package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batSet.ml.html
Source file batSet.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
(* * BatSet - Extended operations on sets * Copyright (C) 1996 Xavier Leroy * 2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) ##V>=5##module Pervasives = Stdlib (*$inject ##V>=5##module Pervasives = Stdlib *) module type OrderedType = BatInterfaces.OrderedType (** Input signature of the functor {!Set.Make}. *) module Concrete = struct type 'a set = | Empty | Node of 'a set * 'a * 'a set * int let empty = Empty let is_empty = function Empty -> true | _ -> false let is_singleton = function | Node (Empty, _x, Empty, _h) -> true | _ -> false (*$T is_singleton is_singleton (of_list []) = false is_singleton (of_list [1]) = true is_singleton (of_list [1;2]) = false *) (* Sets are represented by balanced binary trees (the heights of the children differ by at most 2 *) let height = function | Empty -> 0 | Node (_, _, _, h) -> h (* Creates a new node with left son l, value v and right son r. We must have all elements of l < v < all elements of r. l and r must be balanced and | height l - height r | <= 2. Inline expansion of height for better speed. *) let create l v r = let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1)) (* Same as create, but performs one step of rebalancing if necessary. Assumes l and r balanced and | height l - height r | <= 3. Inline expansion of create for better speed in the most frequent case where no rebalancing is required. *) let bal l v r = let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Set.bal" | Node(ll, lv, lr, _) -> if height ll >= height lr then create ll lv (create lr v r) else begin match lr with Empty -> invalid_arg "Set.bal" | Node(lrl, lrv, lrr, _)-> create (create ll lv lrl) lrv (create lrr v r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Set.bal" | Node(rl, rv, rr, _) -> if height rr >= height rl then create (create l v rl) rv rr else begin match rl with Empty -> invalid_arg "Set.bal" | Node(rll, rlv, rlr, _) -> create (create l v rll) rlv (create rlr rv rr) end end else Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1)) (* Smallest and greatest element of a set *) let rec min_elt = function Empty -> raise Not_found | Node(Empty, v, _r, _) -> v | Node(l, _v, _r, _) -> min_elt l let rec min_elt_opt = function Empty -> None | Node(Empty, v, _r, _) -> Some v | Node(l, _v, _r, _) -> min_elt_opt l let get_root = function | Empty -> raise Not_found | Node(_l, v, _r, _) -> v let pop_min s = let mini = ref (get_root s) in let rec loop = function Empty -> raise Not_found | Node(Empty, v, r, _) -> mini := v; r | Node(l, v, r, _) -> bal (loop l) v r in let others = loop s in (!mini, others) let pop_max s = let maxi = ref (get_root s) in let rec loop = function Empty -> raise Not_found | Node(l, v, Empty, _) -> maxi := v; l | Node(l, v, r, _) -> bal l v (loop r) in let others = loop s in (!maxi, others) let rec max_elt = function Empty -> raise Not_found | Node(_l, v, Empty, _) -> v | Node(_l, _v, r, _) -> max_elt r let rec max_elt_opt = function Empty -> None | Node(_l, v, Empty, _) -> Some v | Node(_l, _v, r, _) -> max_elt_opt r (* Remove the smallest element of the given set *) let rec remove_min_elt = function Empty -> invalid_arg "Set.remove_min_elt" | Node(Empty, _v, r, _) -> r | Node(l, v, r, _) -> bal (remove_min_elt l) v r (* Merge two trees l and r into one. All elements of l must precede the elements of r. Assume | height l - height r | <= 2. *) let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2) let pop s = match s with | Empty -> raise Not_found | Node (l, v, r, _) -> v, merge l r (* Insertion of one element *) let rec add cmp x = function | Empty -> Node(Empty, x, Empty, 1) | Node(l, v, r, _) as t -> let c = cmp x v in if c = 0 then t else if c < 0 then let nl = add cmp x l in if nl == l then t else bal nl v r else let nr = add cmp x r in if nr == r then t else bal l v nr let rec remove cmp x = function | Empty as t -> t | Node(l, v, r, _) as t -> let c = cmp x v in if c = 0 then merge l r else if c < 0 then let nl = remove cmp x l in if nl == l then t else bal nl v r else let nr = remove cmp x r in if nr == r then t else bal l v nr (* A variant of [remove] that throws [Not_found] on failure *) let rec remove_exn cmp x = function | Empty -> raise Not_found | Node (l, v, r, _) -> let c = cmp x v in if c = 0 then merge l r else if c < 0 then bal (remove_exn cmp x l) v r else bal l v (remove_exn cmp x r) let update cmp x y s = if cmp x y <> 0 then add cmp y (remove_exn cmp x s) else let rec loop = function | Empty -> raise Not_found | Node(l, v, r, h) as t -> let c = cmp x v in if c = 0 then if v == y then t else Node(l, y, r, h) else if c < 0 then let nl = loop l in if nl == l then