Source file dtree.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
open Basic
open Term
open Rule
open Format
open Ac
type dtree_error =
| HeadSymbolMismatch of loc * name * name
| ArityInnerMismatch of loc * ident * ident
| ACSymbolRewritten of loc * name * int
exception Dtree_error of dtree_error
type miller_var = {
arity : int; (** Arity of the meta variable *)
depth : int;
(** Depth under which this occurence of the meta variable is considered *)
vars : int list; (** The list of local DB indices of argument variables*)
mapping : int array;
(** The mapping from all local DB indices for either -1 or position
in the list of argument variables
*)
}
let fo_var : miller_var = {arity = 0; depth = 0; vars = []; mapping = [||]}
let mapping_of_vars (depth : int) (arity : int) (vars : int list) : int array =
let arr = Array.make depth (-1) in
List.iteri (fun i n -> arr.(n) <- arity - i - 1) vars;
arr
type var_p = int * miller_var
type 'a eq_problem = miller_var * 'a
type 'a ac_problem = int * ac_ident * int * var_p list * 'a
type pre_matching_problem = {
pm_eq_problems : int eq_problem list LList.t;
pm_ac_problems : int ac_problem list;
pm_arity : int array;
}
let pp_var_type fmt (i, {arity; vars; _}) =
if arity = 0 then fprintf fmt "%i" i
else fprintf fmt "%i[%a]" i (pp_list " " pp_print_int) vars
let pp_eq_problem vp pp_a fmt (args, t) =
fprintf fmt "%a = %a" pp_var_type (vp, args) pp_a t
let pp_eq_problems sep pp_a fmt (vp, prbs) =
fprintf fmt "%a" (pp_list sep (pp_eq_problem vp pp_a)) prbs
let pp_njoks fmt n = if n > 0 then fprintf fmt " + %i _" n
let pp_ac_problem pp_rhs fmt (_, aci, joks, vars, terms) =
fprintf fmt "{ %a%a } =(%a) { %a }"
(pp_list " , " pp_var_type)
vars pp_njoks joks pp_ac_ident aci pp_rhs terms
let pp_pos fmt p = fprintf fmt "stack.%a" pp_print_int p
let pp_pre_matching_problem sep fmt mp =
fprintf fmt "[ %a | %a ]"
(pp_llist sep (pp_eq_problems sep pp_pos))
(LList.mapi (fun i c -> (i, c)) mp.pm_eq_problems)
(pp_list sep (pp_ac_problem pp_pos))
mp.pm_ac_problems
type case = CConst of int * name * bool | CDB of int * int | CLam
type atomic_problem = {a_pos : int; a_depth : int; a_args : int array}
type matching_problem = atomic_problem LList.t
type dtree =
| Switch of int * (case * dtree) list * dtree option
| Test of
Rule.rule_name * pre_matching_problem * constr list * term * dtree option
| Fetch of int * case * dtree * dtree option
| ACEmpty of int * dtree * dtree option
(** Type of decision forests *)
type t = algebra * (int * dtree) list
let empty = (Free, [])
(** Return first pair (ar,tree) in given list such that ar <= stack_size *)
let find_dtree stack_size (alg, l) =
let rec aux = function
| [] -> None
| hd :: tl -> if fst hd <= stack_size then Some hd else aux tl
in
(alg, aux l)
let mk_AC_set cst pat1 pat2 =
let rec flatten acc = function
| [] -> acc
| LPattern (cst', args) :: tl
when name_eq cst cst' && Array.length args == 2 ->
flatten acc (args.(0) :: args.(1) :: tl)
| t :: tl -> flatten (t :: acc) tl
in
LACSet (cst, flatten [] [pat1; pat2])
type matrix = {
col_depth : int array;
first : rule_infos;
others : rule_infos list;
}
(** Merge and flatten the first two argument of AC headed patterns
into the LACSet representation:
+ (+ r s) (t u) ... --> ...
becomes
+{r s t u} ... --> ...
