d_cluster = cluster ; d_definition = Logic Qed.Logic.Prop ; } in Definitions.update_symbol ldef ; Signature.update l (SIG sigm) ; (* Re-compile final cases *) let cases = List.map (fun (case,labels,types,lemma) -> compile_lemma cluster ~kind:Admit case types labels lemma) cases in Definitions.update_symbol { ldef with d_definition = Inductive cases } ; type_for_signature l ldef sigp (* sufficient *) ; SIG sigm let compile_logic cluster section l = let s_rec = List.map (fun x -> Sig_value x) l.l_profile in Signature.update l (SIG s_rec) ; match l.l_body with | LBnone -> let vars = match section with | Toplevel _ -> [] | Axiomatic a -> Varinfo.Set.elements a.ax_reads in if l.l_labels <> [] && vars = [] then Wp_parameters.warning ~once:true ~current:false "No definition for '%s' interpreted as reads nothing" l.l_var_info.lv_name ; compile_lbnone cluster l vars | LBterm t -> compile_lbterm cluster l t | LBpred p -> compile_lbpred cluster l p | LBreads ts -> compile_lbreads cluster l ts | LBinductive cases -> compile_lbinduction cluster l cases (* -------------------------------------------------------------------------- *) (* --- Retrieving Signature --- *) (* -------------------------------------------------------------------------- *) let define_type cluster lt = let constrainer = match lt with | { lt_def = Some(LTsum(ctors)) ; lt_name ; lt_params=[] } -> let frame = logic_frame lt_name [] in in_frame frame begin fun () -> let lfun = Lang.generated_p ~coloring:true ("is_" ^ lt_name) in let tau_lt = Lang.tau_of_ltype (Ltype(lt, [])) in Typedefs.update lt (Some lfun) ; let term_constraint ltyp = let v = Lang.freshvar ~basename:"p" (Lang.tau_of_ltype ltyp) in v, (has_ltype ltyp (Lang.F.e_var v)) in let ctor_to_prop = function | { ctor_name = l_name ; ctor_params = ts } as const -> let vs, cs = List.split (List.map term_constraint ts) in let ts = List.map Lang.F.e_var vs in let const = F.e_fun ~result:tau_lt (Lang.ctor const) ts in let is_lt = F.p_call lfun [const] in { l_name ; l_kind = Admit ; l_triggers = [frame.triggers] ; l_forall = vs ; l_cluster = cluster ; l_lemma = p_hyps cs is_lt ; } in let cases = List.map ctor_to_prop ctors in Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = [ Lang.freshvar ~basename:"v" tau_lt ] ; d_cluster = cluster ; d_definition = Inductive cases } ; Some lfun end () | { lt_def = Some(LTsum(_)) ; lt_params=_ } -> Wp_parameters.not_yet_implemented "Type parameters for sum types" | _ -> None in Typedefs.update lt constrainer ; Definitions.define_type cluster lt let define_logic c a = Signature.compile (compile_logic c a) let define_lemma c l = if l.lem_labels <> [] && Wp_parameters.has_dkey dkey_lemma then Wp_parameters.warning ~source:(fst l.lem_loc) "Lemma '%s' has labels, consider using global invariant instead." l.lem_name ; let { tp_kind = kind ; tp_statement = p } = l.lem_predicate in Definitions.define_lemma (compile_lemma c ~kind l.lem_name l.lem_types l.lem_labels p) let define_axiomatic cluster ax = begin List.iter (define_type cluster) ax.ax_types ; List.iter (define_logic cluster (Axiomatic ax)) ax.ax_logics ; List.iter (define_lemma cluster) ax.ax_lemmas ; end let lemma l = try Definitions.find_lemma l with Not_found -> let section = LogicUsage.section_of_lemma l.lem_name in let cluster = Definitions.section section in begin match section with | Toplevel _ -> define_lemma cluster l | Axiomatic ax -> define_axiomatic cluster ax end ; Definitions.find_lemma l let signature phi = try Signature.find phi with Not_found -> let section = LogicUsage.section_of_logic phi in let cluster = Definitions.section section in match section with | Toplevel _ -> Signature.memoize (compile_logic cluster section) phi | Axiomatic ax -> (* force