package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batInt.ml.html
Source file batInt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
(* * BatInt - Extended integers * Copyright (C) 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com> * 2008 David Teller * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) ##V>=5##module Pervasives = Stdlib (*$inject ##V>=5##module Pervasives = Stdlib *) open BatNumber let enum () = let current_value = ref min_int in let already_through = ref false in let f () = if !current_value = max_int then if !already_through then raise BatEnum.No_more_elements else ( already_through := true; max_int ) else BatRef.post_incr current_value in BatEnum.from f module BaseInt = struct type t = int let zero, one = 0, 1 external neg : int -> int = "%negint" external add : int -> int -> int = "%addint" external sub : int -> int -> int = "%subint" external mul : int -> int -> int = "%mulint" external div : int -> int -> int = "%divint" external ( + ) : int -> int -> int = "%addint" external ( - ) : int -> int -> int = "%subint" external ( * ) : int -> int -> int = "%mulint" external ( / ) : int -> int -> int = "%divint" external pred: int -> int = "%predint" external succ: int -> int = "%succint" let abs = abs external modulo : int -> int -> int = "%modint" let pow a b = if b < 0 then invalid_arg "Int.pow" else let div_two n = n / 2 and mod_two n = n mod 2 in generic_pow ~zero ~one ~div_two ~mod_two ~mul a b (*$Q pow Q.int (fun a -> pow a 0 = 1) Q.int (fun a -> pow a 1 = a) Q.int (fun a -> pow a 2 = a * a) Q.pos_int (fun b -> b = 0 || pow 0 b = 0) Q.pos_int (fun b -> pow 1 b = 1) (Q.pair Q.int Q.neg_int) (fun (a,b) -> \ b = 0 || Result.(catch2 pow a b |> is_exn (Invalid_argument "Int.pow"))) *) (*$= pow (pow (-2) 3) (-8) (pow 0 0) 1 *) let min_num, max_num = min_int, max_int (* this function is performance sensitive : it is heavily used by associative data structures using ordered keys (Set, Map). The current version, due to Mauricio "mfp" Fernandez, only uses a type annotation to benefit from the excellent compilation of statically-known integer comparisons. It outperforms the previous version calling directly the external primitive "caml_int_compare". *) let compare (x : int) y = if x > y then 1 else if y > x then -1 else 0 external of_int : int -> int = "%identity" external to_int : int -> int = "%identity" let to_string = string_of_int let enum = enum let minus_one = ( - 1) external to_float : int -> float = "%floatofint" external of_float : float -> int = "%intoffloat" external of_string : string -> int = "caml_int_of_string" external rem : int -> int -> int = "%modint" let ( <> ) (a:int) b = a <> b let ( <= ) (a:int) b = a <= b let ( >= ) (a:int) b = a >= b let ( < ) (a:int) b = a < b let ( > ) (a:int) b = a > b let ( = ) (a:int) b = a = b let ( ** ) a b = pow a b (*$T ( ** ) 0 ** 0 = 1 0 ** 1 = 0 (-1) ** 3 = (-1) (-1) ** 4 = 1 15 ** 3 = 3375 7 ** 4 = 2401 *) let print out t = BatInnerIO.nwrite out (string_of_int t) let print_hex out t = BatPrintf.fprintf out "%X" t let ( -- ) x y = BatEnum.seq x (add one) ((>=) y) let ( --- ) x y = if x <= y then x -- y else BatEnum.seq x pred ((<=) y) end (* We want BaseInt versions of these function instead of MakeNumeric ones *) module Compare = struct type bat__compare_t = int let ( <> ), ( >= ), ( <= ), ( > ), ( < ), ( = ) = BaseInt.(( <> ), ( >= ), ( <= ), ( > ), ( < ), ( = )) end include (BatNumber.MakeNumeric(BaseInt) : BatNumber.Numeric with type t := int and module Compare := Compare) include BaseInt let min a b = if a < b then a else b let max a b = if a > b then a else b (*$T min min 3 4 = 3 min 4 4 = 4 min (-3) 5 = -3 min min_int max_int = min_int *) (*$T max max 3 4 = 4 max 4 4 = 4 max (-3) 5 = 5 max min_int max_int = max_int max max_int max_int = max_int max min_int min_int = min_int *) let mid a b = a land b + ((a lxor b) asr 1) (*$Q mid (Q.pair Q.int Q.int) (fun (a,b) -> \ let m = mid a b in \ (a <= b && a <= m && m <= b && abs ((m-a) - (b-m)) <= 1) || \ (b < a && b <= m && m <= a && abs ((m-b) - (a-m)) <= 1)) (Q.int) (fun a -> mid a a = a) *) let popcount = if Sys.word_size = 32 then let k1 = 0x55555555 in let k2 = 0x33333333 in let k3 = 0x0f0f0f0f in (fun x -> let x = x - (x lsr 1) land k1 in let x = ((x lsr 2) land k2) + (x land k2) in let x = (x + (x lsr 4)) land k3 in let x = x + x lsr 8 in (x + x lsr 16) land 0x3f ) else (* word_size = 64 *) (* uses int_of_string to hide these constants from the 32-bit compiler *) let k1 = int_of_string "0x5555_5555_5555_5555" in let k2 = int_of_string "0x3333_3333_3333_3333" in let k4 = int_of_string "0x0f0f_0f0f_0f0f_0f0f" in (fun x -> let x = x - (x lsr 1) land k1 in let x = (x