package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batList.ml.html
Source file batList.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
(* * BatList - additional and modified functions for lists. * Copyright (C) 2003 Brian Hurt * Copyright (C) 2003 Nicolas Cannasse * Copyright (C) 2008 Red Hat Inc. * Copyright (C) 2008 David Rajchenbach-Teller, LIFO, Universite d'Orleans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) ##V>=5##module Pervasives = Stdlib (*$inject ##V>=5##module Pervasives = Stdlib *) (* ::VH:: GLUE with StdLib *) let merge = List.merge let fast_sort = List.fast_sort let stable_sort = List.stable_sort let sort = List.sort let assq = List.assq ##V>=4.5##let assq_opt = List.assq_opt ##V<4.5##let assq_opt k li = try Some (assq k li) with Not_found -> None let assoc = List.assoc ##V>=4.5##let assoc_opt = List.assoc_opt ##V<4.5##let assoc_opt k li = try Some (assoc k li) with Not_found -> None let find = List.find ##V>=4.5##let find_opt = List.find_opt ##V<4.5##let find_opt p li = try Some (find p li) with Not_found -> None let exists = List.exists let for_all = List.for_all let fold_left = List.fold_left let fold = List.fold_left let rev_map = List.rev_map let iter = List.iter let rev_append = List.rev_append let rev = List.rev let length = List.length ##V>=4.5##let compare_length_with = List.compare_length_with ##V>=4.5##let compare_lengths = List.compare_lengths let tl = List.tl let hd = List.hd let mem = List.mem let memq = List.memq let mem_assq = List.mem_assq let mem_assoc = List.mem_assoc let rev_map2 = List.rev_map2 ##V>=4.07##let to_seq = List.to_seq ##V>=4.07##let of_seq = List.of_seq ##V>=4.10##let concat_map = List.concat_map ##V>=4.10##let find_map_opt = List.find_map ##V>=4.12##let equal = List.equal ##V>=5.1##let find_index = List.find_index ##V>=5.1##let find_mapi = List.find_mapi (* ::VH:: END GLUE *) let rec compare_lengths la lb = match la, lb with | [], [] -> 0 | [], _::_ -> -1 | _::_, [] -> 1 | _::la, _::lb -> compare_lengths la lb (*$T compare_lengths compare_lengths [] [] = 0 compare_lengths [] [1] = -1 compare_lengths [1] [] = 1 compare_lengths [1; 2] [3; 4] = 0 compare_lengths [1; 2; 3] [3; 4] = 1 compare_lengths [1; 2] [2; 3; 4] = -1 *) (*$Q compare_lengths (Q.pair (Q.list Q.small_int) (Q.list Q.small_int)) \ (fun (la, lb) -> \ BatOrd.ord0 (compare_lengths la lb) \ = BatOrd.ord0 (BatInt.compare (length la) (length lb))) *) let rec compare_length_with li n = match li, n with | [], n -> Pervasives.compare 0 n | _::tl, n -> compare_length_with tl (n-1) (*$T compare_length_with compare_length_with [] 0 = 0 compare_length_with [] 1 = -1 compare_length_with [1] 0 = 1 compare_length_with [1; 2] 2 = 0 compare_length_with [1; 2; 3] 2 = 1 compare_length_with [1; 2] 3 = -1 *) (*$Q compare_length_with (Q.pair (Q.list Q.small_int) Q.small_int) \ (fun (li, n) -> \ BatOrd.ord0 (compare_length_with li n) \ = BatOrd.ord0 (BatInt.compare (length li) n)) *) (* Thanks to Jacques Garrigue for suggesting the following structure *) type 'a mut_list = { hd: 'a; mutable tl: 'a list } ##V<4.08##type 'a t = 'a list ##V>=4.08##type 'a t = 'a list = [] | (::) of 'a * 'a list type 'a enumerable = 'a t type 'a mappable = 'a t external inj : 'a mut_list -> 'a list = "%identity" module Acc = struct let dummy () = { hd = Obj.magic (); tl = [] } let create x = { hd = x; tl = [] } let accum acc x = let cell = create x in acc.tl <- inj cell; cell end let cons h t = h::t let is_empty = function | [] -> true | _ -> false (*$T is_empty is_empty [] not (is_empty [1]) *) let at_negative_index_msg = "List: Negative index not allowed" let at_after_end_msg = "List: Index past end of list" let nth l index = if index < 0 then invalid_arg at_negative_index_msg; let rec loop n = function | [] -> invalid_arg at_after_end_msg; | h :: t -> if n = 0 then h else loop (n - 1) t in loop index l let at = nth (*$T at try ignore (at [] 0); false with Invalid_argument _ -> true try ignore (at [1;2;3] (-1)); false with Invalid_argument _ -> true at [1;2;3] 2 = 3 *) let at_opt l index = if index < 0 then invalid_arg at_negative_index_msg; try Some (at l index) with Invalid_argument _ -> None (*$T at_opt at_opt [] 0 = None try ignore (at_opt [1;2;3] (-1)); false with Invalid_argument _ -> true at_opt [1;2;3] 2 = Some 3 *) let mem_cmp cmp x l = exists (fun y -> cmp x y = 0) l (*$T mem_cmp mem_cmp BatInt.compare 0 [] = false mem_cmp BatInt.compare 0 [1; 2] = false mem_cmp BatInt.compare 1 [1; 2] = true mem_cmp BatInt.compare 2 [1; 2] = true *) let append l1 l2 = match l1 with | [] -> l2 | h :: t -> let rec loop dst = function | [] -> dst.tl <- l2 | h :: t -> loop (Acc.accum dst h) t in let r = Acc.create h in loop r t; inj r (*$T append append [] [] = [] append [] [1] = [1] append [1] [] = [1] append [1] [2] = [1; 2] append [1; 2] [3] = [1; 2; 3] append [1] [2; 3] = [1; 2; 3] *) let flatten l = let rec inner dst = function | [] -> dst | h :: t -> inner (Acc.accum dst h) t