package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batSplay.ml.html
Source file batSplay.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
(* * Splay -- splay trees * Copyright (C) 2011 Batteries Included Development Team * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) module List = struct include List include BatList end module Enum = BatEnum type 'a bst = Empty | Node of 'a bst * 'a * 'a bst let size = let rec count tr k = match tr with | Empty -> k 0 | Node (l, _, r) -> count l (fun m -> count r (fun n -> k (1 + m + n))) in fun tr -> count tr (fun n -> n) let bst_append l r = let rec cat = function | Empty -> r | Node (l, x, r) -> Node (l, x, cat r) in cat l type 'a step = | Left of 'a * 'a bst | Right of 'a bst * 'a type 'a cursor = C of 'a step list * 'a bst let rec top' cx t = match cx with | [] -> t | (Left (p, pr) :: cx) -> top' cx (Node (t, p, pr)) | (Right (pl, p) :: cx) -> top' cx (Node (pl, p, t)) let top (C (cx, t)) = top' cx t let rec csplay' cx l r = match cx with | [] -> (l, r) | [Left (p, pr)] -> (l, Node (r, p, pr)) | [Right (pl, px)] -> (Node (pl, px, l), r) | (Left (px, pr) :: Left (ppx, ppr) :: cx) -> (* zig zig *) let r = Node (r, px, Node (pr, ppx, ppr)) in csplay' cx l r | (Left (px, pr) :: Right (ppl, ppx) :: cx) -> (* zig zag *) let l = Node (ppl, ppx, l) in let r = Node (r, px, pr) in csplay' cx l r | (Right (pl, px) :: Right (ppl, ppx) :: cx) -> (* zig zig *) let l = Node (Node (ppl, ppx, pl), px, l) in csplay' cx l r | (Right (pl, px) :: Left (ppx, ppr) :: cx) -> (* zig zag *) let l = Node (pl, px, l) in let r = Node (r, ppx, ppr) in csplay' cx l r let csplay = function | C (cx, Node (l, x, r)) -> let l', r' = csplay' cx l r in Node (l', x, r') | _ -> raise Not_found let rec cfind ?(cx=[]) ~sel = function | Empty -> C (cx, Empty) | Node (l, x, r) as node -> let sx = sel x in if sx = 0 then C (cx, node) else if sx < 0 then cfind ~cx:(Left (x, r) :: cx) ~sel l else cfind ~cx:(Right (l, x) :: cx) ~sel r (* A splay tree is a binary tree that is dynamically balanced: when a key is accessed, the tree is rebalanced (by an internal mutation) so that the next accesses to the same or neighbouring keys are very fast. Despite the use of a mutation for rebalancing, the structure is observably pure/persistent, as the mutation does not change the set of elements. *) module StrongRef : sig type + ##V>=4.12## ! 'a t val ref : 'a -> 'a t val get : 'a t -> 'a val set : 'a t -> 'a -> unit end = struct (* Didactic implementation note : why that ugly Obj.magic below? What does StrongRef bring compared to the usual ('a ref) type? We want splay tree to respect the Map interface, which whose map type is covariant (type (+'a) t). OCaml checks the internal definition to verify that the internal datatype is consistent with the variance annotation. Using a reference in the implementation of BatSplay would make the compiler reject the implementation, because reference types must be invariant. Following is an explanation of covariance and reference invariance, feel free to skip it if you already know. The idea of covariance for data structure is the following : if you have an ('a list), and a type 'b which is less specific than 'a (a subtype, eg. with OCaml polymorphic variants or object types), you can at any type pretend that your list is a ('b list): if all 'a can be used as 'b, then all ('a list) can be used as ('b list). # type a = < f1 : int; f2 : float >;; # type b = < f1 : int >;; # let t : a = object method f1 = 1 method f2 = 2. end;; val t : a = <obj> # (t :> b);; - : b = <obj> # ([t] :> b list);; - : b list = [<obj>] But this is not true for ('a list ref), or else I may locally consider it a ('b list) and mutate it to add an element of type 'b in