package dedukti

  1. Overview
  2. Docs

Source file srcheck.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
open Basic
open Term
module SS = Exsubst.ExSubst

let d_SR = Debug.register_flag "SR Checking"

let srfuel = ref 1

(* Check whether two pairs of terms are unifiable (one way or the other) *)
let cstr_eq ((n1, t1, u1) : cstr) ((n2, t2, u2) : cstr) =
  let t1', u1' = (Subst.shift n2 t1, Subst.shift n2 u1) in
  let t2', u2' = (Subst.shift n1 t2, Subst.shift n1 u2) in
  (term_eq t1' t2' && term_eq u1' u2') || (term_eq t1' u2' && term_eq u1' t2')

module SRChecker (R : Reduction.S) = struct
  type lhs_typing_cstr = {
    subst : SS.t;
    unsolved : cstr list;
    unsatisf : cstr list;
  }

  let pp_lhs_typing_cstr fmt {subst; unsolved; unsatisf} =
    Format.fprintf fmt "TypingConstraint:@.{@.%a@.[%a]@.[%a]@.}"
      (SS.pp (fun _ -> mk_ident ""))
      subst (pp_list ", " pp_cstr) unsolved (pp_list ", " pp_cstr) unsatisf

  let empty : lhs_typing_cstr =
    {subst = SS.identity; unsolved = []; unsatisf = []}

  let get_subst c = c.subst

  let get_unsat c = match c.unsatisf with [] -> None | c :: _ -> Some c

  let snf sg c depth =
    let rec aux fuel t =
      let t1, flag = SS.apply' c.subst depth t in
      let t2 = R.snf sg t1 in
      if flag && fuel <> 0 then aux (fuel - 1) t2 else t2
    in
    aux !srfuel

  let whnf sg c depth =
    let rec aux fuel t =
      let t1, flag = SS.apply' c.subst depth t in
      let t2 = R.whnf sg t1 in
      if flag && fuel <> 0 then aux (fuel - 1) t2 else t2
    in
    aux !srfuel

  (* Syntactical match against all unsolved equations *)
  let term_eq_under_cstr (eq_cstr : cstr list) : term -> term -> bool =
    let rec aux = function
      | [] -> true
      | (n, t1, t2) :: tl -> (
          List.exists (cstr_eq (n, t1, t2)) eq_cstr
          ||
          match (t1, t2) with
          | App (h1, a1, l1), App (h2, a2, l2) ->
              List.length l1 = List.length l2
              && aux
                   ((n, h1, h2) :: (n, a1, a2)
                    :: List.map2 (fun x y -> (n, x, y)) l1 l2
                   @ tl)
          | Lam (_, _, _, t1), Lam (_, _, _, t2) -> aux ((n + 1, t1, t2) :: tl)
          | Pi (_, _, a1, b1), Pi (_, _, a2, b2) ->
              aux ((n, a1, a2) :: (n + 1, b1, b2) :: tl)
          | _ -> term_eq t1 t2 && aux tl)
    in
    fun t1 t2 -> aux [(0, t1, t2)]

  let convertible (sg : Signature.t) (c : lhs_typing_cstr) (depth : int)
      (ty_inf : term) (ty_exp : term) : bool =
    R.are_convertible sg ty_inf ty_exp
    ||
    match (SS.is_identity c.subst, c.unsolved) with
    | true, [] -> false
    | true, _ ->
        term_eq_under_cstr c.unsolved (R.snf sg ty_inf) (R.snf sg ty_exp)
    | false, _ ->
        let snf_ty_inf = snf sg c depth ty_inf in
        let snf_ty_exp = snf sg c depth ty_exp in
        R.are_convertible sg snf_ty_inf snf_ty_exp
        || c.unsolved <> []
           && term_eq_under_cstr c.unsolved snf_ty_inf snf_ty_exp

  (* **** PSEUDO UNIFICATION ********************** *)

  let rec add_to_list q acc l1 l2 =
    match (l1, l2) with
    | [], [] -> Some acc
    | h1 :: t1, h2 :: t2 -> add_to_list q ((q, h1, h2) :: acc) t1 t2
    | _, _ -> None

  let unshift_reduce sg q t =
    try Some (Subst.unshift q t)
    with Subst.UnshiftExn -> (
      try Some (Subst.unshift q (R.snf sg t)) with Subst.UnshiftExn -> None)