*)
let merge_AC_arguments =
let aux r =
let f = function
| 0 -> mk_AC_set r.cst r.pats.(0) r.pats.(1)
| i -> r.pats.(i - 1)
in
let npats = Array.init (Array.length r.pats - 1) f in
{r with pats = npats}
in
List.map aux
(** Append extra rule when necessary :
+{1 0} --> r becomes +{1 0 X} --> +{r X}
+{X X} --> r becomes +{X X Y} --> +{r Y} (TODO)
+{X 0} --> r is left unchanged (X already a "scraps collecting" variable)
*)
let expand_AC_rules =
let rec aux acc = function
| [] -> List.rev acc
| r :: tl -> (
assert (Array.length r.pats == 1);
let is_linear_var = function
| LJoker -> true
| LVar (_, i, []) -> not (List.mem i r.nonlinear)
| _ -> false
in
match r.pats.(0) with
| LACSet (cst, args) ->
let new_acc =
if List.exists is_linear_var args then r :: acc
else
let newr =
{
r with
esize = r.esize + 1;
rhs =
mk_App (mk_Const dloc cst) r.rhs
[mk_DB dloc dmark r.esize];
pats = [|LACSet (cst, LVar (dmark, r.esize, []) :: args)|];
}
in
newr :: r :: acc
in
aux new_acc tl
| _ -> assert false)
in
aux []
let mk_matrix (ac : bool) (arity : int) (ri : rule_infos list) : matrix =
let rules = List.filter (fun x -> List.length x.args <= arity) ri in
assert (rules <> []);
let f r =
let ar = Array.length r.pats in
assert (ar <= arity);
if ar == arity then r
else
let tail =
Array.init (arity - ar) (fun i -> LVar (dmark, i + r.esize, []))
in
let new_args =
List.map
(function LVar (x, n, []) -> mk_DB dloc x n | _ -> assert false)
(Array.to_list tail)
in
{
r with
esize = r.esize + arity - ar;
rhs = mk_App2 r.rhs new_args;
pats = Array.append r.pats tail;
}
in
let rules = List.map f rules in
let rules = if ac && arity > 1 then merge_AC_arguments rules else rules in
let rules = if ac && arity == 2 then expand_AC_rules rules else rules in
{
first = List.hd rules;
others = List.tl rules;
col_depth = Array.make arity 0;
}
let pop mx =
match mx.others with
| [] -> None
| f :: o -> Some {mx with first = f; others = o}
let filter (f : rule_infos -> bool) (mx : matrix) : matrix option =
match List.filter f (mx.first :: mx.others) with
| [] -> None
| f :: o -> Some {mx with first = f; others = o}
let get_rule_filter f c r = f r.pats.(c)
let filter_on_lambda = function
| LLambda _ | LJoker | LVar _ -> true
| LACSet (_, s) -> List.exists (function LLambda _ -> true | _ -> false) s
| _ -> false
let filter_on_bound_variable nargs n = function
| LVar _ | LJoker -> true
| LBoundVar (_, n', args) -> n' == n && Array.length args == nargs
| LACSet _ -> assert false
| _ -> false
let filter_on_pattern nargs cst = function
| LVar _ | LJoker -> true
| LPattern (cst', ar') -> name_eq cst cst' && Array.length ar' == nargs
| LACSet _ -> assert false
| _ -> false
let filter_default (mx : matrix) (c : int) : matrix option =
filter
(fun r ->
match r.pats.(c) with
| LVar _ | LJoker -> true
| LLambda _ | LPattern _ | LBoundVar _ -> false
| LACSet _ -> assert false)
mx
let partition_AC_rules c f rules =
let rec aux (keep, def) = function
| [] -> (keep, def)
| r :: tl -> (
match r.pats.(c) with
| LVar _ | LJoker -> aux (r :: keep, r :: def) tl
| LACSet (_, pats) ->