land k2) + ((x lsr 2) land k2) in let x = (x + x lsr 4) land k4 in let x = x + x asr 8 in let x = x + x asr 16 in let x = x + x asr 32 in x land 0x7f ) let popcount_sparse x = let rec loop n x = if x = 0 then n else loop (n+1) (x land (x-1)) in loop 0 x (*$Q popcount (Q.int) (fun x -> popcount x = popcount_sparse x) *) let copysign n o = match n with | 0 -> 0 | n when n > 0 -> o | _ -> - o (*$T copysign copysign 2 1 = 1 copysign 3 1 = 1 copysign 3 5 = 5 copysign max_int min_int = min_int copysign (-22) 12 = -12 copysign 0 42 = 0 *) module BaseSafeInt = struct include BaseInt (** Open this module and [SafeInt] to replace traditional integer operators with their safe counterparts *) let add a b = let c = a + b in if a < 0 && b < 0 && c >= 0 || a > 0 && b > 0 && c <= 0 then raise Overflow else c let sub a b = let c = a - b in if a < 0 && b > 0 && c >= 0 || a > 0 && b < 0 && c <= 0 then raise Overflow else c let neg x = if x <> min_int then ~- x else raise Overflow let succ x = if x <> max_int then succ x else raise Overflow let pred x = if x <> min_int then pred x else raise Overflow let abs x = if x <> min_int then abs x else raise Overflow (* Performance hack: if both operands of the multiplication operator can be represented using the specified amount of bits (not counting the sign bit), then it is safe to assume that overflow does not happen. *) let mul_shift_bits = match Sys.word_size with | 64 -> 31 (* 64 = sign bit + 31*2 + tag bit *) | 32 -> 15 (* 32 = sign bit + 15*2 + tag bit *) | _ -> 0 (* Uses a formula taken from Hacker's Delight, chapter "Overflow Detection", plus a fast-path check (see comment above) *) let mul (a: int) (b: int) : int = (* let open Pervasives in *) let c = a * b in if (a lor b) asr mul_shift_bits = 0 || not ((a = min_int && b < 0) || (b <> 0 && c / b <> a)) then c else raise BatNumber.Overflow let pow a b = if b < 0 then invalid_arg "Int.Safe_int.pow" else let div_two n = n / 2 and mod_two n = n mod 2 in BatNumber.generic_pow ~zero ~one ~div_two ~mod_two ~mul a b end module Safe_int = struct module Compare = struct type bat__compare_t = t let ( <> ), ( >= ), ( <= ), ( > ), ( < ), ( = ) = ( <> ), ( >= ), ( <= ), ( > ), ( < ), ( = ) end include (BatNumber.MakeNumeric(BaseSafeInt) : BatNumber.Numeric with type t := int and module Compare := Compare) include BaseSafeInt (* for performance, replace functor-values with direct values *) end (*$T & Result.(catch (Safe_int.add max_int) max_int |> is_exn Number.Overflow) Result.(catch (Safe_int.add min_int) min_int |> is_exn Number.Overflow) Safe_int.add 0 0 = 0 Safe_int.add max_int min_int = (-1) Result.(catch (Safe_int.sub min_int) max_int |> is_exn Number.Overflow) Result.(catch (Safe_int.sub max_int) min_int |> is_exn Number.Overflow) Safe_int.sub 0 0 = 0 Safe_int.neg max_int = -max_int Result.(catch Safe_int.neg min_int |> is_exn Number.Overflow) Result.(catch (List.reduce Safe_int.mul) \ [1 lsl 18 * 21; 3*3*3*3*3*3*3*3; 5*5*5*5*7*7*11*13*17*19] \ |> is_exn Number.Overflow) Safe_int.mul 0 min_int = 0 Safe_int.mul min_int 0 = 0 Safe_int.mul 1 min_int = min_int Safe_int.mul min_int 1 = min_int Safe_int.mul (-1) max_int = -max_int Safe_int.mul max_int (-1) = -max_int Result.(catch (Safe_int.mul min_int) (-1) |> is_exn Number.Overflow) Result.(catch (Safe_int.mul (-1)) min_int |> is_exn Number.Overflow) Result.(catch (Safe_int.Infix.(+) max_int) 1 |> is_exn Number.Overflow) Safe_int.succ 1 = 2 Safe_int.succ (-1) = 0 Safe_int.succ (-2) = (-1) Safe_int.succ 0 = 1 Result.(catch Safe_int.succ max_int |> is_exn Number.Overflow) Safe_int.pred 1 = 0 Safe_int.pred 0 = (-1) Safe_int.pred (-1) = (-2) Result.(catch Safe_int.pred min_int |> is_exn Number.Overflow) Safe_int.abs 0 = 0 Safe_int.abs (-5) = 5 Safe_int.abs 5 = 5 Safe_int.abs max_int = max_int Result.(catch Safe_int.abs min_int |> is_exn Number.Overflow) *) (*$Q & (Q.pair Q.pos_int Q.pos_int) (fun (a,b) -> let (a,b) = max a b, min a b in \ let b = max_int - a + b in try Safe_int.add a b |>ignore; false \ with BatNumber.Overflow -> true) (Q.pair Q.pos_int Q.pos_int) (fun (a,b) -> let (a,b) = max a b, min a b in \ let b = max_int - a + b in try Safe_int.sub (-a) b|>ignore; false \ with BatNumber.Overflow -> true) (Q.pair Q.int Q.int) (fun (a,b) -> \ let slow_mul a b = \ if b = 0 then 0 \ else if (abs a) > max_int / (abs b) then raise BatNumber.Overflow else a*b \ in Legacy.(=) \ (Result.catch (Safe_int.mul a) b) (Result.catch (slow_mul a) b)) *) (* module Int = struct include BaseInt module Numeric = struct include Numeric(BaseInt) end end module SafeInt = struct include BaseSafeInt module Numeric = struct include Numeric(BaseSafeInt) end end *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>