t else Node(nl, v, r, h) else let nr = loop r in if nr == r then t else Node(l, v, nr, h) in loop s let rec mem cmp x = function Empty -> false | Node(l, v, r, _) -> let c = cmp x v in c = 0 || mem cmp x (if c < 0 then l else r) let rec find cmp x = function Empty -> raise Not_found | Node(l, v, r, _) -> let c = cmp x v in if c = 0 then v else find cmp x (if c < 0 then l else r) let rec find_opt cmp x = function Empty -> None | Node(l, v, r, _) -> let c = cmp x v in if c = 0 then Some v else find_opt cmp x (if c < 0 then l else r) let rec find_first_helper_found k0 f = function | Empty -> k0 | Node (l, k, r, _) -> if f k then find_first_helper_found k f l else find_first_helper_found k0 f r let rec find_first f m = match m with | Empty -> raise Not_found | Node (l, k, r, _) -> if f k then find_first_helper_found k f l else find_first f r let rec find_first_opt f m = match m with | Empty -> None | Node (l, k, r, _) -> if f k then Some (find_first_helper_found k f l) else find_first_opt f r let rec find_last_helper_found k0 f = function | Empty -> k0 | Node (l, k, r, _) -> if f k then find_last_helper_found k f r else find_last_helper_found k0 f l let rec find_last f m = match m with | Empty -> raise Not_found | Node (l, k, r, _) -> if f k then find_last_helper_found k f r else find_last f l let rec find_last_opt f m = match m with | Empty -> None | Node (l, k, r, _) -> if f k then Some (find_last_helper_found k f r) else find_last_opt f l let rec iter f = function Empty -> () | Node(l, v, r, _) -> iter f l; f v; iter f r let rec fold f s accu = match s with Empty -> accu | Node(l, v, r, _) -> fold f r (f v (fold f l accu)) exception Found let at_rank_exn i s = if i < 0 then invalid_arg "Set.at_rank_exn: negative index not allowed"; let res = ref (get_root s) in (* raises Not_found if empty *) try let (_: int) = fold (fun node j -> if j <> i then j + 1 else begin res := node; raise Found end ) s 0 in invalid_arg "Set.at_rank_exn i s: i >= (Set.cardinal s)" with Found -> !res let rec op_map f = function | Empty -> Empty | Node (l,x,r,h) -> Node (op_map f l, f x, op_map f r, h) let singleton x = Node(Empty, x, Empty, 1) let rec add_min v = function | Empty -> singleton v | Node (l, x, r, _h) -> bal (add_min v l) x r let rec add_max v = function | Empty -> singleton v | Node (l, x, r, _h) -> bal l x (add_max v r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v r = match (l, r) with (Empty, _) -> add_min v r | (_, Empty) -> add_max v l | (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) -> if lh > rh + 2 then bal ll lv (join lr v r) else if rh > lh + 2 then bal (join l v rl) rv rr else create l v r (* Splitting. split x s returns a triple (l, present, r) where - l is the set of elements of s that are < x - r is the set of elements of s that are > x - present is false if s contains no element equal to x, or true if s contains an element equal to x. *) let rec split cmp x = function Empty -> (Empty, false, Empty) | Node(l, v, r, _) -> let c = cmp x v in if c = 0 then (l, true, r) else if c < 0 then let (ll, pres, rl) = split cmp x l in (ll, pres, join rl v r) else let (lr, pres, rr) = split cmp x r in (join l v lr, pres, rr) (* split_opt x s returns a triple (l, maybe_v, r) where - l is the set of elements of s that are < x - r is the set of elements of s that are > x - maybe_v is None if s contains no element equal to x, or (Some v) if s contains an element v that compares equal to x. *) let rec split_opt cmp x = function | Empty -> (Empty, None, Empty) | Node(l, v, r, _) -> let c = cmp x v in if c = 0 then (l, Some v, r) else if c < 0 then let (ll, pres, rl) = split_opt cmp x l in (ll, pres, join rl v r) else (* c > 0 *) let (lr, pres, rr) = split_opt cmp x r in (join l v lr, pres, rr) (*$inject let s12 = of_list [1; 2 ] ;; let s45 = of_list [ 4; 5] ;; let s1245 = of_list [1; 2; 4; 5] ;; let s12345 = of_list [1; 2; 3; 4; 5] ;; *) (*$T split_opt let l1, mv1, r1 = split_opt 3 s1245 in \ (elements l1, mv1, elements r1) = ([1; 2], None , [4; 5]) let l2, mv2, r2 = split_opt 3 s12345 in \ (elements l2, mv2, elements r2) = ([1; 2], Some 3, [4; 5]) *) (* returns a pair of sets: ({y | y < x}, {y | y >= x}) *) let split_lt cmp x s = let l, maybe, r = split_opt cmp x s in match maybe with | None -> l, r | Some eq_x -> l, add cmp eq_x r (*$T split_lt let l, r = split_lt 3 s12345 in \ (elements l, elements r) = ([1; 2], [3; 4; 5]) let l, r = split_lt 3 s12 in \ (elements l, elements r) = ([1; 2], []) let l, r = split_lt 3 s45 in \ (elements l, elements r) = ([], [4; 5]) *) (* returns a pair of sets: ({y | y <= x}, {y | y > x}) *) let split_le cmp x s = let l, maybe, r = split_opt cmp x s in match maybe with | None -> l, r | Some eq_x -> add cmp eq_x l, r (*$T split_le let l, r = split_le 3 s12345 in \ (elements l, elements r) = ([1; 2; 3], [4; 5]) let l, r = split_le 3 s12 in \ (elements l, elements r) = ([1; 2], []) let l, r = split_le 3 s45 in \ (elements l, elements r) = ([], [4; 5]) *) type 'a iter = E | C of 'a * 'a set * 'a iter let rec cardinal = function Empty -> 0 | Node(l, _v, r, _) -> cardinal l + 1 + cardinal r let rec elements_aux accu = function Empty -> accu | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l let elements s = elements_aux [] s let to_list = elements let to_array s = match s with | Empty -> [||] | Node (_, e, _, _) -> let arr = Array.make (cardinal s) e in let i = ref 0 in iter (fun x -> Array.unsafe_set arr (!i) x; incr i) s; arr let rec cons_iter s t = match s with Empty -> t | Node (l, e, r, _) -> cons_iter l (C (e, r, t)) let rec rev_cons_iter s t = match s with Empty -> t | Node (l, e, r, _) -> rev_cons_iter r (C (e, l, t)) let rec cons_iter_from cmp k2 m e = match m with | Empty -> e | Node (l, k, r, _) -> if cmp k2 k <= 0 then cons_iter_from cmp k2 l (C (k, r, e)) else cons_iter_from cmp k2 r e let enum_next l () = match !l with E -> raise BatEnum.No_more_elements | C (e, s, t) -> l := cons_iter s t; e let enum_backwards_next l () = match !l with E -> raise BatEnum.No_more_elements | C (e, s, t) -> l := rev_cons_iter s t; e let enum_count l () = let rec aux n = function E -> n | C (_e, s, t) -> aux (n + 1 + cardinal s) t in aux 0 !l let enum t = let rec make l = let l = ref l in let clone() = make !l in BatEnum.make ~next:(enum_next l) ~count:(enum_count l) ~clone in make (cons_iter t E) let backwards t = let rec make l = let l = ref l in let clone() = make !l in BatEnum.make ~next:(enum_backwards_next l) ~count:(enum_count l) ~clone in make (rev_cons_iter t E) let of_enum cmp e = BatEnum.fold (fun acc elem -> add cmp elem acc) empty e let of_list cmp l = List.fold_left (fun a x -> add cmp x a) empty l let of_array cmp l = Array.fold_left (fun a x -> add cmp x a) empty l let print ?(first="{") ?(last="}") ?(sep=",") print_elt out t = BatEnum.print ~first ~last ~sep (fun out e -> BatPrintf.fprintf out "%a" print_elt e) out (enum t) let choose = min_elt (* I'd rather this chose the root, but okay *) (*$= choose 42 (empty |> add 42 |> choose) (empty |> add 0 |> add 1 |> choose) (empty |> add 1 |> add 0 |> choose) *) let choose_opt = min_elt_opt let any = get_root (*$T any empty |> add 42 |> any = 42 try empty |> any |> ignore ; false with Not_found -> true *) let rec for_all p = function Empty -> true | Node(l, v, r, _) -> p v && for_all p l && for_all p r let rec exists p = function Empty -> false | Node(l, v, r, _) -> p v || exists p l || exists p r let partition cmp p s = let rec part (t, f as accu) = function | Empty -> accu | Node(l, v, r, _) -> part (part (if p v then (add cmp v t, f) else (t, add cmp v f)) l) r in part (Empty, Empty) s let concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2) let rec cartesian_product a b = match a with | Empty -> Empty | Node (la, xa, ra, _) -> let lab = cartesian_product la b in let xab = op_map (fun xb -> (xa, xb)) b in let rab = cartesian_product ra b in concat lab (concat xab rab) let rec union cmp12 s1 s2 = match (s1, s2) with (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> if h1 >= h2 then if h2 = 1 then add cmp12 v2 s1 else begin let (l2, _, r2) = split cmp12 v1 s2 in join (union cmp12 l1 l2) v1 (union cmp12 r1 r2) end else if h1 = 1 then add cmp12 v1 s2 else begin let (l1, _, r1) = split cmp12 v2 s1 in join (union cmp12 l1 l2) v2 (union cmp12 r1 r2) end let rec filter p = function Empty -> Empty | (Node(l,v,r,_)) as t -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pv = p v in let r' = filter p r in if pv then if l==l' && r==r' then t else join l' v r' else concat l' r' let try_join cmp l v r = (* [join l v r] can only be called when (elements of l < v < elements of r); use [try_join l v r] when this property may not hold, but you hope it does hold in the common case *) if (l = Empty || cmp (max_elt l) v < 0) && (r = Empty || cmp v (min_elt r) < 0) then join l v r else union cmp l (add cmp v r) let rec map_endo cmp f = function | Empty -> Empty | Node(l, v, r, _) as t -> (* enforce left-to-right evaluation order *) let l' = map_endo cmp f l in let v' = f v in let r' = map_endo cmp f r in if l == l' && v == v' && r == r' then t else try_join cmp l' v' r' let rec map cmp f = function | Empty -> Empty | Node(l, v, r, _) -> (* enforce left-to-right evaluation order *) let l' = map cmp f l in let v' = f v in let r' = map cmp f r in try_join cmp l' v' r' let try_concat cmp t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> try_join cmp t1 (min_elt t2) (remove_min_elt t2) let rec filter_map_endo cmp f = function | Empty -> Empty | Node(l, v, r, _) as t -> (* enforce left-to-right evaluation