Source file srcheck.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
open Basic
open Term
module SS = Exsubst.ExSubst
let d_SR = Debug.register_flag "SR Checking"
let srfuel = ref 1
let cstr_eq ((n1, t1, u1) : cstr) ((n2, t2, u2) : cstr) =
let t1', u1' = (Subst.shift n2 t1, Subst.shift n2 u1) in
let t2', u2' = (Subst.shift n1 t2, Subst.shift n1 u2) in
(term_eq t1' t2' && term_eq u1' u2') || (term_eq t1' u2' && term_eq u1' t2')
module SRChecker (R : Reduction.S) = struct
type lhs_typing_cstr = {
subst : SS.t;
unsolved : cstr list;
unsatisf : cstr list;
}
let pp_lhs_typing_cstr fmt {subst; unsolved; unsatisf} =
Format.fprintf fmt "TypingConstraint:@.{@.%a@.[%a]@.[%a]@.}"
(SS.pp (fun _ -> mk_ident ""))
subst (pp_list ", " pp_cstr) unsolved (pp_list ", " pp_cstr) unsatisf
let empty : lhs_typing_cstr =
{subst = SS.identity; unsolved = []; unsatisf = []}
let get_subst c = c.subst
let get_unsat c = match c.unsatisf with [] -> None | c :: _ -> Some c
let snf sg c depth =
let rec aux fuel t =
let t1, flag = SS.apply' c.subst depth t in
let t2 = R.snf sg t1 in
if flag && fuel <> 0 then aux (fuel - 1) t2 else t2
in
aux !srfuel
let whnf sg c depth =
let rec aux fuel t =
let t1, flag = SS.apply' c.subst depth t in
let t2 = R.whnf sg t1 in
if flag && fuel <> 0 then aux (fuel - 1) t2 else t2
in
aux !srfuel
let term_eq_under_cstr (eq_cstr : cstr list) : term -> term -> bool =
let rec aux = function
| [] -> true
| (n, t1, t2) :: tl -> (
List.exists (cstr_eq (n, t1, t2)) eq_cstr
||
match (t1, t2) with
| App (h1, a1, l1), App (h2, a2, l2) ->
List.length l1 = List.length l2
&& aux
((n, h1, h2) :: (n, a1, a2)
:: List.map2 (fun x y -> (n, x, y)) l1 l2
@ tl)
| Lam (_, _, _, t1), Lam (_, _, _, t2) -> aux ((n + 1, t1, t2) :: tl)
| Pi (_, _, a1, b1), Pi (_, _, a2, b2) ->
aux ((n, a1, a2) :: (n + 1, b1, b2) :: tl)
| _ -> term_eq t1 t2 && aux tl)
in
fun t1 t2 -> aux [(0, t1, t2)]
let convertible (sg : Signature.t) (c : lhs_typing_cstr) (depth : int)
(ty_inf : term) (ty_exp : term) : bool =
R.are_convertible sg ty_inf ty_exp
||
match (SS.is_identity c.subst, c.unsolved) with
| true, [] -> false
| true, _ ->
term_eq_under_cstr c.unsolved (R.snf sg ty_inf) (R.snf sg ty_exp)
| false, _ ->
let snf_ty_inf = snf sg c depth ty_inf in
let snf_ty_exp = snf sg c depth ty_exp in
R.are_convertible sg snf_ty_inf snf_ty_exp
|| c.unsolved <> []
&& term_eq_under_cstr c.unsolved snf_ty_inf snf_ty_exp
let rec add_to_list q acc l1 l2 =
match (l1, l2) with
| [], [] -> Some acc
| h1 :: t1, h2 :: t2 -> add_to_list q ((q, h1, h2) :: acc) t1 t2
| _, _ -> None
let unshift_reduce sg q t =
try Some (Subst.unshift q t)
with Subst.UnshiftExn -> (
try Some (Subst.unshift q (R.snf sg t)) with Subst.UnshiftExn -> None)
(** Under [d] lambdas, checks whether term [te] *must* contain an occurence
of any variable that satisfies the given predicate [p],
*even when substituted or reduced*.
