package dedukti

  1. Overview
  2. Docs

Source file reduction.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
open Basic
open Rule
open Term
open Dtree
open Ac

let d_reduce = Debug.register_flag "Reduce"

type red_target = Snf | Whnf

type red_strategy = ByName | ByValue | ByStrongValue

type dtree_finder = Signature.t -> Basic.loc -> Basic.name -> t

type red_cfg = {
  select : (Rule.rule_name -> bool) option;
  nb_steps : int option;
  (* [Some 0] for no evaluation, [None] for no bound *)
  target : red_target;
  strat : red_strategy;
  beta : bool;
  logger : position -> Rule.rule_name -> term Lazy.t -> term Lazy.t -> unit;
  finder : dtree_finder;
}

let pp_red_cfg fmt cfg =
  let args =
    (match cfg.target with Snf -> ["SNF"] | _ -> [])
    @ (match cfg.strat with
      | ByValue -> ["CBV"]
      | ByStrongValue -> ["CBSV"]
      | _ -> [])
    @ match cfg.nb_steps with Some i -> [string_of_int i] | _ -> []
  in
  Format.fprintf fmt "[%a]" (pp_list "," Format.pp_print_string) args

let default_cfg =
  {
    select = None;
    nb_steps = None;
    target = Snf;
    strat = ByName;
    beta = true;
    logger = (fun _ _ _ _ -> ());
    finder = Signature.get_dtree;
  }

exception Not_convertible

let rec zip_lists l1 l2 lst =
  match (l1, l2) with
  | [], [] -> lst
  | s1 :: l1, s2 :: l2 -> zip_lists l1 l2 ((s1, s2) :: lst)
  | _, _ -> raise Not_convertible

(* State *)

type env = term Lazy.t LList.t

(* A state {ctx; term; stack} is the state of an abstract machine that
   represents a term where [ctx] is a ctx that contains the free variables
   of [term] and [stack] represents the terms that [term] is applied to. *)
type state = {
  ctx : env;
  (* context *)
  term : term;
  (* term to reduce *)
  stack : stack; (* stack *)
}

and stack = state ref list
(* TODO: implement  constant time random access / in place mutable value.  *)

let rec term_of_state {ctx; term; stack} : term =
  let t = if LList.is_empty ctx then term else Subst.psubst_l ctx term in
  mk_App2 t (List.map term_of_state_ref stack)

and term_of_state_ref r = term_of_state !r

let state_of_term t = {ctx = LList.nil; term = t; stack = []}

let state_ref_of_term t = ref {ctx = LList.nil; term = t; stack = []}

(**************** Pretty Printing ****************)

(*
open Format

let pp_env fmt (env:env) = pp_list ", " pp_term fmt (List.map Lazy.force (LList.lst env))
let pp_stack fmt (st:stack) =
  fprintf fmt "[ %a ]\n" (pp_list "\n | " pp_term) (List.map term_of_state_ref st)

let pp_stack_oneline fmt (st:stack) =
  fprintf fmt "[ %a ]" (pp_list " | " pp_term) (List.map term_of_state_ref st)

let pp_state ?(if_ctx=true) ?(if_stack=true) fmt { ctx; term; stack } =
  if if_ctx
  then fprintf fmt "{ctx=[%a];@." pp_env ctx
  else fprintf fmt "{ctx=[...](%i);@." (LList.len ctx);
  fprintf fmt "term=%a;@." pp_term term;
  if if_stack
  then fprintf fmt "stack=%a}@." pp_stack stack
  else fprintf fmt "stack=[...](%i)}@." (List.length stack);
  fprintf fmt "@.%a@." pp_term (term_of_state {ctx; term; stack})

let pp_state_oneline = pp_state ~if_ctx:true ~if_stack:true
*)

type convertibility_test = Signature.t -> term -> term -> bool

module type ConvChecker = sig
  val are_convertible : convertibility_test

  val constraint_convertibility :
    Rule.constr -> Rule.rule_name -> convertibility_test

  val conversion_step :
    Signature.t -> term * term -> (term * term) list -> (term * term) list
end

module type S = sig
  include ConvChecker

  val reduction : red_cfg -> Signature.t -> term -> term

  val whnf : Signature.t -> term -> term

  val snf : Signature.t -> term -> term
end

(* Should eta expansion be allowed at conversion check ? *)
let eta = ref false

(* Should beta steps be allowed at reduction ? *)
let beta = ref true

(* Rule filter *)
let selection = ref None

(* Where to find the dtree associated to a symbol *)
let dtree_finder : dtree_finder ref = ref Signature.get_dtree

module Make (C : ConvChecker) (M : Matching.Matcher) : S = struct
  (*******      AC manipulating functions   *******)

  let filter_neutral sg l cst terms =
    match Signature.get_algebra sg l cst with
    | ACU neu -> (
        match List.filter (fun x -> not (C.are_convertible sg neu x)) terms with
        | [] -> [neu]
        | s -> s)
    | _ -> terms

