package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/Letify.ml.html
Source file Letify.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Letification of Goals --- *) (* -------------------------------------------------------------------------- *) open Qed.Logic open Lang open Lang.F let vmem x a = Vars.mem x (F.vars a) let occurs xs a = Vars.intersect xs (F.vars a) (* -------------------------------------------------------------------------- *) (* --- Trivial Simplifications --- *) (* -------------------------------------------------------------------------- *) module Ground = struct type env = { mutable ground : bool Tmap.t ; sigma : F.sigma ; } let rec is_ground env e = F.is_primitive e || begin try Tmap.find e env.ground with Not_found -> let r = match F.repr e with | Rdef fvs -> List.for_all (fun (_,e) -> is_ground env e) fvs | Fun(f,es) -> begin match Fun.category f with | Constructor -> List.for_all (is_ground env) es | _ -> false end | _ -> false in env.ground <- Tmap.add e r env.ground ; r end let add_sigma env a b = Subst.add env.sigma a b let add_clause env h = add_sigma env h e_true ; add_sigma env (e_not h) e_false let frank = function | ACSL _ -> 0 | CTOR _ -> 3 | FUN { m_category = Function } -> 0 | FUN { m_category = Injection } -> 1 | FUN { m_category = Operator _ } -> 2 | FUN { m_category = Constructor } -> 3 let reduce env a b = if F.is_subterm a b then add_sigma env b a else if F.is_subterm b a then add_sigma env a b else begin match F.repr a , F.repr b with | Fun(f,_) , Fun(g,_) when Wp_parameters.Reduce.get () -> let cmp = frank f - frank g in if cmp < 0 then add_sigma env a b else if cmp > 0 then add_sigma env b a | Fun(f,_) , _ when frank f = 0 -> add_sigma env a b | _ , Fun(f,_) when frank f = 0 -> add_sigma env b a | _ -> () end let rec walk env h = match F.repr h with | True | False -> () | And ps -> List.iter (walk env) ps | Eq(a,b) -> add_clause env h ; if is_ground env b then add_sigma env a b else if is_ground env a then add_sigma env b a else reduce env a b | Fun(f,[x]) -> begin add_clause env h ; try let iota = Cint.is_cint f in let conv = Cint.convert iota x in add_sigma env conv x ; with Not_found -> () end | _ -> add_clause env h let e_apply env = F.e_subst (Subst.copy env.sigma) let p_apply env = F.p_subst (Subst.copy env.sigma) let assume env p = let p = p_apply env p in walk env (F.e_prop p) ; p let top () = { ground = Tmap.empty ; sigma = Lang.sigma () } let copy env = { ground = env.ground ; sigma = Subst.copy env.sigma } let branch env p = let p = p_apply env p in let wa = copy env in let wb = copy env in ignore (assume wa p) ; ignore (assume wb (F.p_not p)) ; p , wa , wb let forward env p = match F.p_expr p with | And ps -> F.p_all (assume env) ps | _ -> assume env p let backward env p = match F.p_expr p with | And ps -> F.p_all (assume env) (List.rev ps) | _ -> assume env p end (* -------------------------------------------------------------------------- *) (* --- Generalized Substitution --- *) (* -------------------------------------------------------------------------- *) module Sigma : sig type t val equal : t -> t -> bool val pretty : string -> Format.formatter -> t -> unit val empty : t val add : var -> term -> t -> t val mem : var -> t -> bool val find : var -> t -> term val e_apply : t -> term -> term val p_apply : t -> pred -> pred val assume : t -> pred -> t val iter : (var -> term -> unit) -> t -> unit val