if f pats then aux (r :: keep, def) tl else aux (keep, r :: def) tl
| _ -> aux (keep, r :: def) tl)
in
aux ([], []) rules
let filter_AC_on_empty_set = function LACSet (_, []) -> true | _ -> false
let filter_AC_on_lambda s =
List.exists (function LLambda _ -> true | _ -> false) s
let filter_AC_on_bound_variable nargs n s =
List.exists
(function
| LBoundVar (_, n', args) -> n' == n && Array.length args == nargs
| _ -> false)
s
let filter_AC_on_pattern nargs cst s =
List.exists
(function
| LPattern (cst', ar') -> name_eq cst cst' && Array.length ar' == nargs
| _ -> false)
s
let case_eq a b =
match (a, b) with
| CLam, CLam -> true
| CDB (ar, n), CDB (ar', n') -> ar == ar' && n == n'
| CConst (ar, cst, _), CConst (ar', cst', _) -> ar == ar' && name_eq cst cst'
| _, _ -> false
let case_of_pattern (is_AC : name -> bool) : wf_pattern -> case option =
function
| LVar _ | LJoker -> None
| LPattern (cst, pats) ->
Some
(CConst (Array.length pats, cst, is_AC cst && Array.length pats >= 2))
| LBoundVar (_, n, pats) -> Some (CDB (Array.length pats, n))
| LLambda _ -> Some CLam
| LACSet _ -> assert false
let case_pattern_match (case : case) (pat : wf_pattern) : bool =
match (case, pat) with
| CConst (lpats, c', _), LPattern (c, pats) ->
name_eq c c' && lpats == Array.length pats
| CDB (lpats, n'), LBoundVar (_, n, pats) ->
n' == n && lpats == Array.length pats
| CLam, LLambda _ -> true
| _ -> false
let specialize_empty_AC_rule (c : int) (r : rule_infos) : rule_infos =
{
r with
pats =
Array.init (Array.length r.pats) (fun i ->
if i == c then LJoker else r.pats.(i));
}
let specialize_AC_rule case (c : int) (nargs : int) (r : rule_infos) :
rule_infos =
let size = Array.length r.pats in
let new_pats_c, pat =
match r.pats.(c) with
| LACSet (cst, l) ->
let rec remove_case acc = function
| [] -> assert false
| hd :: tl ->
if case_pattern_match case hd then
(LACSet (cst, List.rev_append acc tl), hd)
else remove_case (hd :: acc) tl
in
remove_case [] l
| LVar _ | LJoker -> (r.pats.(c), LJoker)
| _ -> assert false
in
let aux i =
if i < size then if i == c then new_pats_c else r.pats.(i)
else
match (pat, case) with
| LPattern (cst, pats2), CConst (_, cst', true) ->
assert (name_eq cst cst');
assert (nargs >= 1);
assert (Array.length pats2 == nargs + 1);
if i == size then mk_AC_set cst pats2.(0) pats2.(1)
else pats2.(i - size + 1)
| LPattern (_, pats2), _ | LBoundVar (_, _, pats2), _ ->
assert (Array.length pats2 == nargs);
pats2.(i - size)
| LLambda (_, p), _ ->
assert (nargs == 1);
p
| LJoker, _ -> LJoker
| _ -> assert false
in
{r with pats = Array.init (size + nargs) aux}
let specialize_rule case (c : int) (nargs : int) (r : rule_infos) : rule_infos =
let size = Array.length r.pats in
let aux i =
if i < size then
if i == c then match r.pats.(c) with LVar _ as v -> v | _ -> LJoker
else r.pats.(i)
else
let check_args id pats =
if Array.length pats != nargs then
raise (Dtree_error (ArityInnerMismatch (r.l, Basic.id r.cst, id)));
pats.(i - size)
in
match r.pats.(c) with
| LJoker | LVar _ -> LJoker
| LBoundVar (id, _, pats2) -> check_args id pats2
| LLambda (_, p) ->
assert (nargs == 1);
p
