package batteries

  1. Overview
  2. Docs
A community-maintained standard library extension

Install

Dune Dependency

Authors

Maintainers

Sources

v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb

doc/src/batteries.unthreaded/batMap.ml.html

Source file batMap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
(*
 * BatMap - Additional map operations
 * Copyright (C) 1996 Xavier Leroy
 *               1996-2003 Nicolas Cannasse, Markus Mottl
 *               2009-2011 David Rajchenbach-Teller, Edgar Friendly, Gabriel Scherer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

##V>=5##module Pervasives = Stdlib

(*$inject
##V>=5##module Pervasives = Stdlib
*)

(* A concrete implementation for the direct balanced maps structure,
   without carrying the ordering information with the data.

   This implementation directly expose the map structure, and should
   be the basis of both functorized Map and polymorphic PMap
   operations (both providing their own way to access the ordering
   information, and to possibly pass it along with the result).

   I tried to keep the interface minimal with respect to ordering
   information : function that do not need the ordering (they do not
   need to find the position of a specific key in the map) do not have
   a 'cmp' parameter.

   Most of those implementations are derived from Extlib's PMap
   module.

   Please keep in mind that our Map module currently relies on the
   fact that the (('k, 'v) Concrete.map) implementation is physically
   equal to stdlib's ('a Map.S.t). Changing Concrete.map is not a good
   idea.
*)
module Concrete = struct

  type ('k, 'v) map =
    | Empty
    | Node of ('k, 'v) map * 'k * 'v * ('k, 'v) map * int

  let height = function
    | Node (_, _, _, _, h) -> h
    | Empty -> 0

  let empty = Empty

  let is_empty m =
    m = Empty

  (* The create and bal functions are from stdlib's map.ml (3.12)
     differences from the old (extlib) implementation :

     1. create use direct integer comparison instead of calling
     polymorphic 'max'

     2. the two calls of 'height' for hl and hr in the beginning of 'bal'
     (hot path) are inlined

     The difference in performances is important for bal-heavy worflows,
     such as "adding a lot of elements". On a test system, we go from
     1800 op/s to 2500 op/s.
  *)
  let create l x d r =
    let hl = height l and hr = height r in
    Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

  let bal l x d r =
    let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
    let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
    if hl > hr + 2 then begin
      match l with
        Empty -> invalid_arg "Map.bal"
      | Node(ll, lv, ld, lr, _) ->
        if height ll >= height lr then
          create ll lv ld (create lr x d r)
        else begin
          match lr with
            Empty -> invalid_arg "Map.bal"
          | Node(lrl, lrv, lrd, lrr, _)->
            create (create ll lv ld lrl) lrv lrd (create lrr x d r)
        end
    end else if hr > hl + 2 then begin
      match r with
        Empty -> invalid_arg "Map.bal"
      | Node(rl, rv, rd, rr, _) ->
        if height rr >= height rl then
          create (create l x d rl) rv rd rr
        else begin
          match rl with
            Empty -> invalid_arg "Map.bal"
          | Node(rll, rlv, rld, rlr, _) ->
            create (create l x d rll) rlv rld (create rlr rv rd rr)
        end
    end else
      Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

  let rec min_binding = function
    | Node (Empty, k, v, _, _) -> k, v
    | Node (l, _, _, _, _) -> min_binding l
    | Empty -> raise Not_found

  let rec min_binding_opt = function
    | Node (Empty, k, v, _, _) -> Some (k, v)
    | Node (l, _, _, _, _) -> min_binding_opt l
    | Empty -> None

  let get_root = function
    | Empty -> raise Not_found
    | Node (_, k, v, _, _) -> k, v

  let pop_min_binding s =
    let mini = ref (get_root s) in
    let rec loop = function
      | Empty -> assert(false)  (* get_root already raises Not_found on empty map *)
      | Node(Empty, k, v, r, _) -> mini := (k, v); r
      | Node(l, k, v, r, _) -> bal (loop l) k v r
    in
    let others = loop s in
    (!mini, others)

  let rec max_binding = function
    | Node (_, k, v, Empty, _) -> k, v
    | Node (_, _, _, r, _) -> max_binding r
    | Empty -> raise Not_found

  let rec max_binding_opt = function
    | Node (_, k, v, Empty, _) -> Some (k, v)
    | Node (_, _, _, r, _) -> max_binding_opt r
    | Empty -> None

  let pop_max_binding s =
    let maxi = ref (get_root s) in
    let rec loop = function
      | Empty ->  assert(false)  (* get_root already raises Not_found on empty map *)
      | Node (l, k, v, Empty, _) -> maxi := (k, v); l
      | Node (l, k, v, r, _) -> bal l k v (loop r)
    in
    let others = loop s in
    (!maxi, others)

  let rec remove_min_binding = function
    | Node (Empty, _, _, r, _) -> r
    | Node (l, k, v, r, _) -> bal (remove_min_binding l) k v r
    | Empty -> raise Not_found

  let merge t1 t2 =
    match t1, t2 with
    | Empty, _ -> t2
    | _, Empty -> t1
    | _ ->
      let k, v = min_binding t2 in
      bal t1 k v (remove_min_binding t2)

