package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batEnum.ml.html
Source file batEnum.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
(* * BatEnum - Enumeration over abstract collection of elements. * Copyright (C) 2003 Nicolas Cannasse * 2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) ##V>=5##module Pervasives = Stdlib (*$inject ##V>=5##module Pervasives = Stdlib *) (** {6 Representation} *) type 'a t = { mutable count : unit -> int; (** Return the number of remaining elements in the enumeration. *) mutable next : unit -> 'a; (** Return the next element of the enumeration or raise [No_more_elements].*) mutable clone : unit -> 'a t;(** Return a copy of the enumeration. *) mutable fast : bool; (** [true] if [count] can be done without reading all elements, [false] otherwise.*) } type 'a enumerable = 'a t type 'a mappable = 'a t external enum : 'a t -> 'a t = "%identity" external of_enum : 'a t -> 'a t = "%identity" (* raised by 'next' functions, should NOT go outside the API *) exception No_more_elements let make ~next ~count ~clone = { count = count; next = next; clone = clone; fast = true; } (** {6 Internal utilities}*) let _dummy () = assert false (* raised by 'count' functions, may go outside the API *) exception Infinite_enum let return_no_more_elements () = raise No_more_elements let return_no_more_count () = 0 let return_infinite_count () = raise Infinite_enum (* Inlined from ExtList to avoid circular dependencies. *) type 'a _mut_list = { hd : 'a; mutable tl : 'a _mut_list; } let rec empty () = { count = return_no_more_count; next = return_no_more_elements; clone = empty; fast = true; } let close e = e.next <- return_no_more_elements; e.count<- return_no_more_count; e.clone<- empty let force t = (* Transform [t] into a list *) let rec clone enum count = let enum = ref !enum and count = ref !count in { count = (fun () -> !count); next = (fun () -> match !enum with | [] -> raise No_more_elements | h :: t -> decr count; enum := t; h); clone = (fun () -> let enum = ref !enum and count = ref !count in clone enum count); fast = true; } in let count = ref 0 in let _empty = Obj.magic [] in let rec loop dst = let x = { hd = t.next(); tl = _empty } in incr count; dst.tl <- x; loop x in let enum = ref _empty in (try enum := { hd = t.next(); tl = _empty }; incr count; loop !enum; with No_more_elements -> ()); let tc = clone (Obj.magic enum) count in t.clone <- tc.clone; t.next <- tc.next; t.count <- tc.count; t.fast <- true (* Inlined from {!LazyList}. This lazy list permits cloning enumerations constructed with {!from} without having to actually force them.*) module MicroLazyList = struct type 'a ll_t = ('a node_t) Lazy.t and 'a node_t = | Nil | Cons of 'a * 'a ll_t let nil = lazy Nil let enum l = let rec aux (l:'a ll_t) : 'a t= let reference = ref l in let e = make ~next:(fun () -> match Lazy.force !reference with | Cons(x,t) -> reference := t; x | Nil -> raise No_more_elements ) ~count:_dummy ~clone:(fun () -> aux !reference) in e.count <- (fun () -> force e; e.count()); e.fast <- false; e in aux l let from f = let rec aux () = lazy ( let item = try Some (f ()) with No_more_elements -> None in match item with | Some x -> Cons (x, aux () ) | _ -> Nil ) in aux () end let from f = let e = { next = _dummy; count = _dummy; clone = _dummy; fast = false; } in e.next <- (fun () -> try f () with No_more_elements -> close e ; raise No_more_elements); e.count <- (fun () -> force e; e.count()); e.clone <- (fun () -> let e' = MicroLazyList.enum(MicroLazyList.from f) in e.next <- e'.next; e.clone<- e'.clone; e.count<- (fun () -> force e; e.count()); (* we can't use [e'.count] because that would force [e'], which doesn't update [e]. That would for example, cause e.fast to not be updated to true. A simple test to see the problem with [e'.count] is to do the following: (1) create a enum using this [from] function, (2) clone that enum, (3) grab the count of the original enum and then iterate over it. A discrepancy between the count and the elements will result. *) e.fast <- e'.fast; e.clone () ); e let from2 next clone = let e = { next = next; count = _dummy; clone = clone; fast = false; } in e.count <- (fun () -> force e; e.count()); e let init n f = (*Experimental fix for init*) if n < 0 then invalid_arg "Enum.init"; let count = ref n in let f' () = match !count with | 0 -> raise No_more_elements | _ -> decr