| LACSet _ -> assert false
| LPattern (cst, pats2) -> (
match case with
| CConst (_, cst', true) ->
assert (name_eq cst cst');
assert (Array.length pats2 == nargs + 1 && nargs != 0);
if i == size then mk_AC_set cst pats2.(0) pats2.(1)
else pats2.(i - size + 1)
| _ -> check_args (id cst) pats2)
in
{r with pats = Array.init (size + nargs) aux}
let spec_col_depth (c : int) (nargs : int) (col_depth : int array) : int array =
let size = Array.length col_depth in
let aux i =
if i < size then col_depth.(i) else col_depth.(c)
in
Array.init (size + nargs) aux
let spec_col_depth_l (c : int) (col_depth : int array) : int array =
let size = Array.length col_depth in
let aux i =
if i < size then col_depth.(i) else col_depth.(c) + 1
in
Array.init (size + 1) aux
let specialize_ACEmpty (mx : matrix) (c : int) : matrix * matrix option =
let rules_suc, rules_def =
List.partition
(get_rule_filter filter_AC_on_empty_set c)
(mx.first :: mx.others)
in
match rules_suc with
| [] -> assert false
| first :: others -> (
( {
mx with
first = specialize_empty_AC_rule c first;
others = List.map (specialize_empty_AC_rule c) others;
},
match rules_def with
| [] -> None
| f :: o -> Some {mx with first = f; others = o} ))
let specialize_AC (mx : matrix) (c : int) (case : case) : matrix * matrix option
=
let nargs, part_f =
match case with
| CLam -> (1, filter_AC_on_lambda)
| CDB (nargs, n) -> (nargs, filter_AC_on_bound_variable nargs n)
| CConst (nargs, cst, _) -> (nargs, filter_AC_on_pattern nargs cst)
in
let rules_suc, rules_def =
partition_AC_rules c part_f (mx.first :: mx.others)
in
let nargs = nargs - match case with CConst (_, _, true) -> 1 | _ -> 0 in
let new_cn =
match case with
| CLam -> spec_col_depth_l c mx.col_depth
| _ -> spec_col_depth c nargs mx.col_depth
in
match rules_suc with
| [] -> assert false
| first :: others -> (
( {
first = specialize_AC_rule case c nargs first;
others = List.map (specialize_AC_rule case c nargs) others;
col_depth = new_cn;
},
match rules_def with
| [] -> None
| f :: o -> Some {mx with first = f; others = o} ))
let specialize (mx : matrix) (c : int) (case : case) : matrix =
let nargs, filter_f =
match case with
| CLam -> (1, filter_on_lambda)
| CDB (nargs, n) -> (nargs, filter_on_bound_variable nargs n)
| CConst (nargs, cst, _) -> (nargs, filter_on_pattern nargs cst)
in
let mx_opt = filter (get_rule_filter filter_f c) mx in
let add_args = nargs - match case with CConst (_, _, true) -> 1 | _ -> 0 in
let new_cn =
match case with
| CLam -> spec_col_depth_l c mx.col_depth
| _ -> spec_col_depth c add_args mx.col_depth
in
match mx_opt with
| None -> assert false
| Some mx2 ->
{
first = specialize_rule case c add_args mx2.first;
others = List.map (specialize_rule case c add_args) mx2.others;
col_depth = new_cn;
}
let rec partition_AC (is_AC : name -> bool) : wf_pattern list -> case = function
| [] -> assert false
| hd :: tl -> (
match case_of_pattern is_AC hd with
| Some c -> c
| None -> partition_AC is_AC tl)
let partition (is_AC : name -> bool) (mx : matrix) (c : int) : case list =
let aux lst li =
match case_of_pattern is_AC li.pats.(c) with