This check make no assumption on the rewrite system or possible substitution
- any definable symbol are "safe" as they may reduce to a term where no variable occur
- any applied meta variable (DB index > [d]) are "safe" as they may be
substituted and reduce to a term where no variable occur
Raises VarSurelyOccurs if the term [te] *surely* contains an occurence of one
of the [vars].
*)
let sure_occur_check sg (d : int) (p : int -> bool) (te : term) : bool =
let exception VarSurelyOccurs in
let rec aux = function
| [] -> ()
| (k, t) :: tl -> (
match t with
| Kind | Type _ | Const _ -> aux tl
| Pi (_, _, a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
| Lam (_, _, None, b) -> aux ((k + 1, b) :: tl)
| Lam (_, _, Some a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
| DB (_, _, n) ->
if n >= k && p (n - k) then raise VarSurelyOccurs else aux tl
| App (f, a, args) -> (
match f with
| DB (_, _, n) ->
if n >= k && p (n - k) then raise VarSurelyOccurs
else if n >= k + d then aux tl
else aux (((k, a) :: List.map (fun t -> (k, t)) args) @ tl)
| Const (l, cst) when Signature.is_injective sg l cst ->
aux (((k, a) :: List.map (fun t -> (k, t)) args) @ tl)
| _ ->
aux tl
))
in
try
aux [(0, te)];
false
with VarSurelyOccurs -> true
(** Under [d] lambdas, gather all free variables that are *surely*
contained in term [te]. That is to say term [te] will contain
an occurence of these variables *even when substituted or reduced*.
This check make no assumption on the rewrite system or possible substitutions
- applied definable symbols *surely* contain no variable as they may
reduce to terms where their arguments are erased
- applied meta variable (DB index > [d]) *surely* contain no variable as they
may be substituted and reduce to a term where their arguments are erased
Sets the indices of *surely* contained variables to [true] in the [vars]
boolean array which is expected to be of size (at least) [d].
*)
let gather_free_vars (d : int) (terms : term list) : bool array =
let vars = Array.make d false in
let rec aux = function
| [] -> ()
| (k, t) :: tl -> (
match t with
| DB (_, _, n) ->
if n >= k && n < k + d then vars.(n - k) <- true;
aux tl
| Pi (_, _, a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
| Lam (_, _, None, b) -> aux ((k + 1, b) :: tl)
| Lam (_, _, Some a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
| App (f, a, args) ->
aux (((k, f) :: (k, a) :: List.map (fun t -> (k, t)) args) @ tl)
| _ -> aux tl)
in
aux (List.map (fun t -> (0, t)) terms);
vars
let try_solve q args t =
try
let dbs =
List.map
(function DB (_, _, n) -> n | _ -> raise Matching.NotUnifiable)
args
in
let arity = List.length dbs in
let var =
Dtree.
{arity; depth = q; vars = dbs; mapping = mapping_of_vars q arity dbs}
in
let sol = Matching.solve_miller var t in
Some (Term.add_n_lambdas arity sol)
with Matching.NotUnifiable -> None
let rec pseudo_u sg flag (s : lhs_typing_cstr) :
cstr list -> bool * lhs_typing_cstr = function
| [] -> (flag, s)
| (q, t1, t2) :: lst -> (
let t1' = whnf sg s q t1 in
let t2' = whnf sg s q t2 in
Debug.(debug d_SR) "Processing: %a = %a" pp_term t1' pp_term t2';
let dropped () = pseudo_u sg flag s lst in
let unsolved () =
pseudo_u sg flag {s with unsolved = (q, t1', t2') :: s.unsolved} lst
in
let unsatisf () =
pseudo_u sg true {s with unsatisf = (q, t1', t2') :: s.unsolved} lst
in
let subst db ar te =
pseudo_u sg true {s with subst = SS.add s.subst db ar te} lst
in
if term_eq t1' t2' then dropped ()
else
match (t1', t2') with
| Kind, Kind | Type _, Type _ -> assert false
| DB (_, _, n), DB (_, _, n') when n = n' ->