in let rec outer dst = function | [] -> () | h :: t -> outer (inner dst h) t in let r = Acc.dummy () in outer r l; r.tl let concat = flatten (*$T flatten flatten [[1;2];[3];[];[4;5;6]] = [1;2;3;4;5;6] flatten [[]] = [] *) let singleton x = [x] (*$Q singleton Q.int (fun x -> let s = singleton x in hd s = x && length s = 1) *) let map f = function | [] -> [] | h :: t -> let rec loop dst = function | [] -> () | h :: t -> loop (Acc.accum dst (f h)) t in let r = Acc.create (f h) in loop r t; inj r (*$Q map (Q.pair (Q.fun1 Q.Observable.int Q.int) (Q.list Q.small_int)) \ (fun (Q.Fun (_,f),l) -> map f l = List.map f l) *) let rec drop n = function | _ :: l when n > 0 -> drop (n-1) l | l -> l (*$= drop & ~printer:(IO.to_string (List.print Int.print)) (drop 0 [1;2;3]) [1;2;3] (drop 3 [1;2;3]) [] (drop 4 [1;2;3]) [] (drop 1 [1;2;3]) [2;3] *) let take n l = let rec loop n dst = function | h :: t when n > 0 -> loop (n - 1) (Acc.accum dst h) t | _ -> () in let dummy = Acc.dummy () in loop n dummy l; dummy.tl (*$= take & ~printer:(IO.to_string (List.print Int.print)) (take 0 [1;2;3]) [] (take 3 [1;2;3]) [1;2;3] (take 4 [1;2;3]) [1;2;3] (take 1 [1;2;3]) [1] *) let takedrop n l = let rec loop n dst = function | h :: t when n > 0 -> loop (n - 1) (Acc.accum dst h) t | rest -> rest in let dummy = Acc.dummy () in let rest = loop n dummy l in (dummy.tl, rest) (*$T takedrop takedrop 0 [1; 2; 3] = ([], [1; 2; 3]) takedrop 3 [1; 2; 3] = ([1; 2; 3], []) takedrop 4 [1; 2; 3] = ([1; 2; 3], []) takedrop 1 [1; 2; 3] = ([1], [2; 3]) *) let ntake n l = if n < 1 then invalid_arg "List.ntake"; let took, left = takedrop n l in let acc = Acc.create took in let rec loop dst = function | [] -> inj acc | li -> let taken, rest = takedrop n li in loop (Acc.accum dst taken) rest in loop acc left (*$T ntake ntake 2 [] = [[]] ntake 2 [1] = [[1]] ntake 2 [1; 2] = [[1; 2]] ntake 2 [1; 2; 3] = [[1; 2]; [3]] ntake 2 [1; 2; 3; 4] = [[1; 2]; [3; 4]] *) let take_while p li = let rec loop dst = function | [] -> () | x :: xs -> if p x then loop (Acc.accum dst x) xs in let dummy = Acc.dummy () in loop dummy li; dummy.tl (*$= take_while & ~printer:(IO.to_string (List.print Int.print)) (take_while ((=) 3) [3;3;4;3;3]) [3;3] (take_while ((=) 3) [3]) [3] (take_while ((=) 3) [4]) [] (take_while ((=) 3) []) [] (take_while ((=) 2) [2; 2]) [2; 2] *) let rec drop_while f = function | [] -> [] | x :: xs when f x -> drop_while f xs | xs -> xs (*$= drop_while & ~printer:(IO.to_string (List.print Int.print)) (drop_while ((=) 3) [3;3;4;3;3]) [4;3;3] (drop_while ((=) 3) [3]) [] *) let span p li = let rec loop dst = function | [] -> [] | x :: xs as l -> if p x then loop (Acc.accum dst x) xs else l in let dummy = Acc.dummy () in let xs = loop dummy li in (dummy.tl , xs) (*$= span (span ((=) 3) [3;3;4;3;3]) ([3;3],[4;3;3]) (span ((=) 3) [3]) ([3],[]) (span ((=) 3) [4]) ([],[4]) (span ((=) 3) []) ([],[]) (span ((=) 2) [2; 2]) ([2; 2],[]) *) let fold_while p f init li = let rec loop acc = function | [] -> (acc, []) | (x :: xs) as l -> if p acc x then loop (f acc x) xs else (acc, l) in loop init li (*$= fold_while (fold_while (fun _acc x -> x = 3) (fun acc x -> acc + x) 0 [3;3;4;3;3]) (6,[4;3;3]) (fold_while (fun acc _x -> acc < 6) (fun acc x -> acc + x) 0 [3;3;4;3;3]) (6,[4;3;3]) (fold_while (fun _acc x -> x = 3) (fun acc x -> acc + x) 0 [3]) (3,[]) (fold_while (fun _acc x -> x = 3) (fun acc x -> acc + x) 0 [4]) (0,[4]) (fold_while (fun _acc x -> x = 3) (fun acc x -> acc + x) 0 []) (0,[]) (fold_while (fun _acc x -> x = 2) (fun acc x -> acc + x) 0 [2; 2]) (4,[]) *) let nsplit p = function | [] -> [] (* note that returning [] on empty inputs is an arbitrary choice that is made for consistence with the behavior of BatString.nsplit. Not having this hardcoded case would have `nsplit p []` return `[[]]`, which is also a semantically valid return value (in fact the two are equivalent, but `[[]]` would be a more natural choice as it allows to enforce the simply invariant that `nsplit` return values are always non-empty). If that was to redo from scratch, `[[]]` would be a better return value for both `BatList.nsplit` and `BatString.nsplit`. *) | li -> let not_p x = not (p x) in let rec loop dst l = let ok, rest = span not_p l in let r = Acc.accum dst ok in match rest with | [] -> () | _x :: xs -> loop r xs in let dummy = Acc.dummy () in loop dummy li; dummy.tl (*$T nsplit nsplit ((=) 0) [] = [] nsplit ((=) 0) [0] = [[]; []] nsplit ((=) 0) [1; 0] = [[1]; []] nsplit ((=) 0) [0; 1] = [[]; [1]] nsplit ((=) 0) [1; 2; 0; 0; 3; 4; 0; 5] = [[1; 2]; []; [3; 4]; [5]] *) (*$Q nsplit & ~count:10 (Q.list (Q.list Q.pos_int)) (fun xss -> \ let join sep xss = flatten (interleave [sep] xss) in \ (* normalize: the return type of nsplit \ is quotiented by the equivalence []~[[]] *) \ let normalize = function [] -> [[]] | li -> li in \ let neg = -1 in \ normalize xss = normalize (nsplit ((=) neg) (join neg xss)) \ ) (Q.pair Q.small_int (Q.list Q.small_int)) (fun (sep,xs) -> \ let join sep xss = flatten (interleave [sep] xss) in \ xs = join sep (nsplit ((=) sep) xs) \ ) *) (* nsplit ((=) sep) la @ nsplit ((=) sep) lb = nsplit ((=) sep) (la @ [sep] @ lb) *) let group_consecutive p l = let rec loop dst = function | [] -> () | x :: rest -> let xs, rest = span (p x) rest in loop (Acc.accum dst (x :: xs)) rest in let dummy = Acc.dummy () in loop dummy l; dummy.tl (*$= group_consecutive & ~printer:(IO.to_string (List.print (List.print Int.print))) (group_consecutive (=) [3; 3; 4; 3; 3]) [[3; 3]; [4]; [3; 3]] (group_consecutive (=) [3]) [[3]] (group_consecutive (=) []) [] (group_consecutive (=) [2; 2]) [[2; 2]] *) ##V>=4.5##let nth_opt = List.nth_opt ##V<4.5##let nth_opt li n = try Some (nth li n) with _ -> None let takewhile = take_while let dropwhile = drop_while let interleave ?first ?last (sep:'a) (l:'a list) = let may_prepend maybe_x lst = match maybe_x with | None -> lst | Some x -> x :: lst in let rec loop acc = function | [] -> acc | x :: xs -> match acc with | [] -> loop [x] xs | _ -> loop (x :: sep :: acc) xs in let res = loop [] l in may_prepend first (rev (may_prepend last res)) (*$= interleave & ~printer:(IO.to_string (List.print Int.print)) (interleave 0 [1;2;3]) [1;0;2;0;3] (interleave 0 [1]) [1] (interleave 0 []) [] (interleave ~first:(-1) 0 [1;2;3]) [-1;1;0;2;0;3] (interleave ~first:(-1) 0 [1]) [-1;1] (interleave ~first:(-1) 0 []) [-1] (interleave ~last:(-2) 0 [1;2;3]) [1;0;2;0;3;-2] (interleave ~last:(-2) 0 [1]) [1;-2] (interleave ~last:(-2) 0 []) [-2] (interleave ~first:(-1) ~last:(-2) 0 [1;2;3]) [-1;1;0;2;0;3;-2] (interleave ~first:(-1) ~last:(-2) 0 [1]) [-1;1;-2] (interleave ~first:(-1) ~last:(-2) 0 []) [-1;-2] *) let unique ?(eq = ( = )) l = let rec loop dst = function | [] -> () | h :: t -> match exists (eq h) t with | true -> loop dst t | false -> loop (Acc.accum dst h) t in let dummy = Acc.dummy () in loop dummy l; dummy.tl (* FIXME BAD TESTS: RESULT IS SPECIFIC TO IMPLEMENTATION *) (*$= unique & ~printer:(IO.to_string (List.print Int.print)) [1;2;3;4;5;6] (unique [1;1;2;2;3;3;4;5;6;4;5;6]) [1] (unique [1;1;1;1;1;1;1;1;1;1]) [1;2] (unique ~eq:(fun x y -> x land 1 = y land 1) [2;2;2;4;6;8;3;1;2]) *) let unique_cmp ?(cmp = Pervasives.compare) l = let set = ref (BatSet.PSet.create cmp) in let should_keep x = if BatSet.PSet.mem x !set then false else ( set := BatSet.PSet.add x !set; true ) in (* use a stateful filter to remove duplicate elements *) List.filter should_keep l (*$= unique_cmp & ~printer:(IO.to_string (List.print Int.print)) [1;2;3;4;5;6] (unique_cmp [1;1;2;2;3;3;4;5;6;4;5;6]) [1] (unique_cmp [1;1;1;1;1;1;1;1;1;1]) [2;3] (unique_cmp ~cmp:(fun x y -> Int.compare (x land 1) (y land 1)) [2;2;2;4;6;8;3;1;2]) *) let unique_hash (type et) ?(hash = Hashtbl.hash) ?(eq = (=)) (l : et list) = let module HT = Hashtbl.Make(struct type t = et let equal = eq let hash = hash end) in let ht = HT.create (List.length l) in let rec loop dst = function | h::t when not (HT.mem ht h) -> HT.add ht h (); (* put h in hash table *) loop (Acc.accum dst h) (* and to output list *) t | _::t -> (* if already in hashtable then don't add to output list *) loop dst t | [] -> () in let dummy = Acc.dummy () in loop dummy l; dummy.tl (*$= unique_hash & ~printer:(IO.to_string (List.print Int.print)) [1;2;3;4;5;6] (unique_hash [1;1;2;2;3;3;4;5;6;4;5;6]) [1] (unique_hash [1;1;1;1;1;1;1;1;1;1]) [2;3] (unique_hash ~hash:(fun x -> Hashtbl.hash (x land 1)) ~eq:(fun x y -> x land 1 = y land 1) [2;2;2;4;6;8;3;1;2]) *) let filter_map f l = let rec loop dst = function | [] -> () | h :: t -> match f h with | None -> loop dst t | Some x -> loop (Acc.accum dst x) t in let dummy = Acc.dummy () in loop dummy l; dummy.tl let filteri_map f l = let rec loop i dst = function | [] -> () | h :: t -> match f i h with | None -> loop (succ i) dst t | Some x -> loop (succ i) (Acc.accum dst x) t in let dummy = Acc.dummy () in loop 0 dummy l; dummy.tl (*$T filteri_map (let r = ref (-1) in filteri_map (fun i _ -> incr r; if i = !r then Some i else None) [5; 4; 8] = [0; 1; 2]) filteri_map (fun _ x -> if x > 4 then Some (x, string_of_int x) else None) [5; 4; 8] = [(5, "5"); (8, "8")] filteri_map (fun _ _ -> Some ()) [] = [] filteri_map (fun _ _ -> None) [1; 2] = [] *) let rec find_map f = function | [] -> raise Not_found | x :: xs -> match f x with | Some y -> y | None -> find_map f xs let fold_right_max = 1000 let fold_right f l init = let rec tail_loop acc = function | [] -> acc | h :: t -> tail_loop (f h acc) t in let rec loop n = function | [] -> init | h :: t -> if n < fold_right_max then f h (loop (n+1) t) else f h (tail_loop init (rev t)) in loop 0 l let map2 f l1 l2 = let rec loop dst src1 src2 = match src1, src2 with | [], [] -> () | h1 :: t1, h2 :: t2 -> loop (Acc.accum dst (f h1 h2)) t1 t2 | _ -> invalid_arg "List.map2: list lengths differ" in let dummy = Acc.dummy () in loop dummy l1 l2; dummy.tl let map2i f l1 l2 = let rec loop i dst src1 src2 = match