class_of : t -> var -> var list val domain : t -> Vars.t val codomain : t -> Vars.t end = struct module Ceq = Qed.Partition.Make(Var)(Vars)(Vmap) type t = { dvar : Vars.t ; (* Domain of def *) dcod : Vars.t ; (* Codomain of def *) dall : Vars.t ; (* Domain of cst and def *) def : term Vmap.t ; (* Definitions *) ceq : Ceq.t ; (* Variable Classes *) cst : term Tmap.t ; (* Constants *) mutable cache : F.sigma option ; } let empty = { dcod = Vars.empty ; dvar = Vars.empty ; dall = Vars.empty ; ceq = Ceq.empty ; def = Vmap.empty ; cst = Tmap.empty ; cache = None ; } let equal s1 s2 = Vmap.equal F.equal s1.def s2.def && Tmap.equal F.equal s1.cst s2.cst let mem x sigma = Vmap.mem x sigma.def let find x sigma = Vmap.find x sigma.def let iter f sigma = Vmap.iter f sigma.def let lookup def (e:term) = match F.repr e with | Fvar x -> Vmap.find x def | _ -> raise Not_found let filter domain (e:term) = Vars.intersect (F.vars e) domain let subst sigma = match sigma.cache with | Some s -> s | None -> let s = Lang.sigma () in F.Subst.add_fun s (lookup sigma.def) ; F.Subst.add_fun s (fun e -> Tmap.find e sigma.cst) ; F.Subst.add_filter s (filter sigma.dall) ; sigma.cache <- Some s ; s let e_apply sigma e = F.e_subst (subst sigma) e let p_apply sigma p = F.p_subst (subst sigma) p (* Returns true if [x:=a] applied to [y:=b] raises a circularity *) let occur_check sigma x a = try if vmem x a then raise Exit ; Vmap.iter (fun y b -> if vmem x b && vmem y a then raise Exit) sigma.def ; false with Exit -> true let add_ceq x e ceq = match F.repr e with | Fvar y -> Ceq.merge ceq x y | _ -> ceq let single x e = let sx = Vars.singleton x in { dvar = sx ; dall = sx ; dcod = F.vars e ; def = Vmap.add x e Vmap.empty ; ceq = add_ceq x e Ceq.empty ; cst = Tmap.empty ; cache = None ; } let add x e sigma = let e = e_apply sigma e in if Vmap.mem x sigma.def then sigma else if occur_check sigma x e then sigma else let sx = single x e in let def = Vmap.add x e (Vmap.map (fun _ d -> e_apply sx d) sigma.def) in let cst0 = Tmap.filter (fun e _c -> not (vmem x e)) sigma.cst in let cst1 = Tmap.fold (fun e c cst -> if vmem x e then Tmap.add (e_apply sx e) c cst else cst) cst0 sigma.cst in { cst = cst1 ; def = def ; ceq = add_ceq x e sigma.ceq ; dvar = Vars.add x sigma.dvar ; dall = Vars.add x sigma.dall ; dcod = Vars.union (F.vars e) sigma.dcod ; cache = None ; } let domain sigma = sigma.dvar let codomain sigma = sigma.dcod let class_of sigma x = Vars.elements (Ceq.members sigma.ceq x) (* --- Constants --- *) (* c must be closed *) let add_cst e c sigma = try let c0 = Tmap.find e sigma.cst in if compare c c0 < 0 then raise Not_found else sigma with Not_found -> let cst = Tmap.add e c sigma.cst in let all = Vars.union (F.vars e) sigma.dall in { cst = cst ; dall = all ; dvar = sigma.dvar ; dcod = sigma.dcod ; def = sigma.def ; ceq = sigma.ceq ; cache = None ; } let mem_lit l sigma = try F.Subst.find (subst sigma) l == e_true with Not_found -> false let add_lit l sigma = add_cst l e_true (add_cst (e_not l) e_false sigma) (** look for the shape: \forall x:integer. (csta <= x /\ x <= cstb) => t1=t2 and return [Some(csta,cstb)] < on integer are always normalized to <= *) let extract_forall_equality fb = begin match F.repr (F.QED.lc_repr fb) with | Imply ([la;lb],c) -> begin match F.repr c with | Eq _ -> let order = 0 in (* todo get the order from term *) begin match F.repr la, F.repr lb with | Leq(a,b), Leq(c,d) -> begin match