  let add x d cmp map =
    let rec loop = function
      | Node (l, k, v, r, h) as node ->
        let c = cmp x k in
        if c = 0 then
          if d == v then
            node
          else
            Node (l, x, d, r, h)
        else if c < 0 then
          let nl = loop l in
          if nl == l then
            node 
          else
            bal nl k v r
        else
          let nr = loop r in
          if nr == r then
            node
          else
            bal l k v nr
      | Empty -> Node (Empty, x, d, Empty, 1) in
    loop map

  let find x cmp map =
    let rec loop = function
      | Node (l, k, v, r, _) ->
        let c = cmp x k in
        if c < 0 then loop l
        else if c > 0 then loop r
        else v
      | Empty -> raise Not_found in
    loop map

  let rec find_first_helper_found k0 v0 f = function
    | Empty -> (k0, v0)
    | Node (l, k, v, r, _) ->
       if f k
       then find_first_helper_found k v f l
       else find_first_helper_found k0 v0 f r

  let rec find_first f m =
    match m with
    | Empty -> raise Not_found
    | Node (l, k, v, r, _) ->
       if f k
       then find_first_helper_found k v f l
       else find_first f r

  let rec find_first_opt f m =
    match m with
    | Empty -> None
    | Node (l, k, v, r, _) ->
       if f k
       then Some (find_first_helper_found k v f l)
       else find_first_opt f r

  let rec find_last_helper_found k0 v0 f = function
    | Empty -> (k0, v0)
    | Node (l, k, v, r, _) ->
       if f k
       then find_last_helper_found k v f r
       else find_last_helper_found k0 v0 f l

  let rec find_last f m =
    match m with 
    | Empty -> raise Not_found
    | Node (l, k, v, r, _) ->
       if f k
       then find_last_helper_found k v f r
       else find_last f l

  let rec find_last_opt f m =
    match m with 
    | Empty -> None
    | Node (l, k, v, r, _) ->
       if f k
       then Some (find_last_helper_found k v f r)
       else find_last_opt f l

  (*$T find_first
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 0)) = ((1, 11))
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 1)) = ((1, 11))
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 2)) = ((2, 12))
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 3)) = ((3, 13))
    try ignore(empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first (fun x -> x >= 4)); false with Not_found -> true
    try ignore(empty |>                                     find_first (fun x -> x >= 3)); false with Not_found -> true
  *)

  (*$T find_first_opt
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 0)) = (Some (1, 11))
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 1)) = (Some (1, 11))
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 2)) = (Some (2, 12))
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 3)) = (Some (3, 13))
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_first_opt (fun x -> x >= 4)) = (None)
    (empty |>                                     find_first_opt (fun x -> x >= 3)) = (None)
  *)

  (*$T find_last
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 1)) = (1, 11)
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 2)) = (2, 12)
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 3)) = (3, 13)
              (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 4)) = (3, 13)
    try ignore(empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last (fun x -> x <= 0)); false with Not_found -> true
    try ignore(empty |>                                     find_last (fun x -> x <= 3)); false with Not_found -> true
  *)

  (*$T find_last_opt
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 0)) = None
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 1)) = Some (1, 11)
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 2)) = Some (2, 12)
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 3)) = Some (3, 13)
    (empty |> add 1 11 |> add 2 12 |> add 3 13 |> find_last_opt (fun x -> x <= 4)) = Some (3, 13)
    (empty |>                                     find_last_opt (fun x -> x <= 3)) = None
  *)

  let find_option x cmp map =
    try Some (find x cmp map)
    with Not_found -> None

  let find_default def x cmp map =
    try find x cmp map
    with Not_found -> def

  let remove x cmp map =
    let rec loop = function
      | Node (l, k, v, r, _) as node ->
        let c = cmp x k in
        if c = 0 then
          merge l r
        else if c < 0 then
          let nl = loop l in
          if nl == l then
            node
          else 
            bal nl k v r
        else
          let nr = loop r in
          if nr == r then
            node
          else
            bal l k v nr
      | Empty -> Empty in
    loop map

  (* A variant of [remove] that throws [Not_found] on failure *)
  let remove_exn x cmp map =
    let rec loop = function
      | Empty ->
          raise Not_found
      | Node (l, k, v, r, _) ->
          let c = cmp x k in
          if c = 0 then
            merge l r
          else if c < 0 then
            bal (loop l) k v r
          else
            bal l k v (loop r)
    in
    loop map

  let update k1 k2 v2 cmp map =
    if cmp k1 k2 <> 0 then
      add k2 v2 cmp (remove_exn k1 cmp map)
    else
      let rec loop = function
        | Empty -> raise Not_found
        | Node(l, k, v, r, h) as node ->
           let c = cmp k1 k in
           if c = 0 then
             if v == v2 && k == k2 then
               node
             else 
               Node(l, k2, v2, r, h)
           else if c < 0 then
             let nl = loop l in
             if nl == l then
               node
             else 
               Node(nl, k, v, r, h)
           else
             let nr = loop r in
             if nr == r then
               node
             else 
               Node(l, k, v, nr, h)
      in
      loop map

  let rec update_stdlib x f cmp = function
    |  Empty ->
        begin match f None with
        | None -> Empty
        | Some data -> Node(Empty, x, data, Empty, 1)
        end
    | Node (l, v, d, r, h) as m ->
       let c = cmp x v in
       if c = 0 then
         begin
           match f (Some d) with
           | None -> merge l r
           | Some data ->
              if d == data
              then m
              else Node(l, x, data, r, h)
         end
       else if c < 0 then
         let ll = update_stdlib x f cmp l in
         if l == ll
         then m
         else bal ll v d r
       else
         let rr = update_stdlib x f cmp r in
         if r == rr
         then m
         else bal l v d rr