it, then observe it at type ('a list ref) again. This is unsound because the added 'b element won't behave correctly as a 'a. # let tref = ref [t];; # (tref :> b list ref);; Error: Type a list ref is not a subtype of b list ref Type a = < f1 : int; f2 : float > is not compatible with type b = < f1 : int > The second object type has no method f2 Imagine I think I know better, and break the type safety. # let forced_tref = (Obj.magic tref : b list ref);; Then I can add a element of type b to the list : # forced_tref := object method f1 = 1 end :: !forced_tref;; But this is unsound as I can now look at tref again, at type (a list ref). # !tref;; - : a list = [<obj>; <obj>] # (List.hd !tref)#f2;; Segmentation fault So in general, reference types cannot be safely subtyped (note that Java has had a blatant flaw in its type system for years, as mutable Arrays were covariant). If we used a `ref` in the internal definition of BatSplay.t, the typer would reject the module (the interface claims its covariant, while it's invariant). Said otherwise, covariance of a type (+'a t) allows situations where a single value may have several distinct types simultaneously: - the empty list [] is both an (int list) and a (float list) (distinct types here come from instantiations of the polymorphic 'a list, generalized by the (relaxed) value restrict) - if a is a subtype of b, then all (a list) (even non-empty) are simultaneously of type (b list) Mutating such values is unsound in the general case, if the result of the mutation is a value that is not valid for some of those simultaneous types (adding a float in a ('a list ref) makes it invalid as an (int list ref)). In our case however, the mutations that actually happen (that are confined in the internal implementation of BatSplay) are soundly compatible with subtyping or polymorphic instantiation. Indeed, rebalancing never adds any element to the splay tree, it only reorders the element that were already there. In particular, sharing values between two different types (either through subtyping (cast) or polymorphic instantiation (relaxed value restriction)) is correct even if mutations happens on those shared value.. However, we must be careful to ensure that all rebalancings keep the set of elements of the splay tree unchanged (dropping elements would be ok-ish, but adding new elements would be unsound). We use the dirty Obj magic to create a type of "strong references" that are mutable yet covariant. Note that the mutations are confined to the "top" of the structure, the balanced tree itself is purely functional. Note that we must be careful (in the internal implementation) to allocate a new strong reference (with StrongRef.ref) each time we want to build a tree with a different set of elements than the one we started with. PS : No list reference were harmed during the implementation of this module. *) type 'a t = { ref : 'a } type 'a mut = { mutable mut_ref : 'a } let ref (x : 'a) = (Obj.magic { mut_ref = x } : 'a t) let get r = r.ref let set (r : 'a t) v = (Obj.magic r : 'a mut).mut_ref <- v end module Map (Ord : BatInterfaces.OrderedType) = struct (*$inject module TestMap = Splay.Map (Int) *) (*$< TestMap *) type key = Ord.t type 'a map = (key * 'a) bst type 'a t = 'a map StrongRef.t let sget = StrongRef.get let sref = StrongRef.ref let empty = sref Empty let is_empty m = let tr = sget m in tr = Empty (* let kcmp (j, _) (k, _) = Ord.compare j k*) let ksel j (k, _) = Ord.compare j k let singleton' k v = Node (Empty, (k, v), Empty) let singleton k v = sref (singleton' k v) let add k v tr = let tr = sget tr in sref begin csplay begin match cfind ~sel:(ksel k) tr with | C (cx, Node (l, (k, _), r)) -> C (cx, Node (l, (k, v), r)) | C (cx, Empty) -> C (cx, singleton' k v) end end let modify k fn tr = let tr = sget tr in sref begin csplay begin match cfind ~sel:(ksel k) tr with | C (cx, Node (l, (k, v), r)) -> C (cx, Node (l, (k, fn v), r)) | C (_cx, Empty) -> raise Not_found end end let modify_def def k fn tr = let tr = sget tr in sref begin csplay begin match cfind ~sel:(ksel k) tr with | C (cx, Node (l, (k, v), r)) -> C (cx, Node (l, (k, fn v), r)) | C (cx, Empty) -> C (cx, singleton' k (fn def)) end end let modify_opt k fn tr = let tr = sget tr in sref begin try match cfind ~sel:(ksel k) tr with | C (cx, Node (l, (k, v), r)) -> begin match fn (Some v) with | Some v' -> csplay (C (cx, Node (l, (k, v'), r))) | None -> bst_append l r end | C (cx, Empty) -> match fn None with | Some v -> csplay (C (cx, singleton' k v)) | None -> raise Exit with Exit -> tr end let rebalance m tr = StrongRef.set m tr let find k m = let tr = sget m in let tr = csplay (cfind ~sel:(ksel k) tr) in match tr with | Node (_, (_, v), _) -> rebalance m tr; v | _ -> raise Not_found let find_opt k m = try Some (find k m) with Not_found -> None let find_default def k m = try find k m with Not_found -> def let rec find_first_helper_found f kv map = function | Node (l, (k, v), r) -> if f k then find_first_helper_found f (k, v) map l else find_first_helper_found f kv map r | Empty -> (* dummy find to rebalance the tree *) ignore(find (fst kv) map); kv let find_first f (map : 'a t) = let rec loop_notfound f = function | Node(l, (k, v), r) -> if f k then find_first_helper_found f (k, v) map l else loop_notfound f r | Empty -> raise Not_found in loop_notfound f (sget map) let find_first_opt f map = let rec loop_notfound f = function | Node(l, (k, v), r) -> if f k then Some (find_first_helper_found f (k, v) map l) else loop_notfound f r | Empty -> None in loop_notfound f (sget map) let rec find_last_helper_found f kv map = function | Node (l, (k, v), r) -> if f k then find_last_helper_found f (k, v) map r else find_last_helper_found f kv map l | Empty -> (* dummy find to rebalance the tree *) ignore(find (fst kv) map); kv let find_last f (map : 'a t) = let rec loop_notfound f = function | Node(l, (k, v), r) -> if f k then find_last_helper_found f (k, v) map r else loop_notfound f l | Empty -> raise Not_found in loop_notfound f (sget map) let find_last_opt f map = let rec loop_notfound f = function | Node(l, (k, v), r) -> if f k then Some (find_last_helper_found f (k, v) map r) else loop_notfound f l | Empty -> None in loop_notfound f (sget map) (*$T find_first (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 0)) = ((1, 11)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 1)) = ((1, 11)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 2)) = ((2, 12)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 3)) = ((3, 13)) try ignore(empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 4)); false with Not_found -> true try ignore(empty |> find_first (fun x -> x >= 3)); false with Not_found -> true *) (*$T find_first_opt (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 0)) = (Some (1, 11)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 1)) = (Some (1, 11)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 2)) = (Some (2, 12)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 3)) = (Some (3, 13)) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 4)) = (None) (empty |> find_first_opt (fun x -> x >= 3)) = (None) *) (*$T find_last (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 1)) = (1, 11) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 2)) = (2, 12) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 3)) = (3, 13) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 4)) = (3, 13) try ignore(empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 