  (** Builds a comb-shaped AC term from a list of arguments. *)
  let to_comb sg l cst ctx stack =
    let rec f = function
      | [] ->
          {ctx = LList.nil; term = Signature.get_neutral sg l cst; stack = []}
      | [t] -> !t
      | t1 :: t2 :: tl ->
          f (ref {ctx; term = mk_Const l cst; stack = [t1; t2]} :: tl)
    in
    f stack

  (* Unfolds all occurences of the AC(U) symbol in the stack
   * Removes occurence of neutral element. *)
  let rec flatten_AC_stack sg (cst : name) : stack -> stack =
    let rec flatten acc = function
      | [] -> acc
      | st :: tl -> (
          match !st with
          | {term = Const (_, cst'); stack = [st1; st2]; _}
            when name_eq cst cst' ->
              flatten acc (st1 :: st2 :: tl)
          | _ -> (
              st := state_whnf sg !st;
              match !st with
              | {term = Const (_, cst'); stack = [st1; st2]; _}
                when name_eq cst cst' ->
                  flatten acc (st1 :: st2 :: tl)
              | _ -> flatten (st :: acc) tl))
    in
    flatten []

  and comb_state_if_AC alg sg st =
    if Term.is_AC alg then
      match st with
      | {ctx; term = Const (l, cst); stack = s1 :: s2 :: rstack; _} ->
          let nstack = flatten_AC_stack sg cst [s1; s2] in
          let nstack =
            match alg with
            | ACU neu ->
                List.filter
                  (fun st ->
                    not (C.are_convertible sg (term_of_state_ref st) neu))
                  nstack
            | _ -> nstack
          in
          let combed = to_comb sg l cst ctx nstack in
          let fstack =
            match rstack with [] -> combed.stack | l -> combed.stack @ l
          in
          {combed with stack = fstack}
      | st -> st
    else st

  and comb_term_if_AC sg : term -> term = function
    | App (Const (l, cst), a1, a2 :: remain_args) as t ->
        let alg = Signature.get_algebra sg l cst in
        if is_AC alg then
          let id_comp = Signature.get_id_comparator sg in
          let args = flatten_AC_terms cst [a1; a2] in
          let args = filter_neutral sg l cst args in
          let args = List.sort (compare_term id_comp) args in
          let _ = assert (List.length args > 0) in
          mk_App2 (unflatten_AC (cst, alg) args) remain_args
        else t
    | t -> t

  (*******   Matching with a decision tree  *******)

  and find_case sg (st : state) (case : case) : stack option =
    match (st, case) with
    | {term = Const (_, cst); stack; _}, CConst (nargs, cst', false) ->
        if name_eq cst cst' && List.length stack == nargs then Some stack
        else None
    | {ctx; term = DB (_, _, n); stack; _}, CDB (nargs, n') ->
        assert (ctx = LList.nil);
        (* no beta in patterns *)
        if n == n' && List.length stack == nargs then Some stack else None
    | {term = Lam (_, _, _, _); _}, CLam -> (
        match term_of_state st with
        (*TODO could be optimized*)
        | Lam (_, _, _, te) -> Some [state_ref_of_term te]
        | _ -> assert false)
    | ( {term = Const (_, cst); stack = t1 :: t2 :: s; _},
        CConst (nargs, cst', true) )
      when name_eq cst cst' && nargs == List.length s + 2 ->
        Some (ref {st with stack = flatten_AC_stack sg cst [t1; t2]} :: s)
    (* This case is a bit tricky: when + is AC,
       C (+ f g 1) can match C (h 1)
       The corresponding matching problem is  +{f,g} = +{h}
       which is not necessarily unsolvable in general:
       maybe + is acu and a solution is {f = u, g = h}
       TODO: check that this case is used properly !
    *)
    | {ctx; term; stack}, CConst (nargs, cst, true)
      when List.length stack == nargs - 2 ->
        let new_st = ref {ctx; term; stack = []} in
        let new_stack = flatten_AC_stack sg cst [new_st] in
        Some (ref {ctx; term = mk_Const dloc cst; stack = new_stack} :: stack)
    | _ -> None