  let mem x cmp map =
    let rec loop = function
      | Node (l, k, _v, r, _) ->
        let c = cmp x k in
        c = 0 || loop (if c < 0 then l else r)
      | Empty -> false in
    loop map

  let iter f map =
    let rec loop = function
      | Empty -> ()
      | Node (l, k, v, r, _) -> loop l; f k v; loop r in
    loop map

  let map f map =
    let rec loop = function
      | Empty -> Empty
      | Node (l, k, v, r, h) ->
        (* ensure evaluation in increasing order *)
        let l' = loop l in
        let v' = f v in
        let r' = loop r in
        Node (l', k, v', r', h) in
    loop map

  let mapi f map =
    let rec loop = function
      | Empty -> Empty
      | Node (l, k, v, r, h) ->
        (* ensure evaluation in increasing order *)
        let l' = loop l in
        let v' = f k v in
        let r' = loop r in
        Node (l', k, v', r', h) in
    loop map

  let fold f map acc =
    let rec loop acc = function
      | Empty -> acc
      | Node (l, _k, v, r, _) ->
        loop (f v (loop acc l)) r in
    loop acc map

  let foldi f map acc =
    let rec loop acc = function
      | Empty -> acc
      | Node (l, k, v, r, _) ->
        loop (f k v (loop acc l)) r in
    loop acc map

  exception Found

  let at_rank_exn i m =
    if i < 0 then invalid_arg "Map.at_rank_exn: i < 0";
    let res = ref (get_root m) in (* raises Not_found if empty *)
    try
      let (_: int) =
        foldi (fun k v j ->
            if j <> i then j + 1
            else begin
              res := (k, v);
              raise Found
            end
          ) m 0
      in
      invalid_arg "Map.at_rank_exn: i >= (Map.cardinal s)"
    with Found -> !res

  (*$T at_rank_exn
    (empty |> add 1 true |> at_rank_exn 0) = (1, true)
    (empty |> add 1 true |> add 2 false |> at_rank_exn 1) = (2, false)
    try ignore(at_rank_exn (-1) empty); false with Invalid_argument _ -> true
    try ignore(at_rank_exn 0 empty); false with Not_found -> true
    try ignore(add 1 true empty |> at_rank_exn 1); false with Invalid_argument _ -> true
  *)

  let singleton x d = Node(Empty, x, d, Empty, 1)

  (* beware : those two functions assume that the added k is *strictly*
     smaller (or bigger) than all the present keys in the tree; it
     does not test for equality with the current min (or max) key.

     Indeed, they are only used during the "join" operation which
     respects this precondition.
  *)
  let rec add_min_binding k v = function
    | Empty -> singleton k v
    | Node (l, x, d, r, _h) ->
      bal (add_min_binding k v l) x d r

  let rec add_max_binding k v = function
    | Empty -> singleton k v
    | Node (l, x, d, r, _h) ->
      bal l x d (add_max_binding k v r)

  (* Same as create and bal, but no assumptions are made on the
     relative heights of l and r.

     The stdlib implementation was changed to use the new
     [add_{min,max}_binding] functions instead of the [add] function
     that would require to pass a comparison function.  *)
  let rec join l v d r =
    match (l, r) with
      (Empty, _) -> add_min_binding v d r
    | (_, Empty) -> add_max_binding v d l
    | (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
      if lh > rh + 2 then bal ll lv ld (join lr v d r) else
      if rh > lh + 2 then bal (join l v d rl) rv rd rr else
        create l v d r

  (* split also is from stdlib 3.12 *)
  let rec split key cmp = function
    | Empty -> (Empty, None, Empty)
    | Node(l, x, d, r, _) ->
      let c = cmp key x in
      if c = 0 then (l, Some d, r)
      else if c < 0 then
        let (ll, pres, rl) = split key cmp l in (ll, pres, join rl x d r)
      else
        let (lr, pres, rr) = split key cmp r in (join l x d lr, pres, rr)

  type ('key,'a) iter = E | C of 'key * 'a * ('key,'a) map * ('key,'a) iter

  let cardinal map =
    let rec loop acc = function
      | Empty -> acc
      | Node (l, _, _, r, _) ->
        loop (loop (acc+1) r) l
    in
    loop 0 map

  let rec bindings_aux accu = function
    | Empty -> accu
    | Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l

  let bindings s =
    bindings_aux [] s

  let rec cons_iter s t = match s with
    | Empty -> t
    | Node (l, k, v, r, _) -> cons_iter l (C (k, v, r, t))

  let rec rev_cons_iter s t = match s with
    | Empty -> t
    | Node (l, k, v, r, _) -> rev_cons_iter r (C (k, v, l, t))

  let rec cons_iter_from cmp k2 m e =
    match m with
    | Empty -> e
    | Node (l, k, v, r, _) ->
       if cmp k2 k <= 0
       then cons_iter_from cmp k2 l (C (k, v, r, e))
       else cons_iter_from cmp k2 r e

  let enum_next l () = match !l with
      E -> raise BatEnum.No_more_elements
    | C (k, v, m, t) -> l := cons_iter m t; (k, v)