count; f ( n - 1 - !count) in let e = from f' in e.fast <- true; e.count <- (fun () -> !count); e let get t = try Some (t.next()) with No_more_elements -> None let get_exn t = t.next () let push t e = let rec make t = let fnext = t.next in let fcount = t.count in let fclone = t.clone in let next_called = ref false in t.next <- (fun () -> next_called := true; t.next <- fnext; t.count <- fcount; t.clone <- fclone; e); t.count <- (fun () -> let n = fcount() in if !next_called then n else n+1); t.clone <- (fun () -> let tc = fclone() in if not !next_called then make tc; tc); in make t let peek t = match get t with | None -> None | Some x -> push t x; Some x module MicroList = (*Inlined from ExtList to avoid circular dependencies*) struct let enum l = let rec aux lr count = make ~next:(fun () -> match !lr with | [] -> raise No_more_elements | h :: t -> decr count; lr := t; h ) ~count:(fun () -> if !count < 0 then count := List.length !lr; !count ) ~clone:(fun () -> aux (ref !lr) (ref !count) ) in aux (ref l) (ref (-1)) end let take n e = let r = ref [] in begin try for _i = 1 to n do r := e.next () :: !r done with No_more_elements -> () end; MicroList.enum (List.rev !r) (*let take n e = (*Er... that looks quite weird.*) let remaining = ref n in let f () = if !remaining >= 0 then let result = e.next () in decr remaining; result else raise No_more_elements in let e = make ~next: f ~count:(fun () -> !remaining) ~clone:_dummy in e.clone <- (fun () -> force e; e.clone ()); e*) let junk t = try ignore(t.next()) with No_more_elements -> () let is_empty t = if t.fast then t.count() = 0 else peek t = None let count t = t.count() let fast_count t = t.fast let clone t = t.clone() let iter f t = let rec loop () = f (t.next()); loop(); in try loop(); with No_more_elements -> () let iteri f t = let rec loop idx = f idx (t.next()); loop (idx+1); in try loop 0; with No_more_elements -> () let iter2 f t u = let push_t = ref None in let rec loop () = push_t := None; let e = t.next() in push_t := Some e; f e (u.next()); loop () in try loop () with No_more_elements -> match !push_t with | None -> () | Some e -> push t e let iter2i f t u = let push_t = ref None in let rec loop idx = push_t := None; let e = t.next() in push_t := Some e; f idx e (u.next()); loop (idx + 1) in try loop 0 with No_more_elements -> match !push_t with | None -> () | Some e -> push t e let fold f init t = let acc = ref init in let rec loop() = acc := f !acc (t.next()); loop() in try loop() with No_more_elements -> !acc let reduce f t = match get t with None -> raise Not_found | Some init -> fold f init t let sum t = match get t with | None -> 0 | Some i -> fold (+) i t (* Kahan summing. [Enum.reduce (+.)] is 20% faster, but has cumulative error O(n) instead of O(1) *) let fsum t = match get t with | None -> 0. | Some i -> let sum = ref i in let c = ref 0. in iter (fun x -> let y = x -. !c in let t = !sum +. y in c := (t -. !sum) -. y; sum := t ) t; !sum let kahan_sum = fsum (* NEED A PROPER TEST OF ROUNDING ERROR *) (*$T fsum let arr = Array.make 10001 1e-10 in arr.(0) <- 1e10; \ Float.approx_equal (fsum (Array.enum arr)) (1e10 +. 1e-5) *) (*$T kahan_sum kahan_sum (Array.enum [| |]) = 0. kahan_sum (Array.enum [| 1.; 2. |]) = 3. let n, x = 1_000, 1.1 in \ Float.approx_equal (float n *. x) \ (kahan_sum (Array.enum (Array.make n x))) *) let exists f t = try let rec aux () = f (t.next()) || aux () in aux () with No_more_elements -> false let for_all f t = try let rec aux () = f (t.next()) && aux () in aux () with No_more_elements -> true (* test paired elements, ignore any extra elements from one enum *) let for_all2 f t1 t2 = try let rec aux () = f (t1.next()) (t2.next()) && aux () in aux () with No_more_elements -> true let scanl f init t = let acc = ref init in let gen () = acc := f !acc (t.next()); !acc in let e = from gen in push e init; e let scan f t = match get t with | Some x -> scanl f x t | None -> empty () let foldi f init t = let acc = ref init in let rec loop idx = acc := f idx (t.next()) !acc; loop (idx + 1) in try loop 0 with No_more_elements -> !acc let fold2 f init t u = let acc = ref init in let push_t = ref None in let rec loop() = push_t := None; let e = t.next() in push_t := Some e; acc := f e (u.next()) !acc; loop() in try loop() with No_more_elements -> match !push_t with | None -> !acc | Some e -> push t e; !acc let fold2i f init t u = let acc = ref init in let push_t = ref None in let rec loop idx = push_t := None; let e = t.next() in push_t := Some e; acc := f idx e (u.next()) !acc; loop (idx + 1) in try loop 0 with No_more_elements -> match !push_t with | None -> !acc | Some e -> push t e; !acc let find f t = let rec loop () = let x = t.next() in if f x then x else loop() in try loop() with No_more_elements -> raise Not_found (*$T find ((=) 5) (1 -- 10) = 5 try ignore (find ((=) 11) (1 -- 10) = 5); false with Not_found -> true *) let find_map f t = let rec loop () = match f (t.next ()) with | Some x -> x | None -> loop () in try loop () with No_more_elements -> raise Not_found (*$T find_map try let _ = empty () |> find_map (const (Some 1)) in false with Not_found -> true singleton 0 |> find_map (const (Some 1)) = 1 1 -- 5 |> find_map (function 2 -> Some 0 | _ -> None) = 0 1 -- 5 |> find_map (function 5 -> Some 0 | _ -> None) = 0 try let _ = 1 -- 5 |> find_map (function 6 -> Some 0 | _ -> None) in \ false with Not_found -> true *) (*qtest TODO: migrate try into an exception test *) let rec map f t = { count = t.count; next = (fun () -> f (t.next())); clone = (fun () -> map f (t.clone())); fast = t.fast; } let rec mapi f t = let idx = ref (-1) in { count = t.count; next = (fun () -> incr idx; f !idx (t.next())); clone = (fun () -> mapi f (t.clone())); fast = t.fast; } let rec filter f t = let rec next() = let x = t.next() in if f x then x else next() in from2 next (fun () -> filter f (t.clone())) let rec filter_map f t = let rec next () = match f (t.next()) with | None -> next() | Some x -> x in from2 next (fun () -> filter_map f (t.clone())) let rec append ta tb = let t = { count = (fun () -> ta.count() + tb.count()); next = _dummy; clone = (fun () -> append (ta.clone()) (tb.clone())); fast = ta.fast && tb.fast; } in t.next <- (fun () -> try ta.next() with No_more_elements -> (* add one indirection because tb can mute *) t.next <- (fun () -> tb.next()); t.count <- (fun () -> tb.count()); t.clone <- (fun () -> tb.clone()); t.fast <- tb.fast; t.next() ); t (*$T append (List.enum [1;2;3]) (List.enum [4;5]) |> List.of_enum = [1;2;3;4;5] append (List.enum [1;2;3]) (List.enum [4;5]) |> \ mapi (Tuple2.curry identity) |> List.of_enum = [0,1;1,2;2,3;3,4;4,5] *) let prefix_action f t = let full_action e = e.count <- (fun () -> t.count()); e.next <- (fun () -> t.next ()); e.clone <- (fun () -> t.clone()); f () in let rec t' = { count = (fun () -> full_action t'; t.count() ); next = (fun () -> full_action t'; t.next() ); clone = (fun () -> full_action t'; t.clone() ); fast = t.fast } in t' let suffix_action_without_raise (f:unit -> 'a) (t:'a t) = { count = t.count; next = (fun () -> try t.next () with No_more_elements -> f() ); clone = (fun () -> t.clone()); (* needs to be delayed because [t] may mutate and we want the newest clone function *) fast = t.fast } let suffix_action f t = let f' () = f (); close t; raise No_more_elements in suffix_action_without_raise f' t let rec concat t = let tn = ref (empty ()) in let rec next () = try (!tn).next () with No_more_elements -> tn := t.next(); next() in let clone () = append ((!tn).clone()) (concat (t.clone())) in from2 next clone (*$T concat let e = List.enum [ [| 1; 2; 3; 4|]; [| 5; 6 |] ] |> map Array.enum \ |> concat in drop 1 e; (count e) = (count (clone e)) *) let singleton x = init 1 (fun _ -> x) let switchn n f e = let queues = ArrayLabels.init n ~f:(fun _ -> Queue.create ()) in let gen i () = (*Generate the next value for the i^th enum*) let my_queue = queues.(i) in if Queue.is_empty my_queue then (*Need to fetch next*) let rec aux () = (*Keep fetching until an appropriate item has been found*) let next_item = e.next() in let position = f next_item in if i = position then next_item else ( Queue.push next_item queues.(position); aux () ) in aux () else Queue.take my_queue in ArrayLabels.init ~f:(fun i -> from (gen i)) n let switch f e = let a = switchn 2 (fun x -> if f x then 0 else 1) e in (a.(0), a.