  and fetch_case sg (state : state ref) (case : case) (dt_suc : dtree)
      (dt_def : dtree option) : (dtree * state ref * stack) list =
    let def_s = match dt_def with None -> [] | Some g -> [(g, state, [])] in
    let stack = !state.stack in
    match !state.term with
    | Const _ ->
        let rec f acc (stack_acc : state ref list) st =
          match (st, case) with
          | [], _ -> acc
          | hd :: tl, _ ->
              let new_stack_acc = hd :: stack_acc in
              let new_acc =
                match find_case sg !hd case with
                | None -> acc
                | Some s ->
                    let new_stack = List.rev_append stack_acc tl in
                    (* Remove hd from stack *)
                    let new_state = ref {!state with stack = new_stack} in
                    (dt_suc, new_state, s) :: acc
              in
              f new_acc new_stack_acc tl
        in
        List.rev_append (f [] [] stack) def_s
    | _ -> assert false

  and find_cases sg (st : state) (cases : (case * dtree) list)
      (default : dtree option) : (dtree * stack) list =
    List.fold_left
      (fun acc (case, tr) ->
        match find_case sg st case with
        | None -> acc
        | Some stack -> (tr, stack) :: acc)
      (match default with None -> [] | Some g -> [(g, [])])
      cases

  (* TODO implement the stack as an array ? (the size is known in advance). *)
  and gamma_rw (sg : Signature.t) (filter : (Rule.rule_name -> bool) option) :
      stack -> dtree -> (rule_name * env * term) option =
    let rec rw_list : (stack * dtree) list -> (rule_name * env * term) option =
      function
      | [] -> None
      | [(stack, tree)] -> rw stack tree
      | (stack, tree) :: tl -> (
          match rw stack tree with None -> rw_list tl | x -> x)
    and rw (stack : stack) : dtree -> (rule_name * env * term) option = function
      (* Fetch case from AC-headed i-th state
         This may branch and generate many case, one for each possible term to fetch
      *)
      | Fetch (i, case, dt_suc, dt_def) ->
          let rec split_ith acc i l =
            match (i, l) with
            | 0, h :: t -> (acc, h, t)
            | i, h :: t -> split_ith (h :: acc) (i - 1) t
            | _ -> assert false
          in
          let stack_h, arg_i, stack_t = split_ith [] i stack in
          assert (
            match !arg_i.term with
            | Const (l, cst) -> Signature.is_AC sg l cst
            | _ -> false);
          let process (g, new_s, s) =
            ( List.rev_append stack_h
                (new_s :: (match s with [] -> stack_t | s -> stack_t @ s)),
              g )
          in
          let cases =
            (* Generate all possible picks for the fetch *)
            fetch_case sg arg_i case dt_suc dt_def
          in
          let new_cases = List.map process cases in
          rw_list new_cases
          (* ... try them all *)
      | ACEmpty (i, dt_suc, dt_def) -> (
          match !(List.nth stack i) with
          | {term = Const (l, cst); stack = st; _} ->
              assert (Signature.is_AC sg l cst);
              if st = [] then rw stack dt_suc else bind_opt (rw stack) dt_def
          | _ -> assert false)
      | Switch (i, cases, def) ->
          let arg_i = List.nth stack i in
          arg_i := state_whnf sg !arg_i;
          (* Several cases may match !!
                   when max and plus are ACU symbols, they can match anything
                   (max  f g) ... = x ...
                   (plus f g) ... = x ...
                   x          ... = x ...
                   FIXME: This should really be handled by the decision tree.
                   It impacts performance a bit to have a list of size 1 computed then mapped
                   then matched upon (instead of just jumping to the recursive call).
          *)
          let new_cases =
            List.map
              (fun (g, l) -> (concat stack l, g))
              (find_cases sg !arg_i cases def)
          in
          rw_list new_cases
      | Test (rule_name, matching_pb, cstr, right, def) ->
          let keep_rule =
            match filter with None -> true | Some f -> f rule_name
          in
          if keep_rule then (
            (* FIXME: Several calls to [convert(_ac) i] generates different lazy values.
                     Whnf may be computed several times in case of non linearity. *)
            let convert i =
              let te = List.nth stack i in
              lazy (term_of_state_ref te)
            in
            let convert_ac i =
              List.map
                (fun s -> lazy (term_of_state_ref s))
                !(List.nth stack i).stack
            in
            (* Convert problem on stack indices to a problem on terms *)
            match
              M.solve_problem rule_name sg convert convert_ac matching_pb
            with
            | None -> bind_opt (rw stack) def
            | Some ctx ->
                List.iter
                  (fun (i, t2) ->
                    let t1 = Lazy.force (LList.nth ctx i) in
                    let t2 = term_of_state {ctx; term = t2; stack = []} in
                    if
                      not
                        (C.constraint_convertibility (i, t2) rule_name sg t1 t2)
                    then
                      raise
                        (Signature.Signature_error
                           (Signature.GuardNotSatisfied (get_loc t1, t1, t2))))
                  cstr;
                Some (rule_name, ctx, right))
          else bind_opt (rw stack) def
    in
    rw