order *) let l' = filter_map_endo cmp f l in let v' = f v in let r' = filter_map_endo cmp f r in begin match v' with | Some v' -> if l == l' && v == v' && r == r' then t else try_join cmp l' v' r' | None -> try_concat cmp l' r' end let rec filter_map cmp f = function | Empty -> Empty | Node(l, v, r, _) -> (* enforce left-to-right evaluation order *) let l' = filter_map cmp f l in let v' = f v in let r' = filter_map cmp f r in begin match v' with | Some v' -> try_join cmp l' v' r' | None -> try_concat cmp l' r' end let rec sym_diff cmp12 s1 s2 = match (s1, s2) with (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Node(l1, v1, r1, _), t2) -> match split cmp12 v1 t2 with (l2, false, r2) -> join (sym_diff cmp12 l1 l2) v1 (sym_diff cmp12 r1 r2) | (l2, true, r2) -> concat (sym_diff cmp12 l1 l2) (sym_diff cmp12 r1 r2) let rec inter cmp12 s1 s2 = match (s1, s2) with (Empty, _t2) -> Empty | (_t1, Empty) -> Empty | (Node(l1, v1, r1, _), t2) -> match split cmp12 v1 t2 with (l2, false, r2) -> concat (inter cmp12 l1 l2) (inter cmp12 r1 r2) | (l2, true, r2) -> join (inter cmp12 l1 l2) v1 (inter cmp12 r1 r2) let rec diff cmp12 s1 s2 = match (s1, s2) with (Empty, _t2) -> Empty | (t1, Empty) -> t1 | (Node(l1, v1, r1, _), t2) -> match split cmp12 v1 t2 with (l2, false, r2) -> join (diff cmp12 l1 l2) v1 (diff cmp12 r1 r2) | (l2, true, r2) -> concat (diff cmp12 l1 l2) (diff cmp12 r1 r2) let rec disjoint cmp12 s1 s2 = match (s1, s2) with (Empty, _) | (_, Empty) -> true | (Node(l1, v1, r1, _), t2) -> match split cmp12 v1 t2 with (l2, false, r2) -> disjoint cmp12 l1 l2 && disjoint cmp12 r1 r2 | (_l2, true, _r2) -> false let compare cmp s1 s2 = let rec compare_aux t1' t2' = match (t1', t2') with E, E -> 0 | E, _ -> -1 | _, E -> 1 | C (e1, r1, t1), C (e2, r2, t2) -> let c = cmp e1 e2 in if c = 0 then compare_aux (cons_iter r1 t1) (cons_iter r2 t2) else c in compare_aux (cons_iter s1 E) (cons_iter s2 E) let equal cmp s1 s2 = compare cmp s1 s2 = 0 let rec subset cmp s1 s2 = match (s1, s2) with Empty, _ -> true | _, Empty -> false | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) -> let c = cmp v1 v2 in if c = 0 then subset cmp l1 l2 && subset cmp r1 r2 else if c < 0 then subset cmp (Node (l1, v1, Empty, 0)) l2 && subset cmp r1 t2 else subset cmp (Node (Empty, v1, r1, 0)) r2 && subset cmp l1 t2 let add_seq cmp s m = BatSeq.fold_left (fun m e -> add cmp e m) m s let of_seq cmp s = add_seq cmp s empty let rec seq_of_iter m () = match m with | E -> BatSeq.Nil | C(k, r, e) -> BatSeq.Cons (k, seq_of_iter (cons_iter r e)) let to_seq m = seq_of_iter (cons_iter m E) let rec rev_seq_of_iter m () = match m with | E -> BatSeq.Nil | C(k, r, e) -> BatSeq.Cons (k, rev_seq_of_iter (rev_cons_iter r e)) let to_rev_seq m = rev_seq_of_iter (rev_cons_iter m E) let to_seq_from cmp k m = seq_of_iter (cons_iter_from cmp k m E) end module type S = sig type elt type t val empty: t val is_empty: t -> bool val is_singleton: t -> bool val singleton: elt -> t val mem: elt -> t -> bool val find: elt -> t -> elt val find_opt: elt -> t -> elt option val find_first : (elt -> bool) -> t -> elt val find_first_opt : (elt -> bool) -> t -> elt option val find_last : (elt -> bool) -> t -> elt val find_last_opt : (elt -> bool) -> t -> elt option val add: elt -> t -> t val remove: elt -> t -> t val remove_exn: elt -> t -> t val update: elt -> elt -> t -> t val union: t -> t -> t val inter: t -> t -> t val diff: t -> t -> t val sym_diff: t -> t -> t val compare: t -> t -> int val equal: t -> t -> bool val subset: t -> t -> bool val disjoint: t -> t -> bool val compare_subset: t -> t -> int val iter: (elt -> unit) -> t -> unit val at_rank_exn: int -> t -> elt val map: (elt -> elt) -> t -> t val filter: (elt -> bool) -> t -> t val filter_map: (elt -> elt option) -> t -> t val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a val for_all: (elt -> bool) -> t -> bool val exists: (elt -> bool) -> t -> bool val partition: (elt -> bool) -> t -> t * t val split: elt -> t -> t * bool * t val split_opt: elt -> t -> t * elt option * t val split_lt: elt -> t -> t * t val split_le: elt -> t -> t * t val cardinal: t -> int val elements: t -> elt list val to_list: t -> elt list val to_array: t -> elt array val min_elt: t -> elt val min_elt_opt: t -> elt option val pop_min: t -> elt * t val pop_max: t -> elt * t val max_elt: t -> elt val max_elt_opt: t -> elt option val choose: t -> elt val choose_opt: t -> elt option val any: t -> elt val pop: t -> elt * t val enum: t -> elt BatEnum.t val backwards: t -> elt BatEnum.t val of_enum: elt BatEnum.t -> t val of_list: elt list -> t val of_array: elt array -> t val to_seq : t -> elt BatSeq.t val to_rev_seq : t -> elt BatSeq.t val to_seq_from : elt -> t -> elt BatSeq.t val add_seq : elt BatSeq.t -> t -> t val of_seq : elt BatSeq.t -> t val print : ?first:string -> ?last:string -> ?sep:string -> ('a BatInnerIO.output -> elt -> unit) -> 'a BatInnerIO.output -> t -> unit (** Operations on {!Set} without exceptions.