Source file rule.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
open Basic
open Format
open Term
type pattern =
| Var of loc * ident * int * pattern list
| Pattern of loc * name * pattern list
| Lambda of loc * ident * pattern
| Brackets of term
type wf_pattern =
| LJoker
| LVar of ident * int * int list
| LLambda of ident * wf_pattern
| LPattern of name * wf_pattern array
| LBoundVar of ident * int * wf_pattern array
| LACSet of name * wf_pattern list
type rule_name = Beta | Delta of name | Gamma of bool * name
let rule_name_eq : rule_name -> rule_name -> bool =
fun n1 n2 ->
match (n1, n2) with
| Delta x, Delta y -> name_eq x y
| Gamma (b1, x), Gamma (b2, y) -> b1 = b2 && name_eq x y
| _, _ -> false
type 'a rule = {name : rule_name; ctx : 'a context; pat : pattern; rhs : term}
type partially_typed_rule = term option rule
type typed_rule = term rule
type arity_rule = int rule
type constr = int * term
let pp_constr fmt (i, t) = fprintf fmt "%i =b %a" i pp_term t
type rule_infos = {
l : loc;
name : rule_name;
nonlinear : int list;
cst : name;
args : pattern list;
rhs : term;
ctx_size : int;
esize : int;
pats : wf_pattern array;
arity : int array;
constraints : constr list;
}
let infer_rule_context ri =
let res = Array.make ri.ctx_size (dloc, mk_ident "_", -1) in
let rec aux k = function
| LJoker -> ()
| LVar (name, n, _) ->
if n >= k then res.(n - k) <- (dloc, name, ri.arity.(n - k))
| LLambda (_, body) -> aux (k + 1) body
| LPattern (_, args) -> Array.iter (aux k) args
| LBoundVar (_, _, args) -> Array.iter (aux k) args
| LACSet (_, args) -> List.iter (aux k) args
in
Array.iter (aux 0) ri.pats;
Array.to_list res
let infer_rule_context_without_arity ri =
ri |> infer_rule_context |> List.map (fun (loc, id, _) -> (loc, id, None))
let pattern_of_rule_infos r = Pattern (r.l, r.cst, r.args)
type rule_error =
| BoundVariableExpected of loc * pattern
| DistinctBoundVariablesExpected of loc * ident
| VariableBoundOutsideTheGuard of loc * term
| UnboundVariable of loc * ident * pattern
| AVariableIsNotAPattern of loc * ident
| NonLinearNonEqArguments of loc * ident
| NotEnoughArguments of loc * ident * int * int * int
| NonLinearRule of loc * rule_name
exception Rule_error of rule_error
let rec pp_pattern out pattern =
match pattern with
| Var (_, x, n, []) -> fprintf out "%a[%i]" pp_ident x n
| Var (_, x, n, lst) ->
fprintf out "%a[%i] %a" pp_ident x n (pp_list " " pp_pattern_wp) lst
| Pattern (_, n, []) -> fprintf out "%a" pp_name n
| Pattern (_, n, pats) ->
fprintf out "%a %a" pp_name n (pp_list " " pp_pattern_wp) pats
| Lambda (_, x, p) -> fprintf out "%a => %a" pp_ident x pp_pattern p
| Brackets t -> fprintf out "{ %a }" pp_term t
and pp_pattern_wp out pattern =
match pattern with
| (Var (_, _, _, _ :: _) | Pattern _ | Lambda _) as p ->
fprintf out "(%a)" pp_pattern p
| p -> pp_pattern out p
let rec pp_wf_pattern fmt wf_pattern =
match wf_pattern with
| LJoker -> fprintf fmt "_"
| LVar (x, n, []) -> fprintf fmt "%a[%i]" pp_ident x n
| LVar (x, n, lst) ->
fprintf fmt "%a[%i] %a" pp_ident x n (pp_list " " pp_print_int) lst
| LPattern (n, pats) when Array.length pats = 0 -> fprintf fmt "%a" pp_name n
| LPattern (n, pats) ->
fprintf fmt "%a %a" pp_name n
(pp_list " " pp_wf_pattern_wp)
(Array.to_list pats)
| LLambda (x, p) -> fprintf fmt "%a => %a" pp_ident x pp_wf_pattern p
| LBoundVar (x, n, pats) when Array.length pats = 0 ->
fprintf fmt "%a[%i]" pp_ident x n
| LBoundVar (x, n, pats) ->
fprintf fmt "%a[%i] %a" pp_ident x n
(pp_list " " pp_wf_pattern_wp)
(Array.to_list pats)
| LACSet (cst, l) ->
fprintf fmt "%a{%a}" pp_name cst (pp_list "; " pp_wf_pattern_wp) l
and pp_wf_pattern_wp fmt wf_pattern =
match wf_pattern with
| (LVar (_, _, _ :: _) | LPattern _ | LLambda _) as p ->
fprintf fmt "(%a)" pp_wf_pattern p
| _ -> pp_wf_pattern fmt wf_pattern
let get_loc_pat = function
| Var (l, _, _, _) | Pattern (l, _, _) | Lambda (l, _, _) -> l
| Brackets t -> get_loc t
let get_loc_rule r = get_loc_pat r.pat
let pp_rule_name fmt = function
| Beta -> fprintf fmt "Beta"
| Delta n -> fprintf fmt "Delta: %a" pp_name n
| Gamma (true, n) -> fprintf fmt "Gamma: %a" pp_name n
| Gamma (false, n) -> fprintf fmt "Gamma (default): %a" pp_name n
let pp_rule pp_ctxt fmt (rule : 'a rule) =
fprintf fmt " {%a} [%a] %a --> %a" pp_rule_name rule.name pp_ctxt rule.ctx
pp_pattern rule.pat pp_term rule.rhs
let pp_untyped_rule fmt = pp_rule pp_untyped_context fmt
let pp_typed_rule = pp_rule pp_typed_context
let pp_part_typed_rule = pp_rule pp_part_typed_context
let pp_rule_infos out r =
pp_untyped_rule out
{
name = r.name;
ctx = infer_rule_context r;
pat = pattern_of_rule_infos r;
rhs = r.rhs;
}
let pattern_to_term p =
let rec aux k = function
| Brackets t -> t
| Pattern (l, n, args) -> mk_App2 (mk_Const l n) (List.map (aux k) args)
| Var (l, x, n, args) -> mk_App2 (mk_DB l x n) (List.map (aux k) args)
| Lambda (l, x, pat) -> mk_Lam l x None (aux (k + 1) pat)
in
aux 0 p
type pattern_info = {
constraints : constr list;
context_size : int;
arity : int array;
nonlinear : int list;
}
let bracket_ident = mk_ident "{_}"
let rec all_distinct = function
| [] -> true
| hd :: tl -> if List.mem hd tl then false else all_distinct tl
module IntHashtbl = Hashtbl.Make (struct
type t = int
let equal i j = i = j
let hash i = i land max_int
end)
(** [check_patterns size pats] checks that the given pattern is a well formed
Miller pattern in a context of size [size] and linearizes it.