compilation of entire axiomatics *) define_axiomatic cluster ax ; try Signature.find phi with Not_found -> Wp_parameters.fatal ~current:true "Axiomatic '%s' compiled, but '%a' not" ax.ax_name Printer.pp_logic_var phi.l_var_info let rec logic_type t = match Logic_utils.unroll_type ~unroll_typedef:false t with | Ctype _ -> () | Linteger | Lreal | Lvar _ | Larrow _ -> () | Ltype(lt,ps) -> List.iter logic_type ps ; if not (Typedefs.mem lt) then begin Typedefs.update lt None ; if not (Lang.is_builtin lt) && not (Logic_const.is_boolean_type t) then let section = LogicUsage.section_of_type lt in let cluster = Definitions.section section in match section with | Toplevel _ -> define_type cluster lt | Axiomatic ax -> (* force compilation of entire axiomatics *) define_axiomatic cluster ax end let () = compile_logic_type := logic_type let logic_profile phi = begin List.iter (fun x -> logic_type x.lv_type) phi.l_profile ; Option.iter logic_type phi.l_type ; end (* -------------------------------------------------------------------------- *) (* --- Binding Formal with Actual w.r.t Signature --- *) (* -------------------------------------------------------------------------- *) let rec bind_labels env phi_labels labels : M.Sigma.t LabelMap.t = match phi_labels, labels with | [], [] -> LabelMap.empty | l1 :: phi_labels, l2 :: labels -> let l1 = Clabels.of_logic l1 in let l2 = Clabels.of_logic l2 in LabelMap.add l1 (mem_at env l2) (bind_labels env phi_labels labels) | _ -> Wp_parameters.fatal "Incorrect by AST typing" let call_params env (phi:logic_info) (labels:logic_label list) (sparam : sig_param list) (parameters:F.term list) : F.term list = logic_profile phi ; let mparams = wrap_lvar phi.l_profile parameters in let mlabels = bind_labels env phi.l_labels labels in List.map (function | Sig_value lv -> Logic_var.Map.find lv mparams | Sig_chunk(c,l) -> let sigma = try LabelMap.find l mlabels with Not_found -> Wp_parameters.fatal "*** Label %a not-found@." Clabels.pretty l in M.Sigma.value sigma c ) sparam let call_fun env (result:F.tau) (phi:logic_info) (labels:logic_label list) (parameters:F.term list) : F.term = match signature phi with | CST c -> e_zint c | SIG sparam -> let es = call_params env phi labels sparam parameters in F.e_fun ~result (Lang.acsl phi) es let call_pred env (phi:logic_info) (labels:logic_label list) (parameters:F.term list) : F.pred = match signature phi with | CST _ -> assert false | SIG sparam -> let es = call_params env phi labels sparam parameters in F.p_call (Lang.acsl phi) es (* -------------------------------------------------------------------------- *) (* --- Variable Bindings --- *) (* -------------------------------------------------------------------------- *) let logic_var env x = try Logic_var.Map.find x env.vars with Not_found -> try (* It is here because currently the application of a function of arity 0 are represented in the AST as a variable not as an application of the function with no arguments *) let cst = Logic_env.find_logic_cons x in let result = Lang.tau_of_ltype x.lv_type in let v = match LogicBuiltins.logic cst with | ACSLDEF -> call_fun env result cst [] [] | HACK phi -> phi [] | LFUN phi -> e_fun ~result phi [] in Cvalues.plain x.lv_type v with Not_found -> if Logic_env.is_logic_function x.lv_name then Warning.error "Lambda-functions not yet implemented (at '%s')" x.lv_name else Wp_parameters.fatal "Name '%a' has no definition in term" Printer.pp_logic_var x let logic_info env f = try match Logic_var.Map.find f.l_var_info env.vars with | Vexp p -> Some (F.p_bool p) | _ -> Wp_parameters.fatal "Variable '%a' is not a predicate" Logic_info.pretty f with Not_found -> None end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>