*) module Exceptionless : sig val min_elt: t -> elt option val max_elt: t -> elt option val choose: t -> elt option val any: t -> elt option val find: elt -> t -> elt option end (** Operations on {!Set} with labels. *) module Labels : sig val iter : f:(elt -> unit) -> t -> unit val fold : f:(elt -> 'a -> 'a) -> t -> init:'a -> 'a val for_all : f:(elt -> bool) -> t -> bool val exists : f:(elt -> bool) -> t -> bool val map: f:(elt -> elt) -> t -> t val filter : f:(elt -> bool) -> t -> t val filter_map: f:(elt -> elt option) -> t -> t val partition : f:(elt -> bool) -> t -> t * t end end (** Output signature of the functor {!Set.Make}. *) module Make (Ord : OrderedType) = struct include Set.Make(Ord) (*Breaking the abstraction*) type implementation = elt Concrete.set external impl_of_t : t -> implementation = "%identity" external t_of_impl : implementation -> t = "%identity" let cardinal t = Concrete.cardinal (impl_of_t t) let is_singleton t = Concrete.is_singleton (impl_of_t t) let enum t = Concrete.enum (impl_of_t t) let of_enum e = t_of_impl (Concrete.of_enum Ord.compare e) let backwards t = Concrete.backwards (impl_of_t t) let remove e t = t_of_impl (Concrete.remove Ord.compare e (impl_of_t t)) let remove_exn e t = t_of_impl (Concrete.remove_exn Ord.compare e (impl_of_t t)) let update e1 e2 t = t_of_impl (Concrete.update Ord.compare e1 e2 (impl_of_t t)) let add e t = t_of_impl (Concrete.add Ord.compare e (impl_of_t t)) let iter f t = Concrete.iter f (impl_of_t t) let at_rank_exn i t = Concrete.at_rank_exn i (impl_of_t t) let map f t = t_of_impl (Concrete.map_endo Ord.compare f (impl_of_t t)) let fold f t acc = Concrete.fold f (impl_of_t t) acc let filter f t = t_of_impl (Concrete.filter f (impl_of_t t)) let filter_map f t = t_of_impl (Concrete.filter_map_endo Ord.compare f (impl_of_t t)) let find x t = Concrete.find Ord.compare x (impl_of_t t) let find_opt x t = Concrete.find_opt Ord.compare x (impl_of_t t) let find_first f t = Concrete.find_first f (impl_of_t t) let find_first_opt f t = Concrete.find_first_opt f (impl_of_t t) let find_last f t = Concrete.find_last f (impl_of_t t) let find_last_opt f t = Concrete.find_last_opt f (impl_of_t t) let exists f t = Concrete.exists f (impl_of_t t) let for_all f t = Concrete.for_all f (impl_of_t t) let partition f t = let l, r = Concrete.partition Ord.compare f (impl_of_t t) in (t_of_impl l, t_of_impl r) let min_elt t = Concrete.min_elt (impl_of_t t) let min_elt_opt t = Concrete.min_elt_opt (impl_of_t t) let pop_min t = let mini, others = Concrete.pop_min (impl_of_t t) in (mini, t_of_impl others) let pop_max t = let maxi, others = Concrete.pop_max (impl_of_t t) in (maxi, t_of_impl others) let max_elt t = Concrete.max_elt (impl_of_t t) let max_elt_opt t = Concrete.max_elt_opt (impl_of_t t) let choose t = Concrete.choose (impl_of_t t) let choose_opt t = Concrete.choose_opt (impl_of_t t) let any t = Concrete.any (impl_of_t t) let pop t = let e, t = Concrete.pop (impl_of_t t) in e, t_of_impl t let split e s = let l, v, r = Concrete.split Ord.compare e (impl_of_t s) in (t_of_impl l, v, t_of_impl r) let split_opt e s = let l, maybe_v, r = Concrete.split_opt Ord.compare e (impl_of_t s) in (t_of_impl l, maybe_v, t_of_impl r) let split_lt e s = let l, r = Concrete.split_lt Ord.compare e (impl_of_t s) in (t_of_impl l, t_of_impl r) let split_le e s = let l, r = Concrete.split_le Ord.compare e (impl_of_t s) in (t_of_impl l, t_of_impl r) let singleton e = t_of_impl (Concrete.singleton e) let elements t = Concrete.elements (impl_of_t t) let to_list = elements let to_array t = Concrete.to_array (impl_of_t t) let union s1 s2 = t_of_impl (Concrete.union Ord.compare (impl_of_t s1) (impl_of_t s2)) let diff s1 s2 = t_of_impl (Concrete.diff Ord.compare (impl_of_t s1) (impl_of_t s2)) let inter s1 s2 = t_of_impl (Concrete.inter Ord.compare (impl_of_t s1) (impl_of_t s2)) let sym_diff s1 s2 = t_of_impl (Concrete.sym_diff Ord.compare (impl_of_t s1) (impl_of_t s2)) let compare t1 t2 = Concrete.compare Ord.compare (impl_of_t t1) (impl_of_t t2) let equal t1 t2 = Concrete.equal Ord.compare (impl_of_t t1) (impl_of_t t2) let subset t1 t2 = Concrete.subset Ord.compare (impl_of_t t1) (impl_of_t t2) let disjoint t1 t2 = Concrete.disjoint Ord.compare (impl_of_t t1) (impl_of_t t2) let add_seq s t = t_of_impl (Concrete.add_seq Ord.compare s (impl_of_t t)) let of_seq s = t_of_impl (Concrete.of_seq Ord.compare s) let to_seq t = Concrete.to_seq (impl_of_t t) let to_rev_seq t = Concrete.to_rev_seq (impl_of_t t) let to_seq_from k t = Concrete.to_seq_from Ord.compare k (impl_of_t t) let rec compare_subset s1 s2 = match (s1, impl_of_t s2) with (Concrete.Empty, Concrete.Empty) -> 0 | (Concrete.Empty, _t2) -> -1 | (_t1, Concrete.Empty) -> 1 | (Concrete.Node(l1, v1, r1, _), t2) -> match split v1 (t_of_impl t2) with (l2, true, r2) -> (* v1 in both s1 and s2 *) (match compare_subset l1 l2, compare_subset r1 r2 with | -1, -1 | -1, 0 | 0, -1 -> -1 | 0, 0 -> 0 | 1, 1 | 1, 0 | 0, 1 -> 1 | _ -> min_int) | (l2, false, r2) -> (* v1 in s1, but not in s2 *) if (compare_subset l1 l2) >= 0 && (compare_subset r1 r2) >= 0 then 1 else min_int let compare_subset s1 s2 = compare_subset (impl_of_t s1) s2 let of_list l = t_of_impl (Concrete.of_list Ord.compare l) let of_array a = t_of_impl (Concrete.of_array Ord.compare a) let print ?first ?last ?sep print_elt out t = Concrete.print ?first ?last ?sep print_elt out (impl_of_t t) module Exceptionless = struct let min_elt t = try Some (min_elt t) with Not_found -> None let max_elt t = try Some (max_elt t) with Not_found -> None let choose t = try Some (choose t) with Not_found -> None let any t = try Some (any t) with Not_found -> None let find e t = try Some (find e t) with Not_found -> None end module Labels = struct let iter ~f t = iter f t let fold ~f t ~init = fold f t init let for_all ~f t = for_all f t let exists ~f t = exists f t let map ~f t = map f t let filter ~f t = filter f t let filter_map ~f t = filter_map f t let partition ~f t = partition f t end end module Int = Make (BatInt) module Int32 = Make (BatInt32) module Int64 = Make (BatInt64) module Nativeint = Make (BatNativeint) module Float = Make (BatFloat) module Char = Make (BatChar) module String = Make (BatString) module Make2(O1 : OrderedType)(O2 : OrderedType) = struct module Set1 = Make(O1) module Set2 = Make(O2) module Product = Make( struct type t = O1.t * O2.t let compare (x1,y1)(x2,y2) = let c = O1.compare x1 x2 in if c = 0 then O2.compare y1 y2 else c end) let cartesian_product set1 set2 = let p = Concrete.cartesian_product (Set1.impl_of_t set1) (Set2.impl_of_t set2) in Product.t_of_impl p end (*$T let module S1 = Make(BatInt) in \ let module S2 = Make(BatString) in \ let module P = Make2(BatInt)(BatString) in \ P.cartesian_product \ (List.fold_right S1.add [1;2;3] S1.empty) \ (List.fold_right S2.add ["a";"b"] S2.empty) \ |> P.Product.to_list = [1, "a"; 1, "b"; 2, "a"; 2, "b"; 3, "a"; 3, "b"] *) module PSet = struct (*$< PSet *) type 'a t = { cmp : 'a -> 'a -> int; set : 'a Concrete.set; } type 'a enumerable = 'a t type 'a mappable = 'a t let empty = { cmp = compare; set = Concrete.empty } let create cmp = { cmp = cmp; set = Concrete.empty } let get_cmp {cmp; _} = cmp (*$T get_cmp get_cmp (create BatInt.compare) == BatInt.compare *) let singleton ?(cmp = compare) x = { cmp = cmp; set = Concrete.singleton x } let is_empty s = Concrete.is_empty s.set let is_singleton s = Concrete.is_singleton s.set let mem x s = Concrete.mem s.cmp x s.set let find x s = Concrete.find s.cmp x s.set let find_opt x s = Concrete.find_opt s.cmp x s.set let find_first f s = Concrete.find_first f s.set let find_first_opt f s = Concrete.find_first_opt f s.set let find_last f s = Concrete.find_last f s.set let find_last_opt f s = Concrete.find_last_opt f s.set let add x s = let newset = Concrete.add s.cmp x s.set in if newset == s.set then s else { s with set = newset } let remove x s = let newset = Concrete.remove s.cmp x s.set in if newset == s.set then s else { s with set = newset } let remove_exn x s = { s with set = Concrete.remove_exn s.cmp x s.set } let update x y s = let newset = Concrete.update s.cmp x y s.set in if newset == s.set then s else { s with set = newset } let iter f s = Concrete.iter f s.set let at_rank_exn i s = Concrete.at_rank_exn i s.set let fold f s acc = Concrete.fold f s.set acc let map f s = { cmp = Pervasives.compare; set = Concrete.map Pervasives.compare f s.set } let map_endo f s = let newset = Concrete.map_endo Pervasives.compare f s.set in if s.set == newset then s else { cmp = s.cmp; set = newset } let filter f s = let newset = Concrete.filter f s.set in if newset == s.set then s else { s with set = newset } let filter_map f s = { cmp = compare; set = Concrete.filter_map compare f s.set } let filter_map_endo f s = let newset = Concrete.filter_map_endo compare f s.set in if newset == s.set then s else { cmp = s.cmp; set = newset } let exists f s = Concrete.exists f s.set let cardinal s = fold (fun _ acc -> acc + 1) s 0 let elements s = Concrete.elements s.set let to_list = elements let to_array s = Concrete.to_array s.set let choose s = Concrete.choose s.set let choose_opt s = Concrete.choose_opt s.set let any s = Concrete.any s.set let min_elt s = Concrete.min_elt s.set let min_elt_opt s = Concrete.min_elt_opt s.set let pop_min s = let mini, others = Concrete.pop_min s.set in (mini, { s with set = others }) let pop_max s = let maxi, others = Concrete.pop_max s.set in (maxi, { s with set = others }) let max_elt s = Concrete.max_elt s.set let max_elt_opt s = Concrete.max_elt_opt s.set let enum s = Concrete.enum s.set let of_enum ?