0)); false with Not_found -> true try ignore(empty |> find_last (fun x -> x <= 3)); false with Not_found -> true *) (*$T find_last_opt (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 0)) = None (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 1)) = Some (1, 11) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 2)) = Some (2, 12) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 3)) = Some (3, 13) (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 4)) = Some (3, 13) (empty |> find_last_opt (fun x -> x <= 3)) = None *) let cchange fn (C (cx, t)) = C (cx, fn t) let remove k tr = let tr = sget tr in let replace = function | Empty -> Empty | Node (l, _, r) -> bst_append l r in let tr = top (cchange replace (cfind ~sel:(ksel k) tr)) in sref tr let remove_exn k tr = let tr = sget tr in let replace = function | Empty -> raise Not_found | Node (l, _, r) -> bst_append l r in let tr = top (cchange replace (cfind ~sel:(ksel k) tr)) in sref tr (*$T remove_exn try remove_exn 1 empty |> ignore ; false with Not_found -> true *) let update k1 k2 v2 tr = if Ord.compare k1 k2 <> 0 then add k2 v2 (remove k1 tr) else let tr = sget tr in sref begin csplay begin match cfind ~sel:(ksel k1) tr with | C (cx, Node (l, _kv, r)) -> C (cx, Node (l, (k2, v2), r)) | C (_cx, Empty) -> raise Not_found end end let update_stdlib k f m = match f (find_opt k m) with | Some x -> add k x m | None -> remove k m let mem k m = try ignore (find k m) ; true with Not_found -> false let iter fn tr = let tr = sget tr in let rec visit = function | Empty -> () | Node (l, (k, v), r) -> visit l ; fn k v ; visit r in visit tr let fold fn tr acc = let tr = sget tr in let rec visit acc = function | Empty -> acc | Node (l, (k, v), r) -> let acc = visit acc l in let acc = fn k v acc in visit acc r in visit acc tr let min_binding tr = let tr = sget tr in let rec bfind = function | Node (Empty, kv, _) -> kv | Node (l, _, _) -> bfind l | Empty -> raise Not_found in bfind tr let min_binding_opt tr = let tr = sget tr in let rec bfind = function | Node (Empty, kv, _) -> Some kv | Node (l, _, _) -> bfind l | Empty -> None in bfind tr let choose = min_binding (*$= choose (empty |> add 0 1 |> add 1 1 |> choose) \ (empty |> add 1 1 |> add 0 1 |> choose) *) (*$T choose try ignore (choose empty) ; false with Not_found -> true *) let choose_opt = min_binding_opt let any tr = match sget tr with | Empty -> raise Not_found | Node (_, kv, _) -> kv (*$T any try ignore (any empty) ; false with Not_found -> true *) let pop_min_binding tr = let mini = ref (choose tr) in let rec bfind = function | Node (Empty, kv, r) -> mini := kv; r | Node (l, kv, r) -> Node (bfind l, kv, r) | Empty -> assert(false) (* choose already raises Not_found on empty map *) in (!mini, sref (bfind (sget tr))) let max_binding tr = let tr = sget tr in let rec bfind = function | Node (_, kv, Empty) -> kv | Node (_, _, r) -> bfind r | Empty -> raise Not_found in bfind tr let max_binding_opt tr = let tr = sget tr in let rec bfind = function | Node (_, kv, Empty) -> Some kv | Node (_, _, r) -> bfind r | Empty -> None in bfind tr let pop_max_binding tr = let maxi = ref (choose tr) in let rec bfind = function | Node (l, kv, Empty) -> maxi := kv; l | Node (l, kv, r) -> Node (l, kv, bfind r) | Empty -> assert(false) (* choose already raises Not_found on empty map *) in (!maxi, sref (bfind (sget tr))) let filter_map (f : key -> 'a -> 'b option) : 'a t -> 'b t = let rec visit t cont = match t with | Empty -> cont Empty | Node (l, (k, v), r) -> visit l begin fun l -> let w = f k v in visit r begin fun r -> match w with | None -> cont (bst_append l r) | Some w -> cont (Node (l, (k, w), r)) end end in fun m -> visit (sget m) sref let filterv f t = filter_map (fun _ v -> if f v then Some v else None) t let filter f t = filter_map (fun k v -> if f k v then Some v else None) t let map f t = filter_map (fun _ v -> Some (f v)) t let mapi f t = filter_map (fun k v -> Some (f k v)) t let partition (p : key -> 'a -> bool) : 'a t -> 'a t * 'a t = let rec visit t cont = match t with | Empty -> cont Empty Empty | Node (l, ((k, v) as kv), r) -> visit l begin fun l1 l2 -> let b = p k v in visit r begin fun r1 r2 -> if b then cont (Node (l1, kv, r1)) (bst_append l2 r2) else cont (bst_append l1 r1) (Node (l2, kv, r2)) end end in fun m -> visit (sget m) (fun t1 t2 -> sref t1, sref t2) type 'a enumeration = | End | More of key * 'a * (key * 'a) bst * 'a enumeration let count_enum = let rec count k = function | End -> k | More (_, _, tr, en) -> count (1 + k + size tr) en in fun en -> count 0 en let rec cons_enum m e = match m with | Empty -> e | Node (l, (k, v), r) -> cons_enum l (More (k, v, r, e)) let rec rev_cons_enum m e = match m with | Empty -> e | Node (l, (k, v), r) -> rev_cons_enum r (More (k, v, l, e)) let rec cons_enum_from k2 m e = match m with | Empty -> e | Node (l, (k, v), r) -> if Ord.compare k2 k <= 0 then cons_enum_from k2 l (More (k, v, r, e)) else cons_enum_from k2 r e let compare cmp tr1 tr2 = let tr1, tr2 = sget tr1, sget tr2 in let rec aux e1 e2 = match (e1, e2) with | (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) -> let c = Ord.compare v1 v2 in if c <> 0 then c else let c = cmp d1 d2 in if c <> 0 then c else aux (cons_enum r1 e1) (cons_enum r2 e2) in aux (cons_enum tr1 End) (cons_enum tr2 End) let equal cmp tr1 tr2 = let tr1, tr2 = sget tr1, sget tr2 in let rec aux e1 e2 = match (e1, e2) with (End, End) -> true | (End, _) -> false | (_, End) -> false | (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) -> Ord.compare v1 v2 = 0 && cmp d1 d2 && aux (cons_enum r1 e1) (cons_enum r2 e2) in aux (cons_enum tr1 End) (cons_enum tr2 End) let rec enum_bst cfn en = let cur = ref en in let next () = match !cur with | End -> raise Enum.No_more_elements | More (k, v, r, e) -> cur := cfn r e ; (k, v) in let count () = count_enum !cur in let clone () = enum_bst cfn !cur in Enum.make ~next ~count ~clone let enum tr = enum_bst cons_enum (cons_enum (sget tr) End) let backwards tr = enum_bst rev_cons_enum (rev_cons_enum (sget tr) End) let keys m = Enum.map fst (enum m) let values m = Enum.map snd (enum m) let of_enum e = Enum.fold begin fun acc (k, v) -> add k v acc end empty e let to_list m = List.of_enum (enum m) let of_list l = of_enum (List.enum l) let add_to_list x data m = let add = function None -> Some [data] | Some l -> Some (data :: l) in update_stdlib x add m let custom_print ~first ~last ~sep kvpr out m = Enum.print ~first ~last ~sep (fun out (k, v) -> kvpr out k v) out (enum m) let print ?(first="{\n") ?(last="}\n") ?(sep=",\n") ?(kvsep=": ") kpr vpr out m = custom_print ~first ~last ~sep (fun out k v -> BatPrintf.fprintf out "%a%s%a" kpr k kvsep vpr v) out m let print_as_list kpr vpr out m = print ~first:"[" ~last:"]" ~sep:"; " ~kvsep:", " kpr vpr out m module Labels = struct let add ~key ~data t = add key data t let iter ~f t = iter (fun key data -> f ~key ~data) t let map ~f t = map f t let mapi ~f t = mapi (fun key data -> f ~key ~data) t let fold ~f t ~init = fold (fun key data acc -> f ~key ~data acc) t init let compare ~cmp a b = compare cmp a b let equal ~cmp a b = equal cmp a b let filterv ~f = filterv f let filter ~f = filter f end module Exceptionless = struct let find k m = find_opt k m let choose m = try Some (choose m) with Not_found -> None let any m = try Some (any m) with Not_found -> None end module Infix = struct let ( --> ) m k = find k m let ( <-- ) m (k, v) = add k v m end let bindings m = List.of_enum (enum m) let exist_bool b f m = try iter (fun k v -> if f k v = b then raise Exit) m; false with Exit -> true let exists f m = exist_bool true f m let for_all f m = not (exist_bool false f m) let cardinal m = fold (fun _k _v -> succ) m 0 let split k m = let tr = sget m in let C (cx, center) = cfind ~sel:(ksel k) tr in match center with | Empty -> let l, r = csplay' cx Empty Empty in (sref l, None, sref r) | Node (l, x, r) -> let l', r' = csplay' cx l r in (* we rebalance as in 'find' *) rebalance m (Node (l', x, r')); (sref l', Some (snd x), sref r') let merge f m1 m2 = (* The implementation is a bit long, but has the important property of applying `f` in increasing key order. *) (* we will iterate on both enumerations in increasing order simultaneously *) let e1 = enum m1 in let e2 = enum m2 in (* we will push the results in increasing order from left to right; the result will be very unbalanced, but this will be corrected by the rebalancing at the first lookup in the splay tree. *) let maybe_push acc k maybe_v1 maybe_v2 = match f k maybe_v1 maybe_v2 with | None -> acc | Some v -> Node (acc, (k, v), Empty) in let push1 acc (k, v1) = maybe_push acc k (Some v1) None in let push2 acc (k, v2) = maybe_push acc k None (Some v2) in (* we iterate simultaneously on both inputs, in increasing order of keys. There are four different "states" to consider : - we have no idea of the inputs : none_known - we know the next (key, value) pair of e1, and that e2 is empty : only_e1 (k1, v1) - we know the next (key, value) pair of e2, and that e1 is empty : only_e2 (k2, v2) - we know the next (key, value) pair of both e1 and e2 : both_known (k1, v1) (k2, v2) *) let rec none_known acc = match Enum.peek e1, Enum.peek e2 with | None, None -> acc | None, Some kv2 -> Enum.junk e2; only_e2 acc kv2 | Some kv1, None -> Enum.junk e1; only_e1 acc kv1 | Some kv1, Some kv2 -> Enum.junk e1; Enum.junk e2; both_known acc kv1 kv2 and only_e1 acc kv1 = Enum.fold push1 (push1 acc kv1) e1 and only_e2 acc kv2 = Enum.fold push2 (push2 acc kv2) e2 and both_known acc ((k1, v1) as kv1) ((k2, v2) as kv2) = let cmp = Ord.compare k1 k2 in if cmp < 0 then begin let acc = push1 acc kv1 in match Enum.peek e1 with | None -> only_e2 acc kv2 | Some kv1' -> Enum.junk e1; both_known acc kv1' kv2 end else if cmp > 0 then begin let acc = push2 acc kv2 in match Enum.peek e2 with | None -> only_e1 acc kv1 | Some kv2' -> Enum.junk e2; both_known acc kv1 kv2' end else begin let acc = maybe_push acc k1 (Some v1) (Some v2) in none_known acc end in sref (none_known Empty) let pop m = match sget m with | Empty -> raise Not_found | Node (l, kv, r) -> kv, sref (bst_append l r) let add_seq s m = BatSeq.fold_left (fun m (k, v) -> add k v m) m s let of_seq s = add_seq s empty let rec seq_of_iter m () = match m with | End -> BatSeq.Nil | More(k, v, r, e) -> BatSeq.Cons ((k, v), seq_of_iter (cons_enum r e)) let to_seq m = seq_of_iter (cons_enum (sget m) End) let to_rev_seq m = seq_of_iter (rev_cons_enum (sget m) End) let to_seq_from k m = seq_of_iter (cons_enum_from k (sget m) End) let union f m1 m2 = fold (fun k v m -> match find_opt k m with | Some v1 -> (match f k v v1 with | Some vmerged -> add k vmerged m | None -> remove k m) | None -> add k v m) m1 m2 let extract k tr = let tr = sget tr in (* the reference here is a tad ugly but allows to reuse `cfind` without fuss *) let maybe_v = ref None in let replace = function | Empty -> Empty | Node (l, (_, v), r) -> maybe_v := Some v; bst_append l r in let tr = top (cchange replace (cfind ~sel:(ksel k) tr)) in (* like in the `remove` case, we don't bother rebalancing *) match !maybe_v with | None -> raise Not_found | Some v -> v, sref tr (*$>*) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>