F.repr a, F.repr b, F.repr c, F.repr d with | Bvar(o1,Int), Kint cstb, Kint csta, Bvar(o2,Int) when o1 = order && o2 = order -> Some(csta,cstb) | Kint csta, Bvar(o1,Int), Bvar(o2,Int), Kint cstb when o1 = order && o2 = order -> Some(csta,cstb) | _ -> None end | _ -> None end | _ -> None end | _ -> None end let is_kint e = match F.repr e with Qed.Logic.Kint _ -> true | _ -> false let rec add_pred sigma p = match F.repr p with | And ps -> List.fold_left add_pred sigma ps | Eq(a,b) -> begin match F.repr a , F.repr b with | Fvar x , _ when not (F.occurs x b) -> add x b sigma | _ , Fvar x when not (F.occurs x a) -> add x a sigma | _ -> match F.is_closed a , F.is_closed b with | true , false -> add_cst b a sigma | false , true -> add_cst a b sigma | true , true -> if F.compare a b < 0 then add_cst b a sigma else add_cst a b sigma | false , false -> add_lit p sigma end | Leq(a,b) -> if mem_lit (e_leq b a) sigma then add_pred sigma (e_eq a b) else add_lit p sigma | Lt(a,b) -> let sigma = if is_kint b then add_pred sigma (e_leq a (e_add b e_one)) else sigma in let sigma = if is_kint a then add_pred sigma (e_leq (e_sub a e_one) b) else sigma in add_lit p (add_lit (e_leq a b) (add_lit (e_neq a b) sigma)) | Neq _ | Fun _ | Not _ -> add_lit p sigma | Bind (Forall,Int,fb) -> let bound = Integer.of_int (Wp_parameters.BoundForallUnfolding.get ()) in begin match extract_forall_equality fb with | Some (csta,cstb) when Integer.le csta cstb && Integer.le (Integer.sub cstb csta) bound -> let rec aux sigma i = if Integer.lt cstb i then sigma else begin let eq = F.QED.e_apply p [e_zint i] in (* qed should be able to simplify it directly *) let sigma = add_pred sigma eq in aux sigma (Integer.succ i) end in aux sigma csta | _ -> sigma end | _ -> sigma let assume sigma p = add_pred sigma (F.e_prop p) (* --- Pretty --- *) module Xmap = Map.Make(Var) let pretty title fmt sigma = let def = Vmap.fold Xmap.add sigma.def Xmap.empty in begin Format.fprintf fmt "@[<hv 0>@[<hv 2>%s {" title ; Format.fprintf fmt "@ @[vars: %a;@]" F.pp_vars sigma.dall ; Xmap.iter (fun x e -> Format.fprintf fmt "@ @[%a := %a ;@]" F.pp_term (F.e_var x) F.pp_term e ) def ; Tmap.iter (fun e m -> Format.fprintf fmt "@ C @[%a := %a ;@]" F.pp_term e F.pp_term m ) sigma.cst ; Format.fprintf fmt "@ @]}@]" ; end end (* -------------------------------------------------------------------------- *) (* --- Definition Extractions --- *) (* -------------------------------------------------------------------------- *) module Defs = struct type t = Tset.t Vmap.t let empty = Vmap.empty let merge = Vmap.union (fun _ -> Tset.union) let add_def (w : t ref) x e = let es = try Vmap.find x !w with Not_found -> Tset.empty in w := Vmap.add x (Tset.add e es) !w let rec diff s y = function | [] -> s | e::es -> match F.repr e with | Fvar x when x==y -> diff s y es | _ -> diff (e_opp e :: s) y es let add_linear w x pos neg = add_def w x (e_sum (diff pos x neg)) let terms e = match F.repr e with Add es -> es | _ -> [e] let rec atoms = function | [] -> [] | e::es -> match F.repr e with | Fvar x -> x :: atoms es | _ -> atoms es let rec defs w p = match F.repr p with | And ps -> List.iter (defs w) ps | Eq(a,b) -> defs_eq w a b | Not p -> begin match F.repr p with | Fvar x -> add_def w x e_false | _ -> () end | Fvar x -> add_def w x e_true | _ -> () and defs_affine w a b = let ta = terms a in let tb = terms b in let xa = atoms ta in let yb = atoms tb in begin