(cmp = compare) e = { cmp; set = Concrete.of_enum compare e } let of_enum_cmp ~cmp t = { cmp = cmp; set = Concrete.of_enum cmp t } let of_list ?(cmp = compare) l = { cmp; set = Concrete.of_list compare l } let of_array ?(cmp = compare) a = { cmp; set = Concrete.of_array compare a } let print ?first ?last ?sep print_elt out s = Concrete.print ?first ?last ?sep print_elt out s.set let for_all f s = Concrete.for_all f s.set let partition f s = let l, r = Concrete.partition s.cmp f s.set in { s with set = l }, { s with set = r } let pop s = let v, s' = Concrete.pop s.set in v, { s with set = s' } let split e s = let s1, found, s2 = Concrete.split s.cmp e s.set in { s with set = s1 }, found, { s with set = s2 } let split_opt e s = let s1, maybe_v, s2 = Concrete.split_opt s.cmp e s.set in { s with set = s1 }, maybe_v, { s with set = s2 } let split_lt e s = let s1, s2 = Concrete.split_lt s.cmp e s.set in { s with set = s1 }, {s with set = s2 } let split_le e s = let s1, s2 = Concrete.split_le s.cmp e s.set in { s with set = s1 }, {s with set = s2 } let union s1 s2 = { s1 with set = Concrete.union s1.cmp s1.set s2.set } let diff s1 s2 = { s1 with set = Concrete.diff s1.cmp s1.set s2.set } let sym_diff s1 s2 = { s1 with set = Concrete.sym_diff s1.cmp s1.set s2.set } let intersect s1 s2 = { s1 with set = Concrete.inter s1.cmp s1.set s2.set } let compare s1 s2 = Concrete.compare s1.cmp s1.set s2.set let equal s1 s2 = Concrete.equal s1.cmp s1.set s2.set let subset s1 s2 = Concrete.subset s1.cmp s1.set s2.set let disjoint s1 s2 = Concrete.disjoint s1.cmp s1.set s2.set let add_seq s t = { t with set = Concrete.add_seq t.cmp s t.set } let of_seq ?(cmp = Pervasives.compare) s = {set = Concrete.of_seq cmp s; cmp = cmp } let to_seq t = Concrete.to_seq t.set let to_rev_seq t = Concrete.to_rev_seq t.set let to_seq_from k t = Concrete.to_seq_from t.cmp k t.set end (*$>*) type 'a t = 'a Concrete.set type 'a enumerable = 'a t type 'a mappable = 'a t let empty = Concrete.empty let singleton x = Concrete.singleton x let is_empty s = s = Concrete.Empty let is_singleton s = Concrete.is_singleton s let mem x s = Concrete.mem Pervasives.compare x s let find x s = Concrete.find Pervasives.compare x s let find_opt x s = Concrete.find_opt Pervasives.compare x s let find_first f s = Concrete.find_first f s let find_last f s = Concrete.find_last f s let find_first_opt f s = Concrete.find_first_opt f s let find_last_opt f s = Concrete.find_last_opt f s (*$T find (find 1 (of_list [1;2;3;4;5;6;7;8])) == 1 (find 8 (of_list [1;2;3;4;5;6;7;8])) == 8 (find 1 (singleton 1)) == 1 let x = "abc" in (find "abc" (singleton x)) == x let x = (1,1) in (find (1,1) (singleton x)) == x let x,y = (1,1),(1,1) in find x (singleton y) == y let x,y = [|0|],[|0|] in find x (singleton y) != x try ignore (find (1,2) (singleton (1,1))); false with Not_found -> true *) let add x s = Concrete.add Pervasives.compare x s let remove x s = Concrete.remove Pervasives.compare x s let remove_exn x s = Concrete.remove_exn Pervasives.compare x s let update x y s = Concrete.update Pervasives.compare x y s let iter f s = Concrete.iter f s let at_rank_exn i s = Concrete.at_rank_exn i s (*$T at_rank_exn 0 (of_list [1;2]) == 1 at_rank_exn 1 (of_list [1;2]) == 2 try ignore (at_rank_exn 0 empty); false with Not_found -> true try ignore (at_rank_exn (-1) (singleton 1)); false \ with Invalid_argument _msg -> true try ignore (at_rank_exn 1 (singleton 1)); false \ with Invalid_argument _msg -> true *) let fold f s acc = Concrete.fold f s acc let map f s = Concrete.map Pervasives.compare f s let map_endo f s = Concrete.map_endo Pervasives.compare f s (*$T map map (fun _x -> 1) (of_list [1;2;3]) |> cardinal = 1 *) (*$T map_endo let s = of_list [1;2;3] in s == (map_endo (fun x -> x) s) let s = empty in s == (map_endo (fun x -> x+1) s) *) let filter f s = Concrete.filter f s (*$T filter let s = of_list [1;2;3] in s == (filter (fun x -> x < 10) s) let s = empty in s == (filter (fun x -> x > 10) s) *) let filter_map f s = Concrete.filter_map Pervasives.compare f s let filter_map_endo f s = Concrete.filter_map_endo Pervasives.compare f s (*$T filter_map_endo let s = of_list [1;2;3] in s == (filter_map_endo (fun x -> Some x) s) let s = empty in s == (filter_map_endo (fun x -> Some x) s) *) let exists f s = Concrete.exists f s let cardinal s = fold (fun _ acc -> acc + 1) s 0 let elements s = Concrete.elements s let to_list = elements let to_array s = Concrete.to_array s let choose s = Concrete.choose s let choose_opt s = Concrete.choose_opt s (*$T choose_opt