src1, src2 with | [], [] -> () | h1 :: t1, h2 :: t2 -> loop (succ i) (Acc.accum dst (f i h1 h2)) t1 t2 | _ -> invalid_arg "List.map2i: list lengths differ" in let dummy = Acc.dummy () in loop 0 dummy l1 l2; dummy.tl (*$T map2i map2i (fun i x y -> i, x, y) [] [] = [] map2i (fun i x y -> i, x, y) ['a'] ["b"] = [0, 'a', "b"] map2i (fun i x y -> i, x, y) ['a'; 'b'; 'c'] ["d"; "e"; "f"] = \ [(0, 'a', "d"); (1, 'b', "e"); (2, 'c', "f")] try ignore (map2i (fun i x y -> i, x, y) [] [0]); false \ with Invalid_argument _ -> true try ignore (map2i (fun i x y -> i, x, y) [1; 2; 3] ["4"]); false \ with Invalid_argument _ -> true *) let rec iter2 f l1 l2 = match l1, l2 with | [], [] -> () | h1 :: t1, h2 :: t2 -> f h1 h2; iter2 f t1 t2 | _ -> invalid_arg "List.iter2: list lengths differ" let iter2i f l1 l2 = let rec loop i l1 l2 = match l1, l2 with | [], [] -> () | h1 :: t1, h2 :: t2 -> f i h1 h2; loop (succ i) t1 t2 | _ -> invalid_arg "List.iter2i: list lengths differ" in loop 0 l1 l2 (*$T iter2i try iter2i (fun _ _ _ -> ()) [1] [1;2;3]; false \ with Invalid_argument _ -> true try iter2i (fun _ _ _ -> ()) [1] []; false \ with Invalid_argument _ -> true *) (*$T iter2i iter2i (fun _ _ _ -> assert false) [] []; true let r = ref 0 in iter2i (fun i x y -> r := !r + i * x + y) [1] [2]; !r = 2 let r = ref 0 in iter2i (fun i x y -> r := !r + i * x + y) [1; 2] [3; 4]; !r = 9 *) let rec fold_left2 f accum l1 l2 = match l1, l2 with | [], [] -> accum | h1 :: t1, h2 :: t2 -> fold_left2 f (f accum h1 h2) t1 t2 | _ -> invalid_arg "List.fold_left2: list lengths differ" let fold_right2 f l1 l2 init = let rec tail_loop acc l1 l2 = match l1, l2 with | [] , [] -> acc | h1 :: t1 , h2 :: t2 -> tail_loop (f h1 h2 acc) t1 t2 | _ -> invalid_arg "List.fold_right2: list lengths differ" in let rec loop n l1 l2 = match l1, l2 with | [], [] -> init | h1 :: t1, h2 :: t2 -> if n < fold_right_max then f h1 h2 (loop (n+1) t1 t2) else f h1 h2 (tail_loop init (rev t1) (rev t2)) | _ -> invalid_arg "List.fold_right2: list lengths differ" in loop 0 l1 l2 let for_all2 p l1 l2 = let rec loop l1 l2 = match l1, l2 with | [], [] -> true | h1 :: t1, h2 :: t2 -> if p h1 h2 then loop t1 t2 else false | _ -> invalid_arg "List.for_all2: list lengths differ" in loop l1 l2 let exists2 p l1 l2 = let rec loop l1 l2 = match l1, l2 with | [], [] -> false | h1 :: t1, h2 :: t2 -> if p h1 h2 then true else loop t1 t2 | _ -> invalid_arg "List.exists2: list lengths differ" in loop l1 l2 let remove_assoc x lst = let rec loop dst = function | [] -> () | (a, _ as pair) :: t -> if a = x then dst.tl <- t else loop (Acc.accum dst pair) t in let dummy = Acc.dummy () in loop dummy lst; dummy.tl let remove_assq x lst = let rec loop dst = function | [] -> () | (a, _ as pair) :: t -> if a == x then dst.tl <- t else loop (Acc.accum dst pair) t in let dummy = Acc.dummy () in loop dummy lst; dummy.tl let remove_at i lst = let rec loop dst i = function | [] -> invalid_arg "List.remove_at" | x :: xs -> if i = 0 then dst.tl <- xs else loop (Acc.accum dst x) (i - 1) xs in if i < 0 then invalid_arg "List.remove_at" else let dummy = Acc.dummy () in loop dummy i lst; dummy.tl (*$T remove_at try ignore (remove_at 0 []) ; false with Invalid_argument _ -> true try ignore (remove_at 1 [0]); false with Invalid_argument _ -> true remove_at 0 [0] = [] remove_at 0 [0; 1; 2] = [1; 2] remove_at 1 [0; 1; 2] = [0; 2] remove_at 2 [0; 1; 2] = [0; 1] *) let rfind p l = find p (rev l) let find_all p l = let rec findnext dst = function | [] -> () | h :: t -> if p h then findnext (Acc.accum dst h) t else findnext dst t in let dummy = Acc.dummy () in findnext dummy l; dummy.tl let findi p l = let rec loop n = function | [] -> raise Not_found | h :: t -> if p n h then (n,h) else loop (n+1) t in loop 0 l let index_of e l = let rec loop n = function | [] -> None | h::_ when h = e -> Some n | _::t -> loop ( n + 1 ) t in loop 0 l let index_ofq e l = let rec loop n = function | [] -> None | h::_ when h == e -> Some n | _::t -> loop ( n + 1 ) t in loop 0 l let rindex_of e l = let rec loop n acc = function | [] -> acc | h::t when h = e -> loop ( n + 1) ( Some n ) t | _::t -> loop ( n + 1 ) acc t in loop 0 None l let rindex_ofq e l = let rec loop n acc = function | [] -> acc | h::t when h == e -> loop ( n + 1) ( Some n ) t | _::t -> loop ( n + 1 ) acc t in loop 0 None l let filter = find_all let count_matching p l = fold_left (fun count x -> if p x then count + 1 else count ) 0 l (*$T count_matching count_matching (fun _ -> true) [] = 0 count_matching (fun _ -> true) [1] = 1 count_matching (fun _ -> true) [1;2] = 2 count_matching (fun x -> x mod 2 = 1) [1;2;3;4;5;6] = 3 *) ##V>=4.11##let filteri = List.filteri ##V<4.11##let filteri f = ##V<4.11## let rec aux i = function ##V<4.11## | [] -> [] ##V<4.11## | x::xs when f i x -> x :: aux (succ i) xs ##V<4.11## | _x::xs -> aux (succ i) xs ##V<4.11## in ##V<4.11## aux 0 (*$T filteri (let r = ref (-1) in filteri (fun i _ -> incr r; i = !r) [5; 4; 8] = [5; 4; 8]) filteri (fun _ x -> x > 4) [5; 4; 8] = [5; 8] filteri (fun _ _ -> true) [] = [] *) let partition p lst = let rec loop yesdst nodst = function | [] -> () | h :: t -> if p h then loop (Acc.accum yesdst h) nodst t else loop yesdst (Acc.accum nodst h) t in let yesdummy = Acc.dummy () and nodummy = Acc.dummy () in loop yesdummy nodummy lst; (yesdummy.tl, nodummy.tl) let partition_map p lst = let rec loop left right = function | [] -> () | x :: xs -> match p x with | BatEither.Left v -> loop (Acc.accum left v) right xs | BatEither.Right v -> loop left (Acc.accum right v) xs in let left_acc = Acc.dummy () and right_acc = Acc.dummy () in loop left_acc right_acc lst; (left_acc.tl, right_acc.tl) (*$T partition_map let odd_or_even x = \ if x mod 2 = 1 then BatEither.Left x else BatEither.Right x in \ partition_map odd_or_even [1;2;3;4;5;6] = ([1;3;5], [2;4;6]) *) let split lst = let rec loop adst bdst = function | [] -> () | (a, b) :: t -> loop (Acc.accum adst a) (Acc.accum bdst b) t in let adummy = Acc.dummy () and bdummy = Acc.dummy () in loop adummy bdummy lst; adummy.tl, bdummy.tl let combine l1 l2 = match l1, l2 with | [], [] -> [] | x :: xs, y :: ys -> let acc = Acc.create (x, y) in let rec loop dst l1 l2 = match l1, l2 with | [], [] -> inj acc | h1 :: t1, h2 :: t2 -> loop (Acc.accum dst (h1, h2)) t1 t2 | _, _ -> invalid_arg "List.combine: list lengths differ" in loop acc xs ys | _, _ -> invalid_arg "List.combine: list lengths differ" (*$T combine combine [] [] = [] combine [1] [2] = [(1, 2)] combine [1; 3] [2; 4] = [(1, 2); (3, 4)] *) let init size f = if size = 0 then [] else if size < 0 then invalid_arg "BatList.init" else let rec loop dst n = if n < size then loop (Acc.accum dst (f n)) (n+1) in let r = Acc.create (f 0) in loop r 1; inj r let unfold_exn f = let rec loop dst = loop (Acc.accum dst (f ())) in let acc = Acc.dummy () in try loop acc with exn -> (acc.tl, exn) (*$T unfold_exn let exc () = raise End_of_file in \ unfold_exn exc = ([], End_of_file) let state = ref 0 in \ let just_zero () = \ if !state = 1 then raise End_of_file \ else let _ = incr state in 0 \ in \ unfold_exn just_zero = ([0], End_of_file) *) let unfold_exc = unfold_exn let make i x = if i < 0 then invalid_arg "List.make"; let rec loop x acc = function | 0 -> acc | i -> loop x (x::acc) (i-1) in loop x [] i let range i dir j = let op = match dir with | `To -> if i > j then invalid_arg (Printf.sprintf "List.range %d `To %d" i j) else pred | `Downto -> if i < j then invalid_arg (Printf.sprintf "List.range %d `Downto %d" i j) else succ in let rec loop acc k = if i = k then k :: acc else loop (k :: acc) (op k) in loop [] j (*$T range range 1 `To 3 = [1; 2; 3] range 1 `To 1 = [1] range 3 `Downto 1 = [3; 2; 1] range 3 `Downto 3 = [3] try ignore(range 1 `To 0); true with Invalid_argument _ -> true try ignore(range 1 `Downto 2); true with Invalid_argument _ -> true *) let frange start direction stop n = if n < 2 then invalid_arg (Printf.sprintf "List.frange: %d < 2" n); let nb_steps = float_of_int (n - 1) in match direction with | `To -> begin if start >= stop then invalid_arg (Printf.sprintf "List.frange %f `To %f" start stop); let span = stop -. start in let rec loop acc i = let x = ((span *. float_of_int (i - 1)) /. nb_steps) +. start in let acc' = x :: acc in if i = 1 then acc' else loop acc' (i - 1) in loop [] n end | `Downto -> begin if start <= stop then invalid_arg (Printf.sprintf "List.frange %f `Downto %f" start stop); let span = start -. stop in let rec loop acc i = let x = ((span *. float_of_int (i - 1)) /. nb_steps) +. stop in let acc' = x :: acc in if i = n then acc' else loop acc' (i + 1) in loop [] 1 end (*$T frange try ignore(frange 1. `To 2. 1); true with Invalid_argument _ -> true try ignore(frange 2. `Downto 1. 1); true with Invalid_argument _ -> true try ignore(frange 3. `To 1. 3); true with Invalid_argument _ -> true try ignore(frange 1. `Downto 3. 3); true with Invalid_argument _ -> true frange 1. `To 3. 3 = [1.; 2.; 3.] frange 1. `To 2. 2 = [1.; 2.] frange 3. `Downto 1. 3 = [3.; 2.; 1.] frange 2. `Downto 1. 2 = [2.; 1.] length (frange 0.123 `To 3.491 1000) = 1000 *) let mapi f = function | [] -> [] | h :: t -> let rec loop dst n = function | [] -> () | h :: t -> loop (Acc.accum dst (f n h)) (n + 1) t in let r = Acc.create (f 0 h) in loop r 1 t; inj r let iteri f l = let rec loop n = function | [] -> () | h :: t -> f n h; loop (n+1) t in loop 0 l let fold_lefti f init l = let rec loop i acc = function | [] -> acc | x :: xs -> loop (i + 1) (f acc i x) xs in loop 0 init l (*$T fold_lefti fold_lefti (fun acc i x -> (i, x) :: acc) [] [] = [] fold_lefti (fun acc i x -> (i, x) :: acc) [] [0.] = [(0, 0.)] fold_lefti (fun acc i x -> (i, x) :: acc) [] [0.; 1.] = [(1, 1.); (0, 0.)] *) let fold_righti f l init = let xis = (* reverse the list and index its elements *) fold_lefti (fun acc i x -> (i, x) :: acc) [] l in fold_left (fun acc (i, x) -> f i x acc) init xis (*$T fold_righti fold_righti (fun i x acc -> (i, x) :: acc) [] [] = [] fold_righti (fun i x acc -> (i, x) :: acc) [0.] [] = [(0, 0.)] fold_righti (fun i x acc -> (i, x) :: acc) [0.; 1.] [] = [(0, 0.); (1, 1.)] *) ##V>=4.11##let fold_left_map = List.fold_left_map ##V<4.11##let fold_left_map f acc = function ##V<4.11## | [] -> acc, [] ##V<4.11## | h :: t -> ##V<4.11## let rec loop acc dst = function ##V<4.11## | [] -> acc ##V<4.11## | h :: t -> ##V<4.11## let acc', t' = f acc h in ##V<4.11## loop acc' (Acc.accum dst t') t ##V<4.11## in ##V<4.11## let acc', h' = f acc h in ##V<4.11## let r = Acc.create h' in ##V<4.11## let res = loop acc' r t in ##V<4.11## res, inj r (*$T fold_left_map fold_left_map (fun acc x -> assert false) 0 [] = (0, []) fold_left_map (fun acc x -> acc ^ x, int_of_string x) "0" ["1"; "2"; "3"] = ("0123", [1; 2; 3]) *) let first = hd let rec last = function | [] -> invalid_arg "Empty List" | h :: [] -> h | _ :: t -> last t let split_nth index = function | [] -> if index = 0 then [],[] else invalid_arg at_after_end_msg | (h :: t as l) -> if index = 0 then [],l else if index < 0 then invalid_arg at_negative_index_msg else let rec loop n dst l = if n = 0 then l else match l with | [] -> invalid_arg at_after_end_msg | h :: t -> loop (n - 1) (Acc.accum dst h) t in let r = Acc.create h in inj r, loop (index-1) r t let split_at = split_nth let find_exn f e l = try find f l with Not_found -> raise e let remove l x = let rec loop dst = function | [] -> () | h :: t -> if x = h then dst.tl <- t else loop (Acc.accum dst h) t in let dummy = Acc.dummy () in loop dummy l; dummy.tl let remove_if f lst = let rec loop dst = function | [] -> () | x :: l -> if f x then dst.tl <- l else loop (Acc.accum dst x) l in let dummy = Acc.dummy () in loop dummy lst; dummy.tl let remove_all l x = let rec loop dst = function | [] -> () | h :: t -> if x = h then loop dst t else loop (Acc.accum dst h) t in let dummy = Acc.dummy () in loop dummy l; dummy.tl let transpose = function | [] -> [] | [x] -> List.map (fun x -> [x]) x | x::xs -> let heads = List.map Acc.create x in ignore ( fold_left (fun acc x -> map2 (fun x xs -> Acc.accum xs x) x acc) heads xs); Obj.magic heads (* equivalent to List.map inj heads, but without creating a new list *) (*$T transpose transpose [ [1; 2; 3;]; [4; 5; 6;]; [7; 8; 9;] ] = [[1;4;7];[2;5;8];[3;6;9]] transpose [] = [] transpose [ [1] ] = [ [1] ] *) let enum l = let rec make lr count = BatEnum.make ~next:(fun () -> match !lr with | [] -> raise BatEnum.No_more_elements | h :: t -> decr count; lr := t; h ) ~count:(fun () -> if !count < 0 then count := length !lr; !count ) ~clone:(fun () -> make (ref !lr) (ref !count) ) in make (ref l) (ref (-1)) let of_enum e = let h = Acc.dummy () in let _ = BatEnum.fold Acc.accum h e in h.tl let backwards l = enum (rev l) (*TODO: should we make it more efficient?*) (*let backwards l = (*This version only needs one pass but is actually less lazy*) let rec aux acc = function | [] -> acc | h::t -> aux BatEnum.append (BatEnum.singleton h) acc in aux l*) let of_backwards e = let rec aux acc = match BatEnum.get e with | Some h -> aux (h::acc) | None -> acc in aux [] let assoc_inv e l = let rec aux = function | [] -> raise Not_found | (a,b)::_ when b = e -> a | _::t -> aux t in aux l let assq_inv e l = let rec aux = function | [] -> raise Not_found | (a,b)::_ when b == e -> a | _::t -> aux t in aux l let modify_opt a f l = let rec aux p = function | [] -> (match f None with | None -> raise Exit | Some v -> rev ((a,v)::p)) | (a',b)::t when a' = a -> (match f (Some b) with | None -> rev_append p t | Some b' -> rev_append ((a,b')::p) t) | p'::t -> aux (p'::p) t in try aux [] l with Exit -> l (*$= modify_opt & ~printer:(IO.to_string (List.print (fun fmt (a,b) -> Printf.fprintf fmt "%d,%d" a b))) (* to modify a value *) \ (modify_opt 5 (function Some 1 -> Some 2 | _ -> assert false) [ 1,0 ; 5,1 ; 8,2 ]) \ [ 1,0 ; 5,2 ; 8,2 ] (* to add a value *) \ (modify_opt 5 (function None -> Some 2 | _ -> assert false) [ 1,0 ; 8,2 ]) \ [ 1,0 ; 8,2 ; 5,2 ] (* to remove a value *) \ (modify_opt 5 (function Some 1 -> None | _ -> assert false) [ 1,0 ; 5,1 ; 8,2 ]) \ [ 1,0 ; 8,2 ] *) let modify a f l = let f' = function | None -> raise Not_found | Some b -> Some (f b) in modify_opt a f' l (*$= modify & ~printer:(IO.to_string (List.print (fun fmt (a,b) -> Printf.fprintf fmt "%d,%d" a b))) (modify 5 succ [ 1,0 ; 5,1 ; 8,2 ]) [ 1,0 ; 5,2 ; 8,2 ] *) (*$T modify try ignore (modify 5 succ [ 1,0 ; 8,2 ]); false with Not_found -> true *) let modify_def dfl a f l = let f' = function | None -> Some (f dfl) | Some b -> Some (f b) in modify_opt a f' l (*$= modify_def & ~printer:(IO.to_string (List.print (fun fmt (a,b) -> Printf.fprintf fmt "%d,%d" a b))) (modify_def 0 5 succ [ 1,0 ; 5,1 ; 8,2 ]) [ 1,0 ; 5,2 ; 8,2 ] (modify_def 0 5 succ [ 1,0 ; 8,2 ]) [ 1,0 ; 8,2 ; 5,1 ] *) let modify_opt_at n f l = if n < 0 then invalid_arg at_negative_index_msg; let rec