  (* ************************************************************** *)

  (* This function reduces a state to a weak-head-normal form.
   * This means that the term [term_of_state (state_whnf sg state)] is a
   * weak-head-normal reduct of [term_of_state state].
   *
   * Moreover the returned state verifies the following properties:
   * - state.term is not an application
   * - state.term can only be a variable if term.ctx is empty
   *    (and therefore this variable is free in the corresponding term)
   * - when state.term is an AC constant, then state.stack contains no application
   *     of that same constant
   *)
  and state_whnf (sg : Signature.t) (st : state) : state =
    (*
  Debug.(debug D_reduce "Reducing %a" pp_state_oneline st);
  *)
    let rec_call ctx term stack = state_whnf sg {ctx; term; stack} in
    match st with
    (* Weak head beta normal terms *)
    | {term = Type _; _}
    | {term = Kind; _}
    | {term = Pi _; _}
    | {term = Lam _; stack = []; _} ->
        st
    (* DeBruijn index: environment lookup *)
    | {ctx; term = DB (l, x, n); stack} ->
        if LList.is_empty ctx then st
        else if n < LList.len ctx then
          state_whnf sg
            {ctx = LList.nil; term = Lazy.force (LList.nth ctx n); stack}
        else {ctx = LList.nil; term = mk_DB l x (n - LList.len ctx); stack}
    (* Beta redex *)
    | {ctx; term = Lam (_, _, _, t); stack = p :: s; _} ->
        if not !beta then st
        else rec_call (LList.cons (lazy (term_of_state_ref p)) ctx) t s
    (* Application: arguments go on the stack *)
    | {ctx; term = App (f, a, lst); stack = s; _} ->
        (* rev_map + rev_append to avoid map + append*)
        let tl' =
          List.rev_map (fun t -> ref {ctx; term = t; stack = []}) (a :: lst)
        in
        rec_call ctx f (List.rev_append tl' s)
    (* Potential Gamma redex *)
    | {ctx; term = Const (l, n); stack; _} -> (
        let trees = !dtree_finder sg l n in
        match find_dtree (List.length stack) trees with
        | alg, None -> comb_state_if_AC alg sg st
        | alg, Some (ar, tree) -> (
            let s1, s2 = split ar stack in
            let s1 =
              if ar > 1 && Term.is_AC alg then
                match s1 with
                | t1 :: t2 :: tl ->
                    let flat = flatten_AC_stack sg n [t1; t2] in
                    ref {ctx; term = mk_Const l n; stack = flat} :: tl
                | _ -> assert false
              else s1
            in
            match gamma_rw sg !selection s1 tree with
            | None -> comb_state_if_AC alg sg st
            | Some (_, ctx, term) -> rec_call ctx term s2))

  (* ************************************************************** *)

  (* Weak Head Normal Form *)
  and whnf sg term = term_of_state (state_whnf sg (state_of_term term))