| Some c -> if List.exists (case_eq c) lst then lst else c :: lst
| None -> lst
in
List.fold_left aux [] (mx.first :: mx.others)
let get_first_term mx = mx.first.rhs
let get_first_constraints mx = mx.first.constraints
let get_first_matching_problem (get_algebra : name -> algebra) mx =
let esize = mx.first.esize in
let arity = Array.make esize (-1) in
let eq_pbs = Array.make esize [] in
let ac_pbs = ref [] in
Array.iteri
(fun i p ->
let depth = mx.col_depth.(i) in
match p with
| LJoker -> ()
| LVar (_, n, args) ->
assert (depth <= n && n < esize + depth);
let n = n - depth in
let len = List.length args in
if arity.(n) == -1 then arity.(n) <- len
else assert (arity.(n) == len);
let miller =
{
depth;
arity = len;
vars = args;
mapping = mapping_of_vars depth len args;
}
in
eq_pbs.(n) <- (miller, i) :: eq_pbs.(n)
| LACSet (cst, patl) ->
let fetch_metavars (joks, vars) = function
| LJoker -> (joks + 1, vars)
| LVar (_, n, args) ->
assert (depth <= n && n < esize + depth);
let n = n - depth in
let len = List.length args in
if arity.(n) == -1 then arity.(n) <- len
else assert (arity.(n) == len);
let miller =
{
depth;
arity = len;
vars = args;
mapping = mapping_of_vars depth len args;
}
in
let nvars = (n, miller) :: vars in
(joks, nvars)
| _ -> assert false
in
let njoks, metavars = List.fold_left fetch_metavars (0, []) patl in
ac_pbs :=
(depth, (cst, get_algebra cst), njoks, metavars, i) :: !ac_pbs
| _ -> assert false)
mx.first.pats;
assert (Array.for_all (fun x -> x >= 0) arity);
{
pm_eq_problems = LList.of_array eq_pbs;
pm_ac_problems = !ac_pbs;
pm_arity = arity;
}
let rec non_var_pat = function
| LVar _ | LJoker -> false
| LACSet (_, []) -> true
| LACSet (_, patl) -> List.exists non_var_pat patl
| _ -> true
let choose_column mx =
let rec aux i =
if i < Array.length mx.first.pats then
if non_var_pat mx.first.pats.(i) then Some i else aux (i + 1)
else None
in
aux 0
let rec to_dtree get_algebra (mx : matrix) : dtree =
let is_AC cst = is_AC (get_algebra cst) in
match choose_column mx with
| None ->
Test
( mx.first.name,
get_first_matching_problem get_algebra mx,
get_first_constraints mx,
get_first_term mx,
map_opt (to_dtree get_algebra) (pop mx) )
| Some c -> (
match mx.first.pats.(c) with
| LACSet (_, []) ->
let mx_suc, mx_def = specialize_ACEmpty mx c in
ACEmpty
( c,
to_dtree get_algebra mx_suc,
map_opt (to_dtree get_algebra) mx_def )
| LACSet (_, l) ->
let case = partition_AC is_AC l in
let mx_suc, mx_def = specialize_AC mx c case in
Fetch
( c,
case,
to_dtree get_algebra mx_suc,
map_opt (to_dtree get_algebra) mx_def )
| _ ->
let cases = partition is_AC mx c in
let aux ca = (ca, to_dtree get_algebra (specialize mx c ca)) in
Switch
( c,
List.map aux cases,
map_opt (to_dtree get_algebra) (filter_default mx c) ))
(** Adds a new arity to a (reverse) sorted list of distincts arities *)
let rec add l ar =
match l with
| [] -> [ar]
| hd :: tl ->
if ar > hd then ar :: l
else if ar == hd then l
else hd :: add tl ar
let of_rules name get_algebra rs : t =
let alg = get_algebra name in
let ac = is_AC alg in
let arities = ref [] in
List.iter
(fun x ->