choose_opt (of_list [1]) = Some 1 choose_opt (empty) = None choose_opt (of_list []) = None *) let any s = Concrete.any s let min_elt s = Concrete.min_elt s let min_elt_opt s = Concrete.min_elt_opt s (*$Q min_elt (Q.list Q.small_int) (fun l -> l = [] || \ let xs = List.map (fun i -> i mod 2, i) l in \ let s = ref (of_list xs) in \ let m = ref (min_elt !s) in \ while fst !m = 0 do \ s := remove !m !s; \ s := add (2,snd !m) !s; \ m := min_elt !s; \ done; \ for_all (fun (x,_) -> x <> 0) !s \ ) *) (*$T min_elt_opt min_elt_opt (of_list [1;2;3]) = Some 1 min_elt_opt (empty) = None min_elt_opt (of_list []) = None *) let pop_min s = Concrete.pop_min s (*$T pop_min try ignore (pop_min empty); false with Not_found -> true pop_min (of_list [1;2]) = (1, singleton 2) pop_min (singleton 2) = (2, empty) pop_min (of_list [4;5;6;7]) = (4, of_list [5;6;7]) *) let pop_max s = Concrete.pop_max s (*$T pop_max try ignore (pop_max empty); false with Not_found -> true pop_max (of_list [1;2]) = (2, singleton 1) pop_max (singleton 2) = (2, empty) let maxi, others = pop_max (of_list [4;5;6;7]) in \ maxi = 7 && diff others (of_list [4;5;6]) = empty *) let max_elt s = Concrete.max_elt s let max_elt_opt s = Concrete.max_elt_opt s (*$T max_elt_opt max_elt_opt (of_list [1;2;3]) = Some 3 max_elt_opt (empty) = None max_elt_opt (of_list []) = None *) let enum s = Concrete.enum s let of_enum e = Concrete.of_enum Pervasives.compare e let backwards s = Concrete.backwards s let of_list l = Concrete.of_list Pervasives.compare l (*$Q of_list (Q.list Q.small_int) (fun l -> let xs = List.map (fun i -> i mod 5, i) l in \ let s1 = of_list xs |> enum |> List.of_enum in \ let s2 = List.sort_unique Legacy.compare xs in \ s1 = s2 \ ) *) let of_array a = Concrete.of_array Pervasives.compare a let print ?first ?last ?sep print_elt out s = Concrete.print ?first ?last ?sep print_elt out s let for_all f s = Concrete.for_all f s let partition f s = Concrete.partition Pervasives.compare f s let pop s = Concrete.pop s let cartesian_product = Concrete.cartesian_product let split e s = Concrete.split Pervasives.compare e s let split_opt e s = Concrete.split_opt Pervasives.compare e s let split_lt e s = Concrete.split_lt Pervasives.compare e s let split_le e s = Concrete.split_le Pervasives.compare e s let union s1 s2 = Concrete.union Pervasives.compare s1 s2 let diff s1 s2 = Concrete.diff Pervasives.compare s1 s2 let sym_diff s1 s2 = Concrete.sym_diff Pervasives.compare s1 s2 let intersect s1 s2 = Concrete.inter Pervasives.compare s1 s2 let compare s1 s2 = Concrete.compare Pervasives.compare s1 s2 let equal s1 s2 = Concrete.equal Pervasives.compare s1 s2 let subset s1 s2 = Concrete.subset Pervasives.compare s1 s2 let disjoint s1 s2 = Concrete.disjoint Pervasives.compare s1 s2 let add_seq s t = Concrete.add_seq Pervasives.compare s t let of_seq s = Concrete.of_seq Pervasives.compare s let to_seq t = Concrete.to_seq t let to_rev_seq t = Concrete.to_rev_seq t let to_seq_from k t = Concrete.to_seq_from Pervasives.compare k t (*$T subset subset (of_list [1;2;3]) (of_list [1;2;3;4]) not (subset (of_list [1;2;3;5]) (of_list [1;2;3;4])) not (subset (of_list [1;2;3;4]) (of_list [1;2;3])) *) (*$T compare compare (of_list [1;2;3]) (of_list [1;2;3;4]) <> 0 let a = of_list [1;2;3] and b = of_list [1;2;3;4] in compare a b = - (compare b a) let a = of_list [1;2;3] and b = of_list [1;2;3;4] and c = of_list [3;1;2] in\ compare a b = - (compare b c) compare (of_list [1;2;3]) (of_list [3;1;2]) = 0 *) (*$T cartesian_product cartesian_product (of_list [1;2;3]) (of_list ["a"; "b"]) |> to_list = \ [1, "a"; 1, "b"; 2, "a"; 2, "b"; 3, "a"; 3, "b"] is_empty @@ cartesian_product (of_list [1;2;3]) empty is_empty @@ cartesian_product empty (of_list [1;2;3]) let s1, s2 = of_list ["a"; "b"; "c"], of_list [1;2;3] in \ equal (cartesian_product s1 s2) \ (map BatTuple.Tuple2.swap (cartesian_product s2 s1)) *) (*$inject module TestSet = Set.Make (struct type t = int * int let compare (x, _) (y, _) = BatInt.compare x y end) ;; let ts = TestSet.of_list [(1,0);(2,0);(3,0)] ;; *) (*$T try ignore(TestSet.update (1, 0) (1, 1) TestSet.empty); false \ with Not_found -> true TestSet.update (1,0) (1,1) ts = TestSet.of_list [(1,1);(2,0);(3,0)] TestSet.update (2,0) (2,1) ts = TestSet.of_list [(1,0);(2,1);(3,0)] TestSet.update (3,0) (3,1) ts = TestSet.of_list [(1,0);(2,0);(3,1)] TestSet.update (3,0) (-1,0) ts = TestSet.of_list [(1,0);(2,0);(-1,0)] try ignore (TestSet.update (4,0) (44,00) ts); false with Not_found -> true *) module Incubator = struct (*$< Incubator *) let op_map f s = Concrete.op_map f s (*$T op_map of_enum (1--3) |> op_map ((+) 2) |> mem 5 of_enum (1--3) |> op_map ((+) 2) |> mem 4 of_enum (1--3) |> op_map ((+) 2) |> mem 3 *) end (*$>*)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>