  (* Strong Normal Form *)
  and snf sg (t : term) : term =
    match whnf sg t with
    | (Kind | Const _ | DB _ | Type _) as t' -> t'
    | App (f, a, lst) ->
        let res = mk_App (snf sg f) (snf sg a) (List.map (snf sg) lst) in
        comb_term_if_AC sg res
    | Pi (_, x, a, b) -> mk_Pi dloc x (snf sg a) (snf sg b)
    | Lam (_, x, a, b) -> mk_Lam dloc x (map_opt (snf sg) a) (snf sg b)

  and conversion_step sg :
      term * term -> (term * term) list -> (term * term) list =
   fun (l, r) lst ->
    match (l, r) with
    | Kind, Kind | Type _, Type _ -> lst
    | Const (_, n), Const (_, n') when name_eq n n' -> lst
    | DB (_, _, n), DB (_, _, n') when n == n' -> lst
    | App (Const (lc, cst), _, _), App (Const (_, cst'), _, _)
      when Signature.is_AC sg lc cst && name_eq cst cst' -> (
        (* TODO: Eventually replace this with less hardcore criteria: put all terms in whnf
         * then look at the heads to match arguments with one another.
         * Careful, this is tricky:
         * The whnf would need here to make sure that no reduction may occur at the AC-head.
         * Whenever  max n n --> n,   the whnf of "max a (max a b)" should be "max a b"
         * If not all head reduction are exhausted, then comparing AC argument sets is not enough
         *)
        match (snf sg l, snf sg r) with
        | App (Const (_, cst2), a, args), App (Const (_, cst2'), a', args')
          when name_eq cst2 cst && name_eq cst2' cst && name_eq cst2 cst'
               && name_eq cst2' cst' ->
            (a, a') :: zip_lists args args' lst
        | p -> p :: lst)
    | App (f, a, args), App (f', a', args') ->
        (f, f') :: (a, a') :: zip_lists args args' lst
    | Lam (_, _, _, b), Lam (_, _, _, b') -> (b, b') :: lst
    (* Potentially eta-equivalent terms *)
    | Lam (_, i, _, b), a when !eta ->
        let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in
        (b, b') :: lst
    | a, Lam (_, i, _, b) when !eta ->
        let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in
        (b, b') :: lst
    | Pi (_, _, a, b), Pi (_, _, a', b') -> (a, a') :: (b, b') :: lst
    | t1, t2 ->
        Debug.(debug d_reduce "Not convertible: %a / %a" pp_term t1 pp_term t2);
        raise Not_convertible

  let rec are_convertible_lst sg : (term * term) list -> bool = function
    | [] -> true
    | (t1, t2) :: lst ->
        (* Check physical equality first for optimisation. *)
        are_convertible_lst sg
          (if t1 == t2 then lst
           (* This test can be less expensive than computing the `whnf` if the
              two terms are equal. *)
          else if term_eq t1 t2 then lst
          else conversion_step sg (whnf sg t1, whnf sg t2) lst)

  (* Convertibility Test *)
  let are_convertible sg t1 t2 =
    try are_convertible_lst sg [(t1, t2)]
    with Not_convertible | Invalid_argument _ -> false

  (* ************************************************************** *)