  let enum_backwards_next l () = match !l with
      E -> raise BatEnum.No_more_elements
    | C (k, v, m, t) -> l := rev_cons_iter m t; (k, v)

  let enum_count l () =
    let rec aux n = function
      | E -> n
      | C (_, _, m, t) -> aux (n + 1 + cardinal m) t
    in aux 0 !l

  let enum t =
    let rec make l =
      let l = ref l in
      let clone() = make !l in
      BatEnum.make ~next:(enum_next l) ~count:(enum_count l) ~clone
    in make (cons_iter t E)

  let backwards t =
    let rec make l =
      let l = ref l in
      let clone() = make !l in
      BatEnum.make ~next:(enum_backwards_next l) ~count:(enum_count l) ~clone
    in make (rev_cons_iter t E)

  let keys    t = BatEnum.map fst (enum t)
  let values  t = BatEnum.map snd (enum t)

  let of_enum cmp e = BatEnum.fold (fun m (k, v) -> add k v cmp m) empty e

  let print ?(first="{\n") ?(last="\n}") ?(sep=",\n") ?(kvsep=": ") print_k print_v out t =
    BatEnum.print ~first ~last ~sep (fun out (k,v) -> BatPrintf.fprintf out "%a%s%a" print_k k kvsep print_v v) out (enum t)

  (*We rely on [fold] rather than on ['a implementation] to
    make future changes of implementation in the base
    library's version of [Map] easier to track, even if the
    result is a tad slower.*)
  (* [filter{,i,_map} f t cmp] do not use [cmp] on [t], but only to
     build the result map. The unusual parameter order was chosen to
     reflect this.  *)
  let filterv f t cmp =
    foldi (fun k a acc -> if f a then acc else remove k cmp acc) t t
  let filter f t cmp =
    foldi (fun k a acc -> if f k a then acc else remove k cmp acc) t t
  let filter_map f t cmp =
    foldi (fun k a acc -> match f k a with
      | None   -> acc
      | Some v -> add k v cmp acc) t empty

  let for_all f map =
    let rec loop = function
      | Empty -> true
      | Node (l, k, v, r, _) ->
        f k v && loop l && loop r in
    loop map

  let exists f map =
    let rec loop = function
      | Empty -> false
      | Node (l, k, v, r, _) ->
        f k v || loop l || loop r in
    loop map

  let partition f cmp map =
    let rec loop m1 m2 = function
      | Empty -> (m1,m2)
      | Node (l, k, v, r, _) ->
        let m1, m2 = loop m1 m2 l in
        let m1, m2 = loop m1 m2 r in
        if f k v then
          (add k v cmp m1, m2)
        else
          (m1, add k v cmp m2)
    in
    loop empty empty map

  let choose = min_binding
  (*$= choose
    (empty |> add 0 1 |> add 1 1 |> choose) (empty |> add 1 1 |> add 0 1 |> choose)
   *)

  let choose_opt m =
    try Some (choose m)
    with Not_found -> None

  let any = function
    | Empty -> raise Not_found
    | Node (_, k, v, _, _) -> (k,v)

  let add_carry x d cmp map =
    let rec loop = function
      | Node (l, k, v, r, h) ->
        let c = cmp x k in
        if c = 0 then Node (l, x, d, r, h), Some v
        else if c < 0 then
          let nl,carry = loop l in
          bal nl k v r, carry
        else
          let nr, carry = loop r in
          bal l k v nr, carry
      | Empty -> Node (Empty, x, d, Empty, 1), None in
    loop map

  let modify x f cmp map =
    let rec loop = function
      | Node (l, k, v, r, h) ->
        let c = cmp x k in
        if c = 0 then Node (l, x, f v, r, h)
        else if c < 0 then
          let nl = loop l in
          bal nl k v r
        else
          let nr = loop r in
          bal l k v nr
      | Empty -> raise Not_found
    in
    loop map

  let modify_def v0 x f cmp map =
    let rec loop = function
      | Node (l, k, v, r, h) ->
        let c = cmp x k in
        if c = 0 then Node (l, x, f v, r, h)
        else if c < 0 then
          let nl = loop l in
          bal nl k v r
        else
          let nr = loop r in
          bal l k v nr
      | Empty -> Node (Empty, x, f v0, Empty, 1)
    in
    loop map

  let modify_opt x f cmp map =
    let rec loop = function
      | Node (l, k, v, r, h) ->
        let c = cmp x k in
        if c = 0 then
          match f (Some v) with
          | None -> merge l r
          | Some v' -> Node (l, x, v', r, h)
        else if c < 0 then
          let nl = loop l in
          bal nl k v r
        else
          let nr = loop r in
          bal l k v nr
      | Empty ->
        match f None with
        | None   -> raise Exit (* fast exit *)
        | Some d -> Node (Empty, x, d, Empty, 1)
    in
    try loop map with Exit -> map

  let extract x cmp map =
    let rec loop = function
      | Node (l, k, v, r, _) ->
        let c = cmp x k in
        if c = 0 then v, merge l r else
        if c < 0 then
          let vout, nl = loop l in
          vout, bal nl k v r
        else
          let vout, nr = loop r in
          vout, bal l k v nr
      | Empty -> raise Not_found in
    loop map

  let pop map =
    match map with
    | Empty -> raise Not_found
    | Node (l, k, v, r, _) ->
      (k, v), merge l r