More precisely:
- Context variables are exclusively applied to distinct locally bound variables
- Occurences of each context variable are all applied to the same number of arguments
Returns the representation of the corresponding linear well formed pattern
together with extracted pattern information:
- Convertibility constraints from non-linearity and brackets
- Size of generated context
- Arity infered for all context variables
*)
let check_patterns (esize : int) (pats : pattern list) :
wf_pattern list * pattern_info =
let nonlinear = ref [] in
let constraints = ref [] in
let context_size = ref esize in
let arity = IntHashtbl.create 10 in
let k = function
| Var (_, _, n, []) when n < k -> n
| p -> raise (Rule_error (BoundVariableExpected (get_loc_pat p, p)))
in
let rec aux (k : int) (pat : pattern) : wf_pattern =
match pat with
| Lambda (_, x, p) -> LLambda (x, aux (k + 1) p)
| Var (_, x, n, args) when n < k ->
LBoundVar (x, n, Array.of_list (List.map (aux k) args))
| Var (l, x, n, args) ->
let args' = List.map (extract_db k) args in
if not (all_distinct args') then
raise (Rule_error (DistinctBoundVariablesExpected (l, x)));
let nb_args' = List.length args' in
if IntHashtbl.mem arity (n - k) then
if nb_args' <> IntHashtbl.find arity (n - k) then
raise (Rule_error (NonLinearNonEqArguments (l, x)))
else nonlinear := (n - k) :: !nonlinear
else IntHashtbl.add arity (n - k) nb_args';
LVar (x, n, args')
| Brackets t ->
let unshifted =
try Subst.unshift k t
with Subst.UnshiftExn ->
raise (Rule_error (VariableBoundOutsideTheGuard (get_loc t, t)))
in
IntHashtbl.add arity !context_size 0;
incr context_size;
let nvar = !context_size - 1 in
constraints := (nvar, unshifted) :: !constraints;
LVar (bracket_ident, nvar + k, [])
| Pattern (_, n, args) -> LPattern (n, Array.of_list (List.map (aux k) args))
in
let wf_pats = List.map (aux 0) pats in
( wf_pats,
{
context_size = !context_size;
constraints = !constraints;
arity = Array.init !context_size (fun i -> IntHashtbl.find arity i);
nonlinear = !nonlinear;
} )
let to_rule_infos (r : 'a rule) : rule_infos =
let ctx_size = List.length r.ctx in
let l, cst, args =
match r.pat with
| Pattern (l, cst, args) -> (l, cst, args)
| Var (l, x, _, _) -> raise (Rule_error (AVariableIsNotAPattern (l, x)))
| Lambda _ | Brackets _ -> assert false
in
let pats2, infos = check_patterns ctx_size args in
{
l;
name = r.name;
nonlinear = infos.nonlinear;
cst;
args;
rhs = r.rhs;
ctx_size;
esize = infos.context_size;
pats = Array.of_list pats2;
arity = infos.arity;
constraints = infos.constraints;
}
let untyped_rule_of_rule_infos ri : partially_typed_rule =
{
name = ri.name;
ctx = infer_rule_context_without_arity ri;
pat = pattern_of_rule_infos ri;
rhs = ri.rhs;
}
let check_arity (r : rule_infos) : unit =
let check _ id n k nargs =
let expected_args = r.arity.(n - k) in
if nargs < expected_args then
raise
@@ Rule_error (NotEnoughArguments (r.l, id, n, nargs, expected_args))
in
let rec aux k = function
| Kind | Type _ | Const _ -> ()
| DB (l, id, n) -> if n >= k then check l id n k 0
| App (DB (l, id, n), a1, args) when n >= k ->
check l id n k (List.length args + 1);
List.iter (aux k) (a1 :: args)
| App (f, a1, args) -> List.iter (aux k) (f :: a1 :: args)
| Lam (_, _, None, b) -> aux (k + 1) b
| Lam (_, _, Some a, b) | Pi (_, _, a, b) ->
aux k a;
aux (k + 1) b
in
aux 0 r.rhs
(** Checks that all rule are left-linear. *)
let check_linearity (r : rule_infos) : unit =
if r.nonlinear <> [] then raise (Rule_error (NonLinearRule (r.l, r.name)))