  (** Under [d] lambdas, checks whether term [te] *must* contain an occurence
      of any variable that satisfies the given predicate [p],
      *even when substituted or reduced*.
      This check make no assumption on the rewrite system or possible substitution
      - any definable symbol are "safe" as they may reduce to a term where no variable occur
      - any applied meta variable (DB index > [d]) are "safe" as they may be
      substituted and reduce to a term where no variable occur
      Raises VarSurelyOccurs if the term [te] *surely* contains an occurence of one
      of the [vars].
  *)
  let sure_occur_check sg (d : int) (p : int -> bool) (te : term) : bool =
    let exception VarSurelyOccurs in
    let rec aux = function
      | [] -> ()
      | (k, t) :: tl -> (
          (* k counts the number of local lambda abstractions *)
          match t with
          | Kind | Type _ | Const _ -> aux tl
          | Pi (_, _, a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
          | Lam (_, _, None, b) -> aux ((k + 1, b) :: tl)
          | Lam (_, _, Some a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
          | DB (_, _, n) ->
              if n >= k && p (n - k) then raise VarSurelyOccurs else aux tl
          | App (f, a, args) -> (
              match f with
              | DB (_, _, n) ->
                  if n >= k && p (n - k) then raise VarSurelyOccurs
                  else if n >= k + d (* a matching variable *) then aux tl
                  else aux (((k, a) :: List.map (fun t -> (k, t)) args) @ tl)
              | Const (l, cst) when Signature.is_injective sg l cst ->
                  aux (((k, a) :: List.map (fun t -> (k, t)) args) @ tl)
              | _ ->
                  aux tl
                  (* Default case encompasses:
                           - Meta variables: DB(_,_,n) with n >= k + d
                           - Definable symbols
                           - Lambdas (FIXME: when can this happen ?)
                           - Illegal applications *)))
    in
    try
      aux [(0, te)];
      false
    with VarSurelyOccurs -> true

  (** Under [d] lambdas, gather all free variables that are *surely*
    contained in term [te]. That is to say term [te] will contain
    an occurence of these variables *even when substituted or reduced*.
    This check make no assumption on the rewrite system or possible substitutions
    - applied definable symbols *surely* contain no variable as they may
    reduce to terms where their arguments are erased
    - applied meta variable (DB index > [d]) *surely* contain no variable as they
    may be substituted and reduce to a term where their arguments are erased
    Sets the indices of *surely* contained variables to [true] in the [vars]
    boolean array which is expected to be of size (at least) [d].
*)
  let gather_free_vars (d : int) (terms : term list) : bool array =
    let vars = Array.make d false in
    let rec aux = function
      | [] -> ()
      | (k, t) :: tl -> (
          (* k counts the number of local lambda abstractions *)
          match t with
          | DB (_, _, n) ->
              if n >= k && n < k + d then vars.(n - k) <- true;
              aux tl
          | Pi (_, _, a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
          | Lam (_, _, None, b) -> aux ((k + 1, b) :: tl)
          | Lam (_, _, Some a, b) -> aux ((k, a) :: (k + 1, b) :: tl)
          | App (f, a, args) ->
              aux (((k, f) :: (k, a) :: List.map (fun t -> (k, t)) args) @ tl)
          | _ -> aux tl)
    in
    aux (List.map (fun t -> (0, t)) terms);
    vars

  let try_solve q args t =
    try
      let dbs =
        List.map
          (function DB (_, _, n) -> n | _ -> raise Matching.NotUnifiable)
          args
      in
      let arity = List.length dbs in
      let var =
        Dtree.
          {arity; depth = q; vars = dbs; mapping = mapping_of_vars q arity dbs}
      in
      let sol = Matching.solve_miller var t in
      Some (Term.add_n_lambdas arity sol)
    with Matching.NotUnifiable -> None