  (* Merge two trees l and r into one.
     All elements of l must precede the elements of r.
     No assumption on the heights of l and r. *)
  let concat t1 t2 =
    match (t1, t2) with
      (Empty, t) -> t
    | (t, Empty) -> t
    | (_, _) ->
      let (x, d) = min_binding t2 in
      join t1 x d (remove_min_binding t2)

  let concat_or_join t1 v d t2 =
    match d with
    | Some d -> join t1 v d t2
    | None -> concat t1 t2

  let merge f cmp12 s1 s2 =
    let rec loop s1 s2 =
      match (s1, s2) with
      | (Empty, Empty) -> Empty
      | (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
        let (l2, d2, r2) = split v1 cmp12 s2 in
        (* TODO force correct evaluation order *)
        concat_or_join (loop l1 l2) v1 (f v1 (Some d1) d2) (loop r1 r2)
      | (_, Node (l2, v2, d2, r2, _h2)) ->
        let (l1, d1, r1) = split v2 cmp12 s1 in
        concat_or_join (loop l1 l2) v2 (f v2 d1 (Some d2)) (loop r1 r2)
      | _ ->
        assert false in
    loop s1 s2

  let merge_diverse f cmp1 s1 cmp2 s2 =
    (* This implementation does not presuppose that the comparison
       function of s1 and s2 are the same. It is necessary in the PMap
       case, were we can't enforce that the same comparison function is
       used on both maps.

       For consistency, we will always return a result built with the
       comparison function of [m1].

       The idea of the algorithm is the following : iterates on keys
       of (s1 union s2), computing the merge result for each
       f k (find_option k s1) (find_option k s2)
       , and adding values to the result s3 accordingly.

       The crucial point is that we need to iterate on both keys of s1
       and s2. There are several possible implementations :

       1. first build the union of the set of keys, then iterate on
       it.

       2. iterate on s1, then reiterate on s2 checking that the key
       wasn't already in s1

       3. iterate on s1, and remove keys from s2 during the traversal,
       then iterate on the remainder of s2.

       Method 1. allocates a temporary map the size of (s1 union s2),
       which I think is too costly. Method 3 may seem better than
       method 2 (as we only have at the end to iterate on the
       remaining keys, instead of dropping almost all keys because
       they were in s1 already), but is actually less efficient : the
       cost of removing is amortized during s1 traversal, but in
       effect we will, for all keys of s2, either remove it (in the
       first phase) or traverse it in the second phase. With method 2,
       we either ignore it or traverse it (both in the second
       phase). As removal induces rebalancing and allocation, it is
       indeed more costly.
       Method 2 only allocations and rebalancing are during the
       building of the final map : s1 and s2 are only looked at, never
       changed. This is optimal memory-wise.

       Those informal justifications ought to be tested with
       a concrete performance measurements, but the current benchmark
       methods, outside the module, don't make it easy to test
       Concrete values directly (as they're hidden by the interface).
       An old benchmark reports than method 2 is sensibly faster than
       method 1 : 2700 op/s vs 951 op/s on the test input.

       This algorithm is still sensibly slower than the 'merge'
       implementation using the same comparison on both maps : a 270%
       performance penalty has been measured (it runs three times
       slower).
    *)
    let first_phase_result =
      foldi (fun k v1 acc ->
        match f k (Some v1) (find_option k cmp2 s2) with
        | None -> acc
        | Some v3 -> add k v3 cmp1 acc)
        s1 empty in
    (* the second phase will return the result *)
    foldi (fun k v2 acc ->
      if mem k cmp1 s1 then acc
      else match f k None (Some v2) with
        | None -> acc
        | Some v3 -> add k v3 cmp1 acc)
      s2 first_phase_result

  (* Checks if a given map is "ordered" wrt. a given comparison
     function. This means that the key are ordered in strictly
     increasing order.

     If [ordered cmp s] holds, [cmp] can be used to search elements in
     the map *even* if it is not the original comparison function that
     was used to build the map; we know that the two comparison
     function "agree" on the present keys. Of course, adding an
     element with one or the other comparison function may break that
     relation.

     The [ordered] function will be useful to choose between different
     implementations having different comparison requirements. For
     example, the implementation of [merge] assuming both maps have
     the same comparison function is much faster than the
     implementation assuming heterogeneous maps. Before calling the
     heterogeneous implementation, one may first check if one of the
     comparison actually orders the other map, and in that case use
     the fast homogeneous implementation instead. This is the
     [heuristic_merge] function.
  *)
  let ordered cmp s =
    if s = Empty then true else
      try
        ignore
          (foldi (fun k _ last_k ->
             if cmp last_k k >= 0 then raise Exit
             else k)
             (remove_min_binding s)
             (fst (min_binding s)));
        true
      with Exit -> false

  (* Maps are considered compatible by their comparison function when either:
     - cmp1 and cmp2 are the *same* function (physical equality)
     - cmp1 is a correct ordering on m2 (see comment in [ordered]) *)
  let compatible_cmp cmp1 _m1 cmp2 m2 =
    cmp1 == cmp2 || ordered cmp1 m2

  (* We first try to see if the comparison functions are compatible.
     If they are, then we use the [merge] function instead of a much
     slower [merge_diverse].