loop acc n = function | [] -> invalid_arg at_after_end_msg | h :: t -> if n <> 0 then loop (h :: acc) (n - 1) t else match f h with | None -> rev_append acc t | Some v -> rev_append acc (v :: t) in loop [] n l (*$T modify_opt_at modify_opt_at 2 (fun n -> Some (n*n)) [1;2;3;4;5] = [1;2;9;4;5] modify_opt_at 2 (fun _ -> None) [1;2;3;4;5] = [1;2;4;5] try ignore (modify_opt_at 0 (fun _ -> None) []); false \ with Invalid_argument _ -> true try ignore (modify_opt_at 2 (fun _ -> None) []); false \ with Invalid_argument _ -> true try ignore (modify_opt_at (-1) (fun _ -> None) [1;2;3]); false \ with Invalid_argument _ -> true try ignore (modify_opt_at 5 (fun _ -> None) [1;2;3]); false \ with Invalid_argument _ -> true try ignore (modify_opt_at 3 (fun _ -> None) [1;2;3]); false \ with Invalid_argument _ -> true *) let modify_at n f l = modify_opt_at n (fun x -> Some (f x)) l (*$T modify_at modify_at 2 ((+) 1) [1;2;3;4] = [1;2;4;4] try ignore (modify_at 0 ((+) 1) []); false \ with Invalid_argument _ -> true try ignore (modify_at 2 ((+) 1) []); false \ with Invalid_argument _ -> true try ignore (modify_at (-1) ((+) 1) [1;2;3]); false \ with Invalid_argument _ -> true try ignore (modify_at 5 ((+) 1) [1;2;3]); false \ with Invalid_argument _ -> true try ignore (modify_at 3 ((+) 1) [1;2;3]); false \ with Invalid_argument _ -> true *) let sort_unique cmp lst = let sorted = List.sort cmp lst in let fold first rest = List.fold_left (fun (acc, last) elem -> if (cmp last elem) = 0 then (acc, elem) else (elem::acc, elem) ) ([first], first) rest in match sorted with | [] -> [] | hd::tl -> begin let rev_result, _ = fold hd tl in List.rev rev_result end ##V<4.2##let sort_uniq = sort_unique ##V>=4.2##let sort_uniq = List.sort_uniq let group cmp lst = let sorted = List.sort cmp lst in let fold first rest = List.fold_left (fun (acc, agr, last) elem -> if (cmp last elem) = 0 then (acc, elem::agr, elem) else (agr::acc, [elem], elem) ) ([], [first], first) rest in match sorted with | [] -> [] | hd::tl -> begin let groups, lastgr, _ = fold hd tl in List.rev_map List.rev (lastgr::groups) end (*$T group group BatInt.compare [] = [] group BatInt.compare [1] = [[1]] group BatInt.compare [2; 2] = [[2; 2]] group BatInt.compare [5; 4; 4; 2; 1; 6] = [[1]; [2]; [4; 4]; [5]; [6]] *) let cartesian_product l1 l2 = List.concat (List.map (fun i -> List.map (fun j -> (i,j)) l2) l1) (*$T cartesian_product as cp cp [1;2;3] ['x';'y'] = [1,'x';1,'y';2,'x';2,'y';3,'x';3,'y'] *) let rec n_cartesian_product = function | [] -> [[]] | h :: t -> let rest = n_cartesian_product t in List.concat (List.map (fun i -> List.map (fun r -> i :: r) rest) h) (*$T n_cartesian_product as ncp ncp [] = [[]] ncp [[]] = [] ncp [[1]; [2]; [3]] = [[1;2;3]] ncp [[1;2;3]] = [[1]; [2]; [3]] ncp [[1;2;3]; []] = [] ncp [[1;2;3]; [4;5]] = [[1;4]; [1;5]; [2;4]; [2;5]; [3;4]; [3;5]] *) let print ?(first="[") ?(last="]") ?(sep="; ") print_a out = function | [] -> BatInnerIO.nwrite out first; BatInnerIO.nwrite out last | [h] -> BatInnerIO.nwrite out first; print_a out h; BatInnerIO.nwrite out last | h::t -> BatInnerIO.nwrite out first; print_a out h; iter (fun x -> BatInnerIO.nwrite out sep; print_a out x) t; BatInnerIO.nwrite out last let t_printer a_printer _paren out x = print (a_printer false) out x let reduce f = function | [] -> invalid_arg "List.reduce: Empty List" | h :: t -> fold_left f h t let min ?cmp:(cmp = Pervasives.compare) l = let min = BatOrd.min_comp cmp in reduce min l let max ?cmp:(cmp = Pervasives.compare) l = let max = BatOrd.max_comp cmp in reduce max l let sum l = fold_left (+) 0 l (*$= sum & ~printer:string_of_int 2 (sum [1;1]) 0 (sum []) *) let fsum l = match l with | [] -> 0. | x::xs -> let acc = ref x in let rem = ref xs in let go = ref true in while !go do match !rem with | [] -> go := false; | x::xs -> acc := !acc +. x; rem := xs done; !acc (*$= fsum & ~printer:string_of_float 0. (fsum []) 6. (fsum [1.;2.;3.]) *) let favg l = match l with | [] -> invalid_arg "List.favg: Empty List" | x::xs -> let acc = ref x in let len = ref 1 in let rem = ref xs in let go = ref true in while !go do match !rem with | [] -> go := false; | x::xs -> acc := !acc +. x; incr len; rem := xs done; !acc /. float_of_int !len (*$T favg try let _ = favg [] in false with Invalid_argument _ -> true favg [1.;2.;3.] = 2. *) let kahan_sum li = (* This algorithm is written in a particularly untasteful imperative style to benefit from the nice unboxing of float references that is harder to obtain with recursive functions today. See the definition of kahan sum on arrays, on which this one is directly modeled. *) let li = ref li in let continue = ref (!li <> []) in let sum = ref 0. in let err = ref 0. in while !continue do match !li with | [] -> continue := false | x::xs -> li := xs; let x = x -. !err in let new_sum = !sum +. x in err := (new_sum -. !sum) -. x; sum := new_sum +. 0.; done; !sum +. 