if not (name_eq x.cst name) then
raise (Dtree_error (HeadSymbolMismatch (x.l, x.cst, name)));
let arity = List.length x.args in
if ac && arity == 0 then
raise (Dtree_error (ACSymbolRewritten (x.l, x.cst, arity)));
if ac && arity == 1 then arities := add !arities 2;
arities := add !arities arity)
rs;
let sorted_arities = List.fold_left add [] !arities in
let aux ar =
let m = mk_matrix ac ar rs in
(ar, to_dtree get_algebra m)
in
(alg, List.map aux sorted_arities)
let pp_AC_args fmt i =
if i < 2 then fprintf fmt "%i args" i
else if i == 2 then fprintf fmt "AC args"
else fprintf fmt "AC args, %i args" (i - 2)
let rec pp_dtree t fmt dtree =
let tab = String.init (1 + (t * 2)) (fun i -> if i == 0 then '\n' else ' ') in
match dtree with
| Test (_, mp, [], te, _)
when mp.pm_ac_problems = []
&& List.for_all (fun c -> c = []) (LList.lst mp.pm_eq_problems) ->
fprintf fmt "%s%a" tab pp_term te
| Test (name, mp, [], te, def) ->
fprintf fmt "%stry %a :%s %a%sthen %a%selse %a" tab pp_rule_name name
tab
(pp_pre_matching_problem (tab ^ " "))
mp tab pp_term te tab
(pp_def (t + 1))
def
| Test (name, mp, cstr, te, def) ->
fprintf fmt "%stry %a :%s %a%sunder constraints %a%sthen %a%selse %a"
tab pp_rule_name name tab
(pp_pre_matching_problem (tab ^ " "))
mp tab (pp_list ", " pp_constr) cstr tab pp_term te tab
(pp_def (t + 1))
def
| Switch (i, cases, def) ->
let pp_case out = function
| CConst (nargs, name, false), g ->
fprintf out "%sif $%i = %a (%i args) then %a" tab i pp_name name
nargs
(pp_dtree (t + 1))
g
| CConst (nargs, name, true), g ->
fprintf out "%sif $%i = %a (%a) then %a" tab i pp_name name
pp_AC_args nargs
(pp_dtree (t + 1))
g
| CDB (nargs, n), g ->
fprintf out "%sif $%i = DB[%i] (%i args) then %a" tab i n nargs
(pp_dtree (t + 1))
g
| CLam, g ->
fprintf out "%sif $%i = Lambda then %a" tab i (pp_dtree (t + 1)) g
in
fprintf fmt "%a%sdefault: %a" (pp_list "" pp_case) cases tab
(pp_def (t + 1))
def
| ACEmpty (i, tree_suc, tree_def) ->
fprintf fmt "%sif $%i (AC flattened) is empty then %a%selse %a" tab i
(pp_dtree (t + 1))
tree_suc tab
(pp_def (t + 1))
tree_def
| Fetch (i, case, tree_suc, tree_def) ->
(match case with
| CConst (nargs, name, false) ->
fprintf fmt "%sif $%i is AC applied to %a (%i args) then %a%selse %a"
tab i pp_name name nargs
| CConst (nargs, name, true) ->
fprintf fmt "%sif $%i is AC applied to %a (%a) then %a%selse %a" tab i
pp_name name pp_AC_args nargs
| CDB (nargs, n) ->
fprintf fmt
"%sif $%i is AC applied to DB[%i] (%i args) then %a%selse %a" tab i
n nargs
| CLam ->
fprintf fmt "%sif $%i is AC applied to Lambda then %a%selse %a" tab i)
(pp_dtree (t + 1))
tree_suc tab
(pp_def (t + 1))
tree_def
and pp_def t fmt = function
| None -> fprintf fmt "FAIL"
| Some g -> pp_dtree t fmt g
let pp_dtree fmt dtree = pp_dtree 0 fmt dtree
let pp_rw fmt (i, g) =
fprintf fmt "When applied to %i argument(s): %a" i pp_dtree g
let pp_dforest fmt = function
| Free, [] -> fprintf fmt "No GDT.@."
| AC, [] -> fprintf fmt "No GDT for AC symbol.@."
| ACU _, [] -> fprintf fmt "No GDT for ACU symbol.@."
| _, trees -> fprintf fmt "%a@." (pp_list "\n" pp_rw) trees