List.iter (fun x -> add_linear w x tb ta) xa ; List.iter (fun y -> add_linear w y ta tb) yb ; end and defs_eq w a b = match F.repr a , F.repr b with | Add _ , _ | _ , Add _ -> defs_affine w a b | Fvar x , Fvar y -> add_def w x b ; add_def w y a | Fvar x , _ -> add_def w x b | _ , Fvar y -> add_def w y a | _ -> () let extract p = let w = ref empty in defs w (F.e_prop p) ; !w let add w p = defs w (F.e_prop p) let domain d = Vmap.fold (fun x _ xs -> Vars.add x xs) d Vars.empty end (* -------------------------------------------------------------------------- *) (* --- Substitution Extraction --- *) (* -------------------------------------------------------------------------- *) module XS = Set.Make(Var) let elements xs = Vars.fold XS.add xs XS.empty let iter f xs = XS.iter f (elements xs) let rec extract defs sref cycle x = if not (Vars.mem x cycle) && not (Sigma.mem x !sref) then try let cycle = Vars.add x cycle in let ds = Vmap.find x defs in (* if no defs, exit early *) let ys = ref [] in (* variables equal to x *) let es = ref [] in (* possible definitions *) let rs = ref [] in (* sigma definitions *) Tset.iter (fun e -> if not (occurs cycle e) then match F.repr e with | Fvar y -> begin try let d = Sigma.find y !sref in rs := d :: !rs with Not_found -> ys := y :: !ys end | _ -> es := e :: !es ) ds ; (* Now choose the represent of x and the dependencies *) let select d = sref := Sigma.add x d !sref ; d , F.vars d in let ceq , depends = match List.sort F.compare !rs with | r :: _ -> select r | [] -> match List.sort F.compare !es with | e :: _ -> select e | [] -> e_var x , Vars.empty in List.iter (fun y -> sref := Sigma.add y ceq !sref) !ys ; iter (extract defs sref cycle) depends with Not_found -> () let bind sigma defs xs = let sref = ref sigma in iter (extract defs sref Vars.empty) xs ; !sref let get_class sigma xs x = List.sort Var.compare (List.filter (fun y -> Vars.mem y xs) (Sigma.class_of sigma x)) let rec add_eq ps y = function | z::zs -> add_eq (p_equal (e_var y) (e_var z) :: ps) y zs | [] -> ps let add_equals ys ps = match ys with [] -> ps | y::ys -> add_eq ps y ys let add_definitions sigma defs xs ps = let xs = Vars.filter (fun x -> Vmap.mem x defs) xs in Vars.fold (fun x ps -> let ps = add_equals (get_class sigma xs x) ps in try F.p_equal (e_var x) (Sigma.find x sigma) :: ps with Not_found -> ps ) xs ps (* -------------------------------------------------------------------------- *) (* --- Split-Cases --- *) (* -------------------------------------------------------------------------- *) module Split = struct type occur = int F.Tmap.t ref let create () = ref Tmap.empty let literal m p = try let n = Tmap.find p !m in m := Tmap.add p (succ n) !m with Not_found -> m := Tmap.add p 1 !m let rec occur m p = match F.repr p with | And ps | Or ps -> List.iter (occur m) ps | Imply(hs,p) -> List.iter (occur m) (p::hs) | Not p -> occur m p | If(p,a,b) -> occur m p ; occur m a ; occur m b | Eq(a,b) when F.is_closed a || F.is_closed b -> literal m p | Neq(a,b) when F.is_closed a || F.is_closed b -> literal m (e_not p) | Fun _ | Leq _ -> literal m p | Lt _ -> literal m (e_not p) | _ -> () let add m p = occur m (F.e_prop p) let select m = let compare (c1,n1) (c2,n2) = (* most often first *) if n1 < n2 then 1 else if n1 > n2 then (-1) else F.comparep c1 c2 in List.sort compare (Tmap.fold (fun c n s -> (F.p_bool c,n)::s) !m []) end (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>