  type state_reducer = position -> state -> state

  type term_reducer = position -> term -> term

  let logged_state_whnf log stop (strat : red_strategy) (sg : Signature.t) :
      state_reducer =
    let rec aux : state_reducer =
     fun (pos : position) (st : state) ->
      if stop () then st
      else
        match (st, strat) with
        (* Weak head beta normal terms *)
        | {term = Type _; _}, _ | {term = Kind; _}, _ -> st
        | {term = Pi _; _}, ByName | {term = Pi _; _}, ByValue -> st
        | {ctx; term = Pi (l, x, a, b); _}, ByStrongValue ->
            let a' =
              term_of_state (aux (0 :: pos) {ctx; term = a; stack = []})
            in
            (* Should we also reduce b ? *)
            {st with term = mk_Pi l x a' b}
        (* Reducing type annotation *)
        | {ctx; term = Lam (l, x, Some ty, t); stack = []; _}, ByStrongValue ->
            let ty' =
              term_of_state (aux (0 :: pos) {ctx; term = ty; stack = []})
            in
            {st with term = mk_Lam l x (Some ty') t}
        (* Empty stack *)
        | {term = Lam _; stack = []; _}, _ -> st
        (* Beta redex with type annotation *)
        | {ctx; term = Lam (l, x, Some ty, t); stack = p :: s; _}, ByStrongValue
          ->
            let ty' =
              term_of_state (aux (0 :: pos) {ctx; term = ty; stack = []})
            in
            if stop () || not !beta then
              {st with term = mk_Lam l x (Some ty') t}
            else
              let st' =
                {
                  ctx = LList.cons (lazy (term_of_state_ref p)) ctx;
                  term = t;
                  stack = s;
                }
              in
              let _ = log pos Rule.Beta st st' in
              aux pos st'
        (* Beta redex *)
        | {ctx; term = Lam (_, _, _, t); stack = p :: s; _}, _ ->
            if not !beta then st
            else
              let st' =
                {
                  ctx = LList.cons (lazy (term_of_state_ref p)) ctx;
                  term = t;
                  stack = s;
                }
              in
              let _ = log pos Rule.Beta st st' in
              aux pos st'
        (* DeBruijn index: environment lookup *)
        | {ctx; term = DB (l, x, n); stack; _}, _ ->
            if n < LList.len ctx then
              aux pos
                {ctx = LList.nil; term = Lazy.force (LList.nth ctx n); stack}
            else {ctx = LList.nil; term = mk_DB l x (n - LList.len ctx); stack}
        (* Application: arguments go on the stack *)
        | {ctx; term = App (f, a, lst); stack; _}, ByName ->
            (* rev_map + rev_append to avoid map + append *)
            let tl' =
              List.rev_map (fun t -> ref {ctx; term = t; stack = []}) (a :: lst)
            in
            aux pos {ctx; term = f; stack = List.rev_append tl' stack}
        (* Application: arguments are reduced to values then go on the stack *)
        | {ctx; term = App (f, a, lst); stack; _}, _ ->
            let arg_reduce i t =
              ref (aux (i :: pos) {ctx; term = t; stack = []})
            in
            let tl' = rev_mapi arg_reduce (a :: lst) in
            aux pos {ctx; term = f; stack = List.rev_append tl' stack}
        (* Potential Gamma redex *)
        | {ctx; term = Const (l, n); stack; _}, _ -> (
            let trees = !dtree_finder sg l n in
            match find_dtree (List.length stack) trees with
            | alg, None -> comb_state_if_AC alg sg st
            | alg, Some (ar, tree) -> (
                let s1, s2 = split ar stack in
                let s1 =
                  if ar > 1 && Term.is_AC alg then
                    match s1 with
                    | t1 :: t2 :: tl ->
                        let flat = flatten_AC_stack sg n [t1; t2] in
                        ref {ctx; term = mk_Const l n; stack = flat} :: tl
                    | _ -> assert false
                  else s1
                in
                match gamma_rw sg !selection s1 tree with
                | None -> comb_state_if_AC alg sg st
                | Some (rn, ctx, term) ->
                    let st' = {ctx; term; stack = s2} in
                    log pos rn st st'; aux pos st'))
    in
    aux

  let term_whnf (st_reducer : state_reducer) : term_reducer =
   fun pos t -> term_of_state (st_reducer pos (state_of_term t))

  let term_snf (st_reducer : state_reducer) : term_reducer =
    let rec aux pos t =
      match term_whnf st_reducer pos t with
      | (Kind | Const _ | DB _ | Type _) as t' -> t'
      | App (f, a, lst) ->
          mk_App
            (aux (0 :: pos) f)
            (aux (1 :: pos) a)
            (List.mapi (fun p arg -> aux (p :: pos) arg) lst)
      | Pi (_, x, a, b) -> mk_Pi dloc x (aux (0 :: pos) a) (aux (1 :: pos) b)
      | Lam (_, x, a, b) ->
          mk_Lam dloc x (map_opt (aux (0 :: pos)) a) (aux (1 :: pos) b)
    in
    aux

  let reduction cfg sg te =
    let log, stop =
      match cfg.nb_steps with
      | None -> ((fun _ _ _ _ -> ()), fun () -> false)
      | Some n ->
          let aux = ref n in
          ((fun _ _ _ _ -> decr aux), fun () -> !aux <= 0)
    in
    let st_logger p rn stb sta =
      log p rn stb sta;
      cfg.logger p rn (lazy (term_of_state stb)) (lazy (term_of_state sta))
    in
    let st_red = logged_state_whnf st_logger stop cfg.strat sg in
    let term_red =
      match cfg.target with Snf -> term_snf | Whnf -> term_whnf
    in
    selection := cfg.select;
    beta := cfg.beta;
    dtree_finder := cfg.finder;
    let te' = term_red st_red [] te in
    selection := default_cfg.select;
    beta := default_cfg.beta;
    dtree_finder := default_cfg.finder;
    te'

  let are_convertible = are_convertible

  let constraint_convertibility _ _ = are_convertible
end

module rec Default : S = Make (Default) (Matching.Make (Default))
OCaml

Innovation. Community. Security.