  let rec pseudo_u sg flag (s : lhs_typing_cstr) :
      cstr list -> bool * lhs_typing_cstr = function
    | [] -> (flag, s)
    | (q, t1, t2) :: lst -> (
        let t1' = whnf sg s q t1 in
        let t2' = whnf sg s q t2 in
        Debug.(debug d_SR) "Processing: %a = %a" pp_term t1' pp_term t2';
        let dropped () = pseudo_u sg flag s lst in
        let unsolved () =
          pseudo_u sg flag {s with unsolved = (q, t1', t2') :: s.unsolved} lst
        in
        let unsatisf () =
          pseudo_u sg true {s with unsatisf = (q, t1', t2') :: s.unsolved} lst
        in
        let subst db ar te =
          pseudo_u sg true {s with subst = SS.add s.subst db ar te} lst
        in
        if term_eq t1' t2' then dropped ()
        else
          match (t1', t2') with
          | Kind, Kind | Type _, Type _ -> assert false (* Equal terms *)
          | DB (_, _, n), DB (_, _, n') when n = n' ->
              assert false (* Equal terms *)
          | _, Kind | Kind, _ | _, Type _ | Type _, _ -> unsatisf ()
          | Pi (_, _, a, b), Pi (_, _, a', b') ->
              pseudo_u sg true s ((q, a, a') :: (q + 1, b, b') :: lst)
          | Lam (_, _, _, b), Lam (_, _, _, b') ->
              pseudo_u sg true s ((q + 1, b, b') :: lst)
          (* Potentially eta-equivalent terms *)
          | Lam (_, i, _, b), a when !Reduction.eta ->
              let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in
              pseudo_u sg true s ((q + 1, b, b') :: lst)
          | a, Lam (_, i, _, b) when !Reduction.eta ->
              let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in
              pseudo_u sg true s ((q + 1, b, b') :: lst)
          (* A definable symbol is only be convertible with closed terms *)
          | Const (l, cst), t when not (Signature.is_injective sg l cst) ->
              if sure_occur_check sg q (fun k -> k <= q) t then unsatisf ()
              else unsolved ()
          | t, Const (l, cst) when not (Signature.is_injective sg l cst) ->
              if sure_occur_check sg q (fun k -> k <= q) t then unsatisf ()
              else unsolved ()
          (* X = Y :  map either X to Y or Y to X *)
          | DB (l1, x1, n1), DB (l2, x2, n2) when n1 >= q && n2 >= q ->
              let n, t =
                if n1 < n2 then (n1, mk_DB l2 x2 (n2 - q))
                else (n2, mk_DB l1 x1 (n1 - q))
              in
              subst (n - q) 0 t
          (* X = t :
                      1) make sure that t is possibly closed and without occurence of X
                   2) if by chance t already is so, then map X to t
                      3) otherwise drop the constraint *)
          | DB (_, _, n), t when n >= q -> (
              if sure_occur_check sg q (fun k -> k < q || k = n) t then
                unsatisf ()
              else
                match unshift_reduce sg q t with
                | None -> unsolved ()
                | Some ut ->
                    let n' = n - q in
                    if Subst.occurs n' ut then
                      let t' = R.snf sg ut in
                      if Subst.occurs n' t' then unsatisf () else subst n' 0 t'
                    else subst n' 0 ut)
          | t, DB (_, _, n) when n >= q -> (
              if sure_occur_check sg q (fun k -> k < q || k = n) t then
                unsatisf ()
              else
                match unshift_reduce sg q t with
                | None -> unsolved ()
                | Some ut ->
                    let n' = n - q in
                    if Subst.occurs n' ut then
                      let t' = R.snf sg ut in
                      if Subst.occurs n' t' then unsatisf () else subst n' 0 t'
                    else subst n' 0 ut)
          (* f t1 ... tn    /    X t1 ... tn  =  u
                   1) Gather all free variables in t1 ... tn
                   2) Make sure u only relies on these variables
          *)
          | App (DB (_, _, n), a, args), t when n >= q -> (
              let occs = gather_free_vars q (a :: args) in
              if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
                unsatisf ()
              else
                match try_solve q (a :: args) t with
                | None -> unsolved ()
                | Some ut ->
                    let n' = n - q in
                    let t' = if Subst.occurs n' ut then ut else R.snf sg ut in
                    if Subst.occurs n' t' then unsolved ()
                      (* X = t[X]  cannot be turned into a (extended-)substitution *)
                    else subst n' (1 + List.length args) t')
          | t, App (DB (_, _, n), a, args) when n >= q -> (
              let occs = gather_free_vars q (a :: args) in
              if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
                unsatisf ()
              else
                match try_solve q (a :: args) t with
                | None -> unsolved ()
                | Some ut ->
                    let n' = n - q in
                    let t' = if Subst.occurs n' ut then ut else R.snf sg ut in
                    if Subst.occurs n' t' then unsolved ()
                      (* X = t[X]  cannot be turned into a (extended-)substitution *)
                    else subst n' (1 + List.length args) t')
          | App (Const (l, cst), a, args), t
            when not (Signature.is_injective sg l cst) ->
              let occs = gather_free_vars q (a :: args) in
              if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
                unsatisf ()
              else unsolved ()
          | t, App (Const (l, cst), a, args)
            when not (Signature.is_injective sg l cst) ->
              let occs = gather_free_vars q (a :: args) in
              if sure_occur_check sg q (fun k -> k < q && not occs.(k)) t then
                unsatisf ()
              else unsolved ()
          | App (f, a, args), App (f', a', args') -> (
              (* f = Kind | Type | DB n when n<q | Pi _
               * | Const name when (is_static name) *)
              match add_to_list q lst args args' with
              | None -> unsatisf () (* Different number of arguments. *)
              | Some lst2 ->
                  pseudo_u sg true s ((q, f, f') :: (q, a, a') :: lst2))
          | _, _ -> unsatisf ())

  let compile_cstr (sg : Signature.t) (cstr : cstr list) : lhs_typing_cstr =
    (* Successively runs pseudo_u to apply solved constraints to the remaining
       unsolved constraints in the hope to deduce more constraints in solved form *)
    let rec process_solver fuel sol =
      match pseudo_u sg false {sol with unsolved = []} sol.unsolved with
      | false, s -> s (* When pseudo_u did nothing *)
      | true, sol' ->
          if fuel = 0 then sol'
          else
            process_solver (fuel - 1)
              {sol' with subst = SS.mk_idempotent sol'.subst}
    in
    (* TODO: this function is given some fuel. In practice 1 is enough for all tests.
       We should write a test to force a second reentry in the loop. *)
    process_solver !srfuel {subst = SS.identity; unsolved = cstr; unsatisf = []}

  let optimize sg c =
    (* Substitutes are put in SNF *)
    {
      c with
      unsolved =
        List.map (fun (n, t, u) -> (n, R.snf sg t, R.snf sg u)) c.unsolved;
    }
end
OCaml

Innovation. Community. Security.