     In the "same comparisons" case, we return a map ordered with
     the given comparison. In the other case, we arbitrarily use the
     comparison function of [m1]. *)
  let heuristic_merge f cmp1 m1 cmp2 m2 =
    if compatible_cmp cmp1 m1 cmp2 m2
    then merge f cmp1 m1 m2
    else merge_diverse f cmp1 m1 cmp2 m2

  (* Binary PMap operations;

     When the comparison function are compatible, we use an efficient
     merge-based implementation.

     Otherwise, we compute the result so that the return comparison
     function is the same as the first map parameter. *)
  let union cmp1 m1 cmp2 m2 =
    if compatible_cmp cmp1 m1 cmp2 m2 then
      let merge_fun _k a b = if a <> None then a else b in
      merge merge_fun cmp2 m2 m1
    else
      foldi (fun k v m -> add k v cmp1 m) m2 m1

  let diff cmp1 m1 cmp2 m2 =
    if compatible_cmp cmp1 m1 cmp2 m2 then
      let merge_fun _k a b = if b <> None then None else a in
      merge merge_fun cmp1 m1 m2
    else
      foldi (fun k _v m -> remove k cmp1 m) m2 m1

  let intersect f cmp1 m1 cmp2 m2 =
    if compatible_cmp cmp1 m1 cmp2 m2 then
      let merge_fun _k a b =
        match a, b with
        | Some v1, Some v2 -> Some (f v1 v2)
        | None, _ | _, None -> None in
      merge merge_fun cmp1 m1 m2
    else
      foldi (fun k v1 m ->
        match find_option k cmp2 m2 with
        | None -> m
        | Some v2 -> add k (f v1 v2) cmp1 m)
        m1 empty

  let add_seq cmp s m =
    BatSeq.fold_left
      (fun m (k, v) -> add k v cmp m)
      m
      s
    
  let of_seq cmp s =
    add_seq cmp s empty

  let rec seq_of_iter m () =
    match m with
    | E -> BatSeq.Nil
    | C(k, v, r, e) ->
       BatSeq.Cons ((k, v), seq_of_iter (cons_iter r e))
      
  let to_seq m =
    seq_of_iter (cons_iter m E)
      
  let rec rev_seq_of_iter m () =
    match m with
    | E -> BatSeq.Nil
    | C(k, v, r, e) ->
       BatSeq.Cons ((k, v), rev_seq_of_iter (rev_cons_iter r e))
      
  let to_rev_seq m =
    rev_seq_of_iter (rev_cons_iter m E)
      
  let to_seq_from cmp k m = 
    seq_of_iter (cons_iter_from cmp k m E)

  let union_stdlib f cmp1 m1 cmp2 m2 =
    let fwrap a b1 b2 =
      match b1, b2 with
      | Some b1, Some b2 -> f a b1 b2
      | x, None
        | None, x -> x in
    heuristic_merge fwrap cmp1 m1 cmp2 m2
    
  let compare ckey cval m1 m2 =
    BatEnum.compare (fun (k1,v1) (k2,v2) -> BatOrd.bin_comp ckey k1 k2 cval v1 v2) (enum m1) (enum m2)
  let equal ckey eq_val m1 m2 =
    BatEnum.equal (fun (k1,v1) (k2,v2) -> ckey k1 k2 = 0 && eq_val v1 v2) (enum m1) (enum m2)
end

module type OrderedType = BatInterfaces.OrderedType

module type S =
sig
  type key
  type +
##V>=4.12## !
  'a t
  val empty: 'a t
  val is_empty: 'a t -> bool
  val cardinal: 'a t -> int
  val add: key -> 'a -> 'a t -> 'a t
  val update_stdlib: key -> ('a option -> 'a option) -> 'a t -> 'a t
  val update: key -> key -> 'a -> 'a t -> 'a t
  val find: key -> 'a t -> 'a
  val find_opt: key -> 'a t -> 'a option
  val find_default: 'a -> key -> 'a t -> 'a
  val find_first: (key -> bool) -> 'a t -> key * 'a
  val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
  val find_last: (key -> bool) -> 'a t -> key * 'a
  val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
  val remove: key -> 'a t -> 'a t
  val remove_exn: key -> 'a t -> 'a t
  val modify: key -> ('a -> 'a) -> 'a t -> 'a t
  val modify_def: 'a -> key -> ('a -> 'a) -> 'a t -> 'a t
  val modify_opt: key -> ('a option -> 'a option) -> 'a t -> 'a t
  val extract : key -> 'a t -> 'a * 'a t
  val pop : 'a t -> (key * 'a) * 'a t
  val mem: key -> 'a t -> bool
  val iter: (key -> 'a -> unit) -> 'a t -> unit
  val map: ('a -> 'b) -> 'a t -> 'b t
  val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
  val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
  val filterv: ('a -> bool) -> 'a t -> 'a t
  val filter: (key -> 'a -> bool) -> 'a t -> 'a t
  val filter_map: (key -> 'a -> 'b option) -> 'a t -> 'b t
  val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
  val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
  val keys : _ t -> key BatEnum.t
  val values: 'a t -> 'a BatEnum.t
  val min_binding : 'a t -> (key * 'a)
  val min_binding_opt : 'a t -> (key * 'a) option
  val pop_min_binding: 'a t -> (key * 'a) * 'a t
  val max_binding : 'a t -> (key * 'a)    
  val max_binding_opt : 'a t -> (key * 'a) option
  val pop_max_binding: 'a t -> (key * 'a) * 'a t
  val choose : 'a t -> (key * 'a)
  val choose_opt : 'a t -> (key * 'a) option
  val any : 'a t -> (key * 'a)
  val split : key -> 'a t -> ('a t * 'a option * 'a t)
  val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
  val singleton : key -> 'a -> 'a t
  val bindings : 'a t -> (key * 'a) list
  val enum  : 'a t -> (key * 'a) BatEnum.t
  val backwards  : 'a t -> (key * 'a) BatEnum.t
  val of_enum: (key * 'a) BatEnum.t -> 'a t
  val for_all: (key -> 'a -> bool) -> 'a t -> bool
  val exists: (key -> 'a -> bool) -> 'a t -> bool
  val merge:
    (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
  val union:
    (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
  val to_seq : 'a t -> (key * 'a) BatSeq.t
  val to_rev_seq : 'a t -> (key * 'a) BatSeq.t
  val to_seq_from :  key -> 'a t -> (key * 'a) BatSeq.t
  val add_seq : (key * 'a) BatSeq.t -> 'a t -> 'a t
  val of_seq : (key * 'a) BatSeq.t -> 'a t
  val to_list : 'a t -> (key * 'a) list
  val of_list : (key * 'a) list -> 'a t
  val add_to_list: key -> 'a -> 'a list t -> 'a list t