(1)) (*$T List.enum [1;2;3;4] |> switch (fun x -> x mod 2 = 0) |> \ Tuple2.mapn List.of_enum = ([2;4], [1;3]) *) let partition = switch (*$T partition let a,b = partition (fun x -> x > 3) (List.enum [1;2;3;4;5;1;5;0]) in \ List.of_enum a = [4;5;5] && List.of_enum b = [1;2;3;1;0] *) (*$Q partition (Q.list Q.small_int) (fun l -> let f x = x mod 2 = 1 in List.partition f l \ = (partition f (List.enum l) |> Tuple.Tuple2.mapn List.of_enum)) *) let seq init f cond = let acc = ref init in let aux () = if cond !acc then begin let result = !acc in acc := f !acc; result end else raise No_more_elements in from aux let repeat ?times x = match times with | None -> let rec aux = { count = return_infinite_count; next = (fun () -> x); clone = (fun () -> aux); fast = true; } in aux | Some n -> init n (fun _ -> x) (*$T repeat ~times:5 0 |> List.of_enum = [0;0;0;0;0] repeat 1 |> take 3 |> List.of_enum = [1;1;1] *) let cycle ?times x = let enum = match times with | None -> from (fun () -> clone x) | Some n -> init n (fun _ -> clone x) in concat enum (*$T cycle ~times:5 (singleton 1) |> List.of_enum = [1;1;1;1;1] cycle (List.enum [1;2]) |> take 5 |> List.of_enum = [1;2;1;2;1] *) let range ?until x = let cond = match until with | None -> ( fun _ -> true ) | Some n -> ( fun m -> m <= n ) in seq x ( ( + ) 1 ) cond (*$T range 1 ~until:5 |> List.of_enum = [1;2;3;4;5] *) let drop n e = for _i = 1 to n do junk e done let skip n e = drop n e; e let drop_while p e = let rec aux () = match get e with | Some x when p x -> aux () | Some x -> push e x | None -> () in prefix_action aux e (*let drop_while p e = let rec aux () = let x = e.next () in print_string "filtering\n"; if p x then (aux ()) else (push e x; raise No_more_elements) in append (from aux) e*) let take_while f t = let next () = let x = t.next () in if f x then x else (push t x; raise No_more_elements) in from next let span f t = (*Two possibilities: either the tail has been read already -- in which case all head data has been copied onto the queue -- or the tail hasn't been read -- in which case, stuff should be read from [t] *) let queue = Queue.create () and read_from_queue = ref false in let head () = if !read_from_queue then (*Everything from the head has been copied *) try Queue.take queue (*to the queue already *) with Queue.Empty -> raise No_more_elements else let x = t.next () in if f x then x else (push t x; raise No_more_elements) and tail () = if not !read_from_queue then (*Copy everything to the queue *) begin read_from_queue := true; let rec aux () = match get t with | None -> raise No_more_elements | Some x when f x -> Queue.push x queue; aux () | Some x -> x in aux () end else t.next() in (from head, from tail) (*$T span List.enum [1;2;3;4;5] |> span (fun x-> x<4) |> Tuple2.mapn List.of_enum = \ ([1;2;3], [4;5]) *) (*$Q (Q.list Q.small_int) (fun l -> \ let avg = List.fold_left (+) 0 l / (max 1 @@ List.length l) in \ let l' = List.sort Int.compare l in \ let f x = x < avg in \ Tuple2.mapn List.of_enum (span f @@ List.enum l' ) = \ (List.of_enum @@ take_while f @@ List.enum l', \ List.of_enum @@ drop_while f @@ List.enum l')) *) let while_do cont f e = let (head, tail) = span cont e in append (f head) tail let break test e = span (fun x -> not (test x)) e let uniq_by cmp e = match peek e with None -> empty () | Some first -> let prev = ref first in let not_last x = not (cmp (BatRef.post prev (fun _ -> x)) x) in let result = filter not_last e in push result first; result let uniq e = uniq_by (=) e let uniqq e = uniq_by (==) e (*$T List.enum [1;1;2;3;3;2] |> uniq |> List.of_enum = [1;2;3;2] List.enum [1;1;2;3;3;2] |> uniqq |> List.of_enum = [1;2;3;2] List.enum ["a";"a";"b";"c";"c";"b"] |> uniq |> List.of_enum = ["a";"b";"c";"b"] List.enum ["a";"A";"b";"c";"C";"b"] \ |> uniq_by (fun a b -> String.lowercase_ascii a = String.lowercase_ascii b) \ |> List.of_enum = ["a";"b";"c";"b"] *) let dup t = (t, t.clone()) (*$Q (Q.list Q.small_int) (fun l -> \ List.enum l |> dup |> Tuple2.mapn List.of_enum |> Tuple2.uncurry (=)) *) let min_count x y = let count x = try Some (x.count ()) with Infinite_enum -> None in match count x, count y with | None, None -> raise Infinite_enum | Some c, None | None, Some c -> c | Some c1, Some c2 -> min c1 c2 let combine x y = if x.fast && y.fast then (* Optimized case *) let rec aux (x,y) = { count = (fun () -> min_count x y) ; next = (fun () -> (x.next(), y.next())) ; clone = (fun () -> aux (x.clone(), y.clone())) ; fast = true } in aux (x,y) else from (fun () -> (x.next(), y.next())) (*$T combine (List.enum [1;2;3]) ( List.enum ["a";"b"]) \ |> List.of_enum = [1, "a"; 2, "b"] combine (List.enum [1;2;3]) ( repeat "a") \ |> List.of_enum = [1,"a"; 2,"a"; 3,"a"] combine (List.enum [1;2;3]) ( repeat "a") \ |> Enum.count = 3 *) let uncombine e = let advance = ref `first and queue_snd = Queue.create () and queue_fst = Queue.create () in let first () = match !advance with | `first -> let (x,y) = e.next() in Queue.push y queue_snd; x | `second-> (*Second element has been read further*) try Queue.pop queue_fst with Queue.Empty -> let (x,y) = e.next() in Queue.push y queue_snd; advance := `first; x and second() = match !advance with | `second -> let (x,y) = e.next() in Queue.push x queue_fst; y | `first -> (*Second element has been read further*) try Queue.pop queue_snd with Queue.Empty -> let (x,y) = e.next() in Queue.push x queue_fst; advance := `second; y in (from first, from second) (*$R uncombine let pair_list = [1,2;3,4;5,6;7,8;9,0] in let a,b = uncombine (BatList.enum pair_list) in let a = BatArray.of_enum a in let b = BatArray.of_enum b in let c,d = uncombine (BatList.enum pair_list) in let d = BatArray.of_enum d in let c = BatArray.of_enum c in let aeq = assert_equal ~printer:(BatIO.to_string (BatArray.print BatInt.print)) in aeq a [|1;3;5;7;9|]; aeq b [|2;4;6;8;0|]; aeq a c; aeq b d *) let group_aux test eq e = let prev_group = ref (empty ()) in let f () = (* Make sure elements belonging to prev group are consumed from e *) force !prev_group; let grp = let last_test = ref None in let check_test t = let ok = match !last_test with | None -> true | Some t' -> eq t' t in if ok then last_test := Some t; ok in take_while (fun x -> check_test (test x)) e in if is_empty grp then raise No_more_elements; prev_group := grp; grp in let clone () = failwith "Grouped enumerations cannot be cloned safely" in from2 f clone let group test e = group_aux test (=) e let group_by eq e = group_aux (fun x -> x) eq e (*$T group empty () |> group (const ()) |> is_empty List.enum [1;2;3;4] |> group identity |> map List.of_enum \ |> List.of_enum = [[1];[2];[3];[4]] List.enum [1;2;3;4] |> group (const true) |> List.of_enum \ |> List.map List.of_enum = [[1;2;3;4]] List.enum [1;2;3;5;6;7;9;10;4;5] |> group (fun x -> x mod 2) |> List.of_enum \ |> List.map List.of_enum = [[1];[2];[3;5];[6];[7;9];[10;4];[5]] *) let clump clump_size add get e = (* convert a uchar enum into a ustring enum *) let next () = match peek e with | None -> raise No_more_elements | Some x -> add x; junk e; (* don't get [x] twice *) (try for _i = 2 to clump_size do add (e.next ()) done with No_more_elements -> ()); get () in from next (*$T clump let l = RefList.empty() in \ Char.range 'a' ~until:'k' |> \ clump 4 (RefList.push l) \ (fun()-> String.implode \ (RefList.to_list l |> tap (fun _ -> RefList.clear l) |> List.rev)) \ |> List.of_enum = ["abcd"; "efgh"; "ijk"] *) (* mutable state used for {!cartesian_product}. Use a module to have a private namespace. *) module ProductState = struct type ('a, 'b) current_state = | GetLeft | GetRight | GetRightOrStop | Stop | ProdLeft of 'a * 'b list | ProdRight of 'b * 'a list type ('a,'b) t = { e1 : 'a enumerable; e2 : 'b enumerable; mutable all1 : 'a list; mutable all2 : 'b list; mutable cur : ('a,'b) current_state; } end let cartesian_product e1 e2 = let open ProductState in (* sketch of the algo: state machine that alternates between taking a new element from [e1] and yield its product with [state.all2], and taking a new element from [e2] and make its product with [state.all1] [state.cur]: current state of automaton, i.e., what we have to do next. Can be `Stop, `GetLeft/`GetRight (to obtain next element from first/second generator), or `ProdLeft/`ProdRIght to compute the product of an element with a list of already met elements *) let rec next state () = match state.cur with | Stop -> raise No_more_elements | GetLeft -> let x1 = try Some (state.e1.next()) with No_more_elements -> None in begin match x1 with | None -> state.cur <- GetRightOrStop | Some x -> state.all1 <- x :: state.all1; state.cur <- ProdLeft (x, state.all2) end; next state () | GetRight | GetRightOrStop -> let x2 = try Some (state.e2.next()) with No_more_elements -> None in begin match x2, state.cur with | None, GetRightOrStop -> state.cur <- Stop; raise No_more_elements | None, GetRight -> state.cur <- GetLeft | Some y, _ -> state.all2 <- y::state.all2; state.cur <- ProdRight (y, state.all1) | None, _ -> assert false end; next state () | ProdLeft (_, []) -> state.cur <- GetRight; next state () | ProdLeft (x, y::l) -> state.cur <- ProdLeft (x, l); x, y | ProdRight (_, []) -> state.cur <- GetLeft; next state() | ProdRight (y, x::l) -> state.cur <- ProdRight (y, l); x, y and clone state () = let state' = {state with e1=state.e1.clone(); e2=state.e2.clone();} in _make state' and count state () = let n1 = state.e1.count () and n2 = state.e2.count () in (* 3 products to make: e1 with e2, and ei with all{2-i} for i in {1,2} *) let n = n1 * n2 + n1 * List.length state.all2 + n2 * List.length state.all1 in match state.cur with | ProdRight (_, l) -> n + List.length l | ProdLeft (_, l) -> n + List.length l | Stop -> 0 | GetLeft | GetRight | GetRightOrStop -> n (* build enum from the state *) and _make state = { next = next state; clone = clone state; count = count state; fast = state.e1.fast && state.e2.fast; } in let state = {e1; e2; cur=GetLeft; all1=[]; all2=[]} in _make state (*$T cartesian_product cartesian_product (List.enum [1;2;3]) (List.enum ["a";"b"]) \ |> List.of_enum |> List.sort Legacy.compare = \ [1,"a"; 1,"b"; 2,"a"; 2,"b"; 3,"a"; 3,"b"] let e = cartesian_product (List.enum [1;2;3]) (List.enum [1]) in \ e |> List.of_enum |> List.sort Legacy.compare = [1,1; 2,1; 3,1] let e = cartesian_product (List.enum [1]) (List.enum [1;2;3]) in \ e |> List.of_enum |> List.sort Legacy.compare = [1,1; 1,2; 1,3] let e = cartesian_product (List.enum [1;2;3]) (List.enum [1;2;3]) in \ ignore (Enum.get e); Enum.count e = 8 let e = cartesian_product (List.enum [1;2]) (Enum.repeat 3) in\ e |> Enum.take 4 |> Enum.map fst |> List.of_enum \ |> List.sort Legacy.compare = [1; 1; 2; 2] let e = cartesian_product (Enum.repeat 3) (List.enum [1;2]) in\ e |> Enum.take 4 |> Enum.map snd |> List.of_enum \ |> List.sort Legacy.compare = [1; 1; 2; 2] let e = cartesian_product (Enum.repeat 3) (Enum.repeat "a") in\ e |> Enum.take 3 |> List.of_enum \ |> List.sort Legacy.compare = [3, "a"; 3, "a"; 3, "a"] *) (*$Q cartesian_product Q.(pair (list small_int) (list small_int)) \ (fun (l1,l2) -> \ let l1 = List.take 5 l1 in \ let l2 = List.take 4 l2 in \ cartesian_product (List.enum l1) (List.enum l2) |> count = \ List.length l1 * List.length l2) Q.(pair (list small_int) (list small_int)) \ (fun (l1,l2) -> \ let l1 = List.take 5 l1 in \ let l2 = List.take 4 l2 in \ cartesian_product (List.enum l1) (List.enum l2) \ |> List.of_enum |> List.length = List.length l1 * List.length l2) *) let from_while f = from (fun () -> match f () with | None -> raise No_more_elements | Some x -> x ) let from_loop data next = let r = ref data in from(fun () -> let (a,b) = next !r in r := b; a) let unfold data next = from_loop data (fun data -> match next data with | None -> raise No_more_elements | Some x -> x ) let arg_min f enum = match get enum with None -> invalid_arg "Enum.arg_min: Empty enum" | Some v -> let item, eval = ref v, ref (f v) in iter (fun v -> let fv = f v in if fv < !eval then (item := v; eval := fv)) enum; !item let arg_max f enum = match get enum with None -> invalid_arg "Enum.arg_max: Empty enum" | Some v -> let item, eval = ref v, ref (f v) in iter (fun v -> let fv = f v in if fv > !eval then (item := v; eval := fv)) enum; !item (*$T arg_max List.enum ["cat"; "canary"; "dog"; "dodo"; "ant"; "cow"] \ |> arg_max String.length = "canary" *) (*$T arg_min -5 -- 5 |> arg_min (fun x -> x * x + 6 * x - 5) = -3 *) module Infix = struct let ( -- ) x y = range x ~until:y let ( --. ) (a, step) b = let n = int_of_float ((b -. a) /. step) + 1 in if n < 0 then empty () else init n (fun i -> float_of_int i *. step +. a) let ( --^ ) x y = range x ~until:(y-1) let ( --- ) x y = if x <= y then x -- y else seq x ((+) (-1)) ( (<=) y ) let ( --~ ) a b = map Char.chr (range (Char.code a) ~until:(Char.code b)) let ( // ) e f = filter f e let ( /@ ) e f = map f e let ( @/ ) = map let ( //@ ) e f = filter_map f e let ( @// ) = filter_map end include Infix (* ----------- Concurrency *) let append_from a b = let t = from (fun () -> a.next()) in let f () = let result = b.next () in t.next <- (fun () -> b.next ()); result in suffix_action_without_raise f t let merge test a b = if is_empty a then b else if is_empty b then a else let next_a = ref (a.next()) and next_b = ref (b.next()) in let aux () = let (n, na, nb) = if test !next_a !next_b then try (!next_a, a.next(), !next_b) with No_more_elements -> (*a is exhausted, b probably not*) push b !next_b; push b !next_a; raise No_more_elements else try (!next_b, !next_a, b.next()) with No_more_elements -> (*b is exhausted, a probably not*) push a !next_a; push