0. (*$T kahan_sum kahan_sum [ ] = 0. kahan_sum [ 1.; 2. ] = 3. let n, x = 1_000, 1.1 in \ Float.approx_equal (float n *. x) \ (kahan_sum (List.make n x)) *) let min_max ?cmp:(cmp = Pervasives.compare) = function | [] -> invalid_arg "List.min_max: Empty List" | x :: xs -> fold_left (fun (curr_min, curr_max) y -> let new_min = if cmp curr_min y = 1 then y else curr_min in let new_max = if cmp curr_max y = -1 then y else curr_max in (new_min, new_max) ) (x, x) xs (*$T min_max min_max [1] = (1, 1) min_max [1; 1] = (1, 1) min_max [1; -2; 3; 4; 5; 60; 7; 8] = (-2, 60) *) let unfold b f = let acc = Acc.dummy () in let rec loop dst v = match f v with | None -> acc.tl | Some (a, v) -> loop (Acc.accum dst a) v in loop acc b (*$T unfold unfold 1 (fun x -> None) = [] unfold 0 (fun x -> if x > 3 then None else Some (x, succ x)) = [0;1;2;3] *) let subset cmp l l' = for_all (fun x -> mem_cmp cmp x l') l (*$T subset subset BatInt.compare [1;2;3;4] [1;2;3] = false subset BatInt.compare [1;2;3] [1;2;3] = true subset BatInt.compare [3;2;1] [1;2;3] = true subset BatInt.compare [1;2] [1;2;3] = true *) let shuffle ?state l = let arr = Array.of_list l in BatInnerShuffle.array_shuffle ?state arr; Array.to_list arr (*$T shuffle let s = Random.State.make [|11|] in \ shuffle ~state:s [1;2;3;4;5;6;7;8;9] = \ let ocaml_version = int_of_string (String.make 1 Sys.ocaml_version.[0]) in \ if ocaml_version < 5 then \ [7; 2; 9; 5; 3; 6; 4; 1; 8] else \ [1; 7; 4; 9; 5; 2; 8; 6; 3] shuffle [] = [] *) module Exceptionless = struct let rfind p l = try Some (rfind p l) with Not_found -> None let find p l = try Some (find p l) with Not_found -> None let findi p l = try Some (findi p l) with Not_found -> None let split_at n l = try `Ok (split_at n l) with Invalid_argument s -> `Invalid_argument s let at n l = try `Ok (at n l) with Invalid_argument s -> `Invalid_argument s let assoc e l = try Some (assoc e l) with Not_found -> None let assq e l = try Some (assq e l) with Not_found -> None let assoc_inv e l = try Some (assoc_inv e l) with Not_found -> None let find_map f l = try Some(find_map f l) with Not_found -> None let hd l = try Some (hd l) with Failure _ -> None let tl l = try Some (tl l) with Failure _ -> None let rec last = function | [] -> None | [x] -> Some x | _ :: l -> last l let reduce f = function | [] -> None | h :: t -> Some (fold_left f h t) let min_max ?cmp:(cmp = Pervasives.compare) l = try Some (min_max ~cmp l) with Invalid_argument _ -> None let min ?cmp:(cmp = Pervasives.compare) l = try Some (min ~cmp l) with Invalid_argument _ -> None let max ?cmp:(cmp = Pervasives.compare) l = try Some (max ~cmp l) with Invalid_argument _ -> None end module Labels = struct let init i ~f = init i f let make n x = make n x let iteri ~f l = iteri f l let map ~f l = map f l let mapi ~f l = mapi f l let rfind ~f l = rfind f l let find ~f l = find f l let findi ~f = findi f let find_exn ~f = find_exn f ##V>=4.10##let find_map_opt ~f = find_map_opt f let filter_map ~f = filter_map f let remove_if ~f = remove_if f let take_while ~f = take_while f let drop_while ~f = drop_while f let map2 ~f = map2 f let iter2 ~f = iter2 f let exists2 ~f = exists2 f let fold_left ~f ~init = fold_left f init let fold = fold_left let fold_right ~f l ~init = fold_right f l init let fold_left2 ~f ~init = fold_left2 f init let fold_right2 ~f l1 l2 ~init = fold_right2 f l1 l2 init let filter ~f = filter f let count_matching ~f = count_matching f ##V>=4.10##let concat_map ~f = List.concat_map f let find_all ~f = find_all f let partition ~f = partition f let partition_map ~f = partition_map f let rev_map ~f = rev_map f let rev_map2 ~f = rev_map2 f let iter ~f = iter f let for_all ~f = for_all f let for_all2 ~f = for_all2 f let exists ~f = exists f let subset ~cmp = subset cmp let stable_sort ?(cmp=compare) = stable_sort cmp let fast_sort ?(cmp=compare) = fast_sort cmp let sort ?(cmp=compare) = sort cmp let merge ?(cmp=compare) = merge cmp module LExceptionless = struct include Exceptionless let rfind ~f l = rfind f l let find ~f l = find f l let findi ~f l = findi f l end end let ( @ ) = List.append module Infix = struct let ( @ ) = ( @ ) end open BatOrd let rec eq eq_elt l1 l2 = match l1 with | [] -> (match l2 with [] -> true | _ -> false) | hd1::tl1 -> (match l2 with | [] -> false | hd2::tl2 -> bin_eq eq_elt hd1 hd2 (eq eq_elt) tl1 tl2) let rec ord ord_elt l1 l2 = match l1 with | [] -> (match l2 with [] -> Eq | _::_ -> Lt) | hd1::tl1 -> (match l2 with | [] -> Gt | hd2::tl2 -> bin_ord ord_elt hd1 hd2 (ord ord_elt) tl1 tl2) let rec compare comp_elt l1 l2 = match l1 with | [] -> (match l2 with [] -> 0 | _::_ -> -1) | hd1::tl1 -> (match l2 with | [] -> 1 | hd2::tl2 -> bin_comp comp_elt hd1 hd2 (compare comp_elt) tl1 tl2) module Eq (T : Eq) = struct type t = T.t list let eq = eq T.eq end module Ord (T : Ord) = struct type t = T.t list let ord = ord T.ord end module Comp (T : Comp) = struct type t = T.t list let compare = compare T.compare end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>