  (** {7 Printing}*)

  val print :  ?first:string -> ?last:string -> ?sep:string -> ?kvsep:string ->
    ('a BatInnerIO.output -> key -> unit) ->
    ('a BatInnerIO.output -> 'c -> unit) ->
    'a BatInnerIO.output -> 'c t -> unit
  module Exceptionless : sig
    val find: key -> 'a t -> 'a option
    val choose: 'a t -> (key * 'a) option
    val any: 'a t -> (key * 'a) option
  end

  module Infix : sig
    val (-->) : 'a t -> key -> 'a
    val (<--) : 'a t -> key * 'a -> 'a t
  end

  module Labels : sig
    val add : key:key -> data:'a -> 'a t -> 'a t
    val iter : f:(key:key -> data:'a -> unit) -> 'a t -> unit
    val map : f:('a -> 'b) -> 'a t -> 'b t
    val mapi : f:(key:key -> data:'a -> 'b) -> 'a t -> 'b t
    val filterv: f:('a -> bool) -> 'a t -> 'a t
    val filter: f:(key -> 'a -> bool) -> 'a t -> 'a t
    val fold :
      f:(key:key -> data:'a -> 'b -> 'b) ->
      'a t -> init:'b -> 'b
    val compare: cmp:('a -> 'a -> int) -> 'a t -> 'a t -> int
    val equal: cmp:('a -> 'a -> bool) -> 'a t -> 'a t -> bool

  end
end

module Make(Ord : OrderedType) =
struct
  include Map.Make(Ord)

  (* We break the abstraction of stdlib's Map module by exposing
     it's underlying datatype, which is exactly ((key, 'a)
     Concrete.map). We therefore have O(1) conversion to and from
     Concrete, which allow us to add new features to the Map
     module while reusing stdlib's implementation (and, in fact,
     compiled code) for the old ones.

     If this was ever to be a problem, we could desynchronize our
     Map implementation from stdlib's, simply reusing Concrete
     implementations everywhere. Breaking this abstraction is not
     our fate, it's only a convenient choice for now.
  *)
  type 'a implementation = (key, 'a) Concrete.map

  external t_of_impl: 'a implementation -> 'a t = "%identity"
  external impl_of_t: 'a t -> 'a implementation = "%identity"

  let cardinal t = Concrete.cardinal (impl_of_t t)
  let enum t = Concrete.enum (impl_of_t t)
  let backwards t = Concrete.backwards (impl_of_t t)
  let keys t = Concrete.keys (impl_of_t t)
  let values t = Concrete.values (impl_of_t t)
  let update k1 k2 v2 t = t_of_impl (Concrete.update k1 k2 v2 Ord.compare (impl_of_t t))
  let update_stdlib k f m = t_of_impl (Concrete.update_stdlib k f Ord.compare (impl_of_t m))
  let find_default d k t = Concrete.find_default d k Ord.compare (impl_of_t t)
  let find_opt k t = Concrete.find_option k Ord.compare (impl_of_t t)
  let find_first     f t = Concrete.find_first     f (impl_of_t t)
  let find_first_opt f t = Concrete.find_first_opt f (impl_of_t t)
  let find_last      f t = Concrete.find_last      f (impl_of_t t)
  let find_last_opt  f t = Concrete.find_last_opt  f (impl_of_t t)

  let of_enum e = t_of_impl (Concrete.of_enum Ord.compare e)

  (* In Ocaml 3.11.2, the implementation of stdlib's Map.S.map(i) are
     slightly incorrect in that they don't apply their function
     parameter in increasing key order, as advertised in the
     documentation. This was fixed in 3.12.