a !next_b; raise No_more_elements in next_a := na; next_b := nb; n in append_from (append_from (from aux) a) b (*$T let a=List.enum [1;3;5] and b = List.enum[2;4] in \ let test = let r = ref false in (fun _ _ -> r:= not !r; !r) in \ merge test a b |> List.of_enum = [1;2;3;4;5] *) (*let mergen test a = ArrayLabels.fold_left ~init:[] ~f:(fun x -> let Array.of_list a let next = Array.map let rec aux = if Array.length !next = 1 then (*we're done*) if *) let interleave enums = let enums_len = Array.length enums in if not (enums_len > 0) then empty () else begin let available = Array.make enums_len true and next_idx = Array.init enums_len ((+) 1) in next_idx.((Array.length next_idx) - 1) <- 0 ; let rec next_elem idx = match get enums.(idx) with | Some x -> x , next_idx.(idx) | None -> begin available.(idx) <- false ; let rec loop k = let l = next_idx.(k) in if l = idx then raise No_more_elements else if available.(l) then (next_idx.(idx) <- l ; next_elem l) else loop l in loop idx end in from_loop 0 next_elem end (*$T interleave let e1 = List.enum [ 8 ; 2 ; 5 ; 2 ] and e2 = List.enum [ -5 ; -7 ; -6 ; 2 ; 1 ; -9 ; 2 ] in \ let e = interleave [| e1 ; e2 |] in \ List.of_enum e = [ 8 ; -5 ; 2 ; -7 ; 5 ; -6 ; 2 ; 2 ; 1 ; -9 ; 2 ] *) (*$R interleave let e1 = Enum.empty () and e2 = List.enum [ 8 ; 2 ; 5 ; 2 ] and e3 = List.enum [ -5 ; -7 ; -6 ; 2 ; 1 ; -9 ; 2 ] in let e = interleave [| e1; e2 ; e3 |] in assert_equal (List.of_enum e) [ 8 ; -5 ; 2 ; -7 ; 5 ; -6 ; 2 ; 2 ; 1 ; -9 ; 2 ] *) (*$R interleave let e1 = Enum.empty () and e2 = Enum.empty () and e3 = Enum.empty () in let e = interleave [| e1; e2 ; e3 |] in assert_equal (List.of_enum e) [ ] *) let slazy f = let constructor = lazy (f ()) in make ~next: (fun () -> (Lazy.force constructor).next ()) ~count: (fun () -> (Lazy.force constructor).count()) ~clone: (fun () -> (Lazy.force constructor).clone()) let delay = slazy let combination ?(repeat=false) n k = let binomial n p = let binom n p = if p < 0 || n < 0 || p > n then 0 else ( let a = ref 1 in for i = 1 to p do a := !a * (n + 1 - i) / i done; !a ) and comp = n - p in if (comp < p) then binom n comp else binom n p and add_repetitions = let rec conv range acc = function | [] -> acc | h::tl -> conv (range + 1) ((h - range) :: acc) tl in conv 0 [] in let order_to_comb n p repeat ord = let rec get_comb n p ord acc = if n <= 0 || p <= 0 || ord < 0 then acc else ( let b = binomial (n -1) (p - 1) in if ord < b then get_comb (n - 1) (p - 1) ord (n::acc) else get_comb (n - 1) p (ord - b) acc ) in let result = get_comb n p ord [] in if repeat then add_repetitions result else result and p = if repeat then n + k -1 else n in let length = binomial p k in let rec make_comb index = make ~next:(fun () -> if !index = length then raise No_more_elements else let next = order_to_comb p k repeat !index in incr index; next ) ~count:(fun () -> length - !index) ~clone:(fun () -> make_comb (ref !index)) in make_comb (ref 0) (*$T combination (combination 3 3 |> count) = 1 (combination ~repeat:true 3 3 |> count) = 10 (combination ~repeat:true 29 3 |> count) = 4495 (combination ~repeat:true 3 3 |> List.of_enum ) = \ [ [3; 3; 3]; [3; 3; 2]; [3; 3; 1]; [3; 2; 2]; [3; 2; 1]; [3; 1; 1]; \ [2; 2; 2]; [2; 2; 1]; [2; 1; 1]; \ [1; 1; 1]; ] *) let lsing f = init 1 (fun _ -> f ()) let lcons f e = append (lsing f) e let lapp f e = append (slazy f) e let ising = singleton let icons f e = append (ising f) e let iapp = append let hard_count t = if t.fast then let result = t.count () in close t; result else (*Counting would cache stuff, which we don't want here.*) let length = ref 0 in try while true do ignore (t.next()); incr length done; assert false with No_more_elements -> !length (* common hidden function for print and print_at_most *) let _print_common ~first ~last ~sep ~limit print_a out e = BatInnerIO.nwrite out first; match get e with | None -> BatInnerIO.nwrite out last | Some x -> print_a out x; let rec aux limit = match get e, limit with | None, _ -> BatInnerIO.nwrite out last | Some _, 0 -> BatInnerIO.nwrite out "..."; BatInnerIO.nwrite out last | Some x, _ -> BatInnerIO.nwrite out sep; print_a out x; aux (limit-1) in aux (limit-1) let print ?(first="") ?(last="") ?(sep=" ") print_a out e = _print_common ~first ~last ~sep ~limit:max_int print_a out e let print_at_most ?(first="") ?(last="") ?