assert false
| _, Kind | Kind, _ | _, Type _ | Type _, _ -> unsatisf ()
| Pi (_, _, a, b), Pi (_, _, a', b') ->
pseudo_u sg true s ((q, a, a') :: (q + 1, b, b') :: lst)
| Lam (_, _, _, b), Lam (_, _, _, b') ->
pseudo_u sg true s ((q + 1, b, b') :: lst)
| Lam (_, i, _, b), a when !Reduction.eta ->
let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in
pseudo_u sg true s ((q + 1, b, b') :: lst)
| a, Lam (_, i, _, b) when !Reduction.eta ->
let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in
pseudo_u sg true s ((q + 1, b, b') :: lst)
| Const (l, cst), t when not (Signature.is_injective sg l cst) ->
if sure_occur_check sg q (fun k -> k <= q) t then unsatisf ()
else unsolved ()
| t, Const (l, cst) when not (Signature.is_injective sg l cst) ->
if sure_occur_check sg q (fun k -> k <= q) t then unsatisf ()
else unsolved ()
| DB (l1, x1, n1), DB (l2, x2, n2) when n1 >= q && n2 >= q ->
let n, t =
if n1 < n2 then (n1, mk_DB l2 x2 (n2 - q))
else (n2, mk_DB l1 x1 (n1 - q))
in
subst (n - q) 0 t
| DB (_, _, n), t when n >= q -> (
if sure_occur_check sg q (fun k -> k < q || k = n) t then
unsatisf ()
else
match unshift_reduce sg q t with
| None -> unsolved ()
| Some ut ->
let n' = n - q in
if Subst.occurs n' ut then
let t' = R.snf sg ut in
if Subst.occurs n' t' then unsatisf () else subst n' 0 t'
else subst n' 0 ut)
| t, DB (_, _, n) when n >= q -> (
if sure_occur_check sg q (fun k -> k < q || k = n) t then
unsatisf ()
else
match unshift_reduce sg q t with
| None -> unsolved ()
| Some ut ->
let n' = n - q in
if Subst.occurs n' ut then
let t' = R.snf sg ut in
if Subst.occurs n' t' then unsatisf () else subst n' 0 t'
else subst n' 0 ut)
| App (DB (_, _, n), a, args), t when n >= q -> (
let occs = gather_free_vars q (a :: args) in
if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
unsatisf ()
else
match try_solve q (a :: args) t with
| None -> unsolved ()
| Some ut ->
let n' = n - q in
let t' = if Subst.occurs n' ut then ut else R.snf sg ut in
if Subst.occurs n' t' then unsolved ()
else subst n' (1 + List.length args) t')
| t, App (DB (_, _, n), a, args) when n >= q -> (
let occs = gather_free_vars q (a :: args) in
if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
unsatisf ()
else
match try_solve q (a :: args) t with
| None -> unsolved ()
| Some ut ->
let n' = n - q in
let t' = if Subst.occurs n' ut then ut else R.snf sg ut in
if Subst.occurs n' t' then unsolved ()
else subst n' (1 + List.length args) t')
| App (Const (l, cst), a, args), t
when not (Signature.is_injective sg l cst) ->
let occs = gather_free_vars q (a :: args) in
if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
unsatisf ()
else unsolved ()
| t, App (Const (l, cst), a, args)
when not (Signature.is_injective sg l cst) ->
let occs = gather_free_vars q (a :: args) in
if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
unsatisf ()
else unsolved ()
| App (f, a, args), App (f', a', args') -> (
match add_to_list q lst args args' with
| None -> unsatisf ()
| Some lst2 ->
pseudo_u sg true s ((q, f, f') :: (q, a, a') :: lst2))
| _, _ -> unsatisf ())
let compile_cstr (sg : Signature.t) (cstr : cstr list) : lhs_typing_cstr =
let rec process_solver fuel sol =
match pseudo_u sg false {sol with unsolved = []} sol.unsolved with
| false, s -> s
| true, sol' ->
if fuel = 0 then sol'
else
process_solver (fuel - 1)
{sol' with subst = SS.mk_idempotent sol'.subst}
in
process_solver !srfuel {subst = SS.identity; unsolved = cstr; unsatisf = []}
let optimize sg c =
{
c with
unsolved =
List.map (fun (n, t, u) -> (n, R.snf sg t, R.snf sg u)) c.unsolved;
}
end