(sep=" ") ~limit print_a out e = if limit <= 0 then invalid_arg "Enum.print_at_most"; _print_common ~first ~last ~sep ~limit print_a out e (*$T print_at_most Printf.sprintf2 "yolo %a" (print_at_most ~limit:3 Int.print) \ (range 0 ~until:10) = "yolo 0 1 2..." *) let t_printer a_printer _paren out e = print ~first:"[" ~sep:"; " ~last:"]" (a_printer false) out e let compare cmp t u = let rec aux () = match (get t, get u) with | (None, None) -> 0 | (None, _) -> -1 | (_, None) -> 1 | (Some x, Some y) -> match cmp x y with | 0 -> aux () | n -> n in aux () let ord ord_val t u = let cmp_val = BatOrd.comp ord_val in BatOrd.ord0 (compare cmp_val t u) let equal eq t u = let rec aux () = match (get t, get u) with | (None, None) -> true | (Some x, Some y) -> eq x y && aux () | _ -> false in aux () (*$Q (Q.list Q.small_int) (fun l -> \ let e = List.enum l in equal Int.equal e (clone e)) *) let rec to_object t = object method next = t.next () method count= count t method clone = to_object (clone t) end let rec of_object o = make ~next:(fun () -> o#next) ~count:(fun () -> o#count) ~clone:(fun () -> of_object (o#clone)) let flatten = concat (*$T flatten (map singleton @@ List.enum [1;2;3]) |> List.of_enum = [1;2;3] *) let rec concat_map f t = let tn = ref (empty ()) in let rec next () = try (!tn).next () with No_more_elements -> tn := f (t.next()); next() in let clone () = append ((!tn).clone()) (concat_map f (t.clone())) in from2 next clone (*$T concat_map (1 -- 10 |> concat_map (fun x -> List.enum [x;-x]) |> sum) = 0 let e = (1 -- 10 |> concat_map (fun x -> List.enum [x;-x])) in \ let n = Enum.count e in \ n = (List.of_enum e |> List.length) let e = (1 -- 10 |> concat_map (fun x -> List.enum [x;-x])) in \ Enum.count e = 20 *) (*$Q concat_map Q.small_int (fun i -> \ let i = abs i in \ equal (=) (0 -- i) (concat_map singleton (0 -- i))) *) module Exceptionless = struct let find f e = try Some (find f e) with Not_found -> None end module Labels = struct let iter ~f x = iter f x let iter2 ~f x y = iter2 f x y let iteri ~f x = iteri f x let iter2i ~f x y = iter2i f x y let for_all ~f t = for_all f t let exists ~f t = exists f t let fold ~f ~init x = fold f init x let fold2 ~f ~init x y = fold2 f init x y let foldi ~f ~init x = foldi f init x let fold2i ~f ~init x y= fold2i f init x y let find ~f x = find f x let map ~f x = map f x let mapi ~f x = mapi f x let filter ~f x = filter f x let filter_map ~f x= filter_map f x let init x ~f = init x f let switch ~f = switch f let take_while ~f = take_while f let drop_while ~f = drop_while f let from ~f = from f let from_loop ~init ~f = from_loop init f let from_while ~f = from_while f let seq ~init ~f ~cnd = seq init f cnd let unfold ~init ~f = unfold init f let compare ?(cmp=Pervasives.compare) t u = compare cmp t u let uniq ?(cmp=(=)) x = uniq_by cmp x module LExceptionless = struct include Exceptionless let find ~f e = find f e end end module type Enumerable = sig type 'a enumerable val enum : 'a enumerable -> 'a t val of_enum : 'a t -> 'a enumerable end module WithMonad (Mon : BatInterfaces.Monad) = struct type 'a m = 'a Mon.m let sequence enum = let (>>=) = Mon.bind and return = Mon.return in (* We use a list as an accumulator for the result sequence computed under the monad. A previous version of this code used a Queue instead, which was problematic for backtracking monads. Due to the destructive nature of Enums, the current version will still be problematic but at least the result will be consistent. *) let of_acc acc = (* we don't use List functions to avoid creating a cyclic dependency *) let li = ref (List.rev acc) in from (fun () -> match !li with | [] -> raise No_more_elements | hd::tl -> li := tl; hd) in let rec loop acc = match get enum with | None -> return (of_acc acc) | Some elem -> elem >>= (fun x -> loop (x :: acc)) in loop [] let fold_monad f init enum = let (>>=) = Mon.bind and return = Mon.return in let rec fold m = match get enum with | None -> m | Some x -> m >>= fun acc -> fold (f acc x) in fold (return init) end module Monad = struct type 'a m = 'a t let return x = singleton x let bind m f = concat (map f m) end (*$T equal (=) (Monad.return 1) (singleton 1) equal (=) (Monad.bind (List.enum [1;2]) (fun x-> List.enum [x+1;x])) \ (List.enum [2;1;3;2]) *) (*$Q (Q.list Q.small_int) (fun l -> \ let id l = Monad.bind l Monad.return in \ List.enum l |> id |> List.of_enum = l) *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>