     http://caml.inria.fr/mantis/view.php?id=4012

     We replace map(i) implementations with the ones derived from
     Concrete, to have the expected evaluation order even with 3.11.
  *)
  let mapi f t = t_of_impl (Concrete.mapi f (impl_of_t t))
  let map f t = t_of_impl (Concrete.map f (impl_of_t t))

  let print ?first ?last ?sep ?kvsep print_k print_v out t =
    Concrete.print ?first ?last ?sep ?kvsep print_k print_v out (impl_of_t t)

  let filterv f t =
    t_of_impl (Concrete.filterv f (impl_of_t t) Ord.compare)
  let filter f t =
    t_of_impl (Concrete.filter f (impl_of_t t) Ord.compare)
  let filter_map f t =
    t_of_impl (Concrete.filter_map f (impl_of_t t) Ord.compare)

  let exists f t = Concrete.exists f (impl_of_t t)
  let for_all f t = Concrete.for_all f (impl_of_t t)

  let min_binding t = Concrete.min_binding (impl_of_t t)
  let pop_min_binding t =
    let mini, rest = Concrete.pop_min_binding (impl_of_t t) in
    (mini, t_of_impl rest)
  let max_binding t = Concrete.max_binding (impl_of_t t)
  let pop_max_binding t =
    let maxi, rest = Concrete.pop_max_binding (impl_of_t t) in
    (maxi, t_of_impl rest)

  let max_binding_opt t = Concrete.max_binding_opt (impl_of_t t)
  let min_binding_opt t = Concrete.min_binding_opt (impl_of_t t)

  let choose t = Concrete.choose (impl_of_t t)
  let choose_opt t = Concrete.choose_opt (impl_of_t t)
  let any t = Concrete.any (impl_of_t t)

  let split k t =
    let l, v, r = Concrete.split k Ord.compare (impl_of_t t) in
    (t_of_impl l, v, t_of_impl r)

  let partition p t =
    let l, r = Concrete.partition p Ord.compare (impl_of_t t) in
    (t_of_impl l, t_of_impl r)

  let remove_exn x m =
    t_of_impl (Concrete.remove_exn x Ord.compare (impl_of_t m))

  let modify x f m = t_of_impl (Concrete.modify x f Ord.compare (impl_of_t m))

  let modify_def v0 x f m =
    t_of_impl (Concrete.modify_def v0 x f Ord.compare (impl_of_t m))

  let modify_opt x f m =
    t_of_impl (Concrete.modify_opt x f Ord.compare (impl_of_t m))

  let extract k t =
    let (v, t') = Concrete.extract k Ord.compare (impl_of_t t) in
    (v, t_of_impl t')

  let pop t =
    let kv, t' = Concrete.pop (impl_of_t t) in
    kv, t_of_impl t'

  let singleton k v = t_of_impl (Concrete.singleton k v)

  let bindings t = Concrete.bindings (impl_of_t t)

  let union f m1 m2 = t_of_impl (Concrete.union_stdlib f Ord.compare (impl_of_t m1) Ord.compare (impl_of_t m2))

  let merge f t1 t2 =
    t_of_impl (Concrete.merge f Ord.compare (impl_of_t t1) (impl_of_t t2))

  let of_seq s = t_of_impl (Concrete.of_seq Ord.compare s)
  let add_seq s m = t_of_impl (Concrete.add_seq Ord.compare s (impl_of_t m))
  let to_seq m = Concrete.to_seq (impl_of_t m)
  let to_rev_seq m = Concrete.to_rev_seq (impl_of_t m)
  let to_seq_from k m = Concrete.to_seq_from Ord.compare k (impl_of_t m)

  let add_to_list x data m =
    let add = function None -> Some [data] | Some l -> Some (data :: l) in
    update_stdlib x add m

  let to_list = bindings
  let of_list bs = List.fold_left (fun m (k, v) -> add k v m) empty bs

  module Exceptionless =
  struct
    let find k t = try Some (find k t) with Not_found -> None
    let choose t = try Some (choose t) with Not_found -> None
    let any t = try Some (any t) with Not_found -> None
  end

  module Infix =
  struct
    let (-->) map key = find key map
    let (<--) map (key, value) = add key value map
  end

  module Labels =
  struct
    let add ~key ~data t = add key data t
    let iter ~f t = iter (fun key data -> f ~key ~data) t
    let map ~f t = map f t
    let mapi ~f t = mapi (fun key data -> f ~key ~data) t
    let fold ~f t ~init = fold (fun key data acc -> f ~key ~data acc) t init
    let compare ~cmp a b = compare cmp a b
    let equal ~cmp a b = equal cmp a b
    let filterv ~f = filterv f
    let filter ~f = filter f
  end

end

module Int = Make (BatInt)
module Int32 = Make (BatInt32)
module Int64 = Make (BatInt64)
module Nativeint = Make (BatNativeint)
module Float = Make (BatFloat)
module Char = Make (BatChar)
module String = Make (BatString)

(**
 * PMap - Polymorphic maps
*)

type ('k, 'v) t = ('k, 'v) Concrete.map

let empty = Concrete.empty
let is_empty = Concrete.is_empty

(*$T is_empty
  is_empty empty
  not(is_empty (empty |> add 1 1))
 *)

let add x d m = Concrete.add x d Pervasives.compare m

let update k1 k2 v2 m = Concrete.update k1 k2 v2 Pervasives.compare m

let update_stdlib k f m = Concrete.update_stdlib k f Pervasives.compare m

(*$T update_stdlib
  let of_list l = of_enum (BatList.enum l) in \
  equal (=) (update_stdlib 1 (fun x -> assert(x = Some 1); Some 3) (of_list [1,1; 2,2]))    (of_list [1,3;2,2])
  let of_list l = of_enum (BatList.enum l) in \
  equal (=) (update_stdlib 3 (fun x -> assert(x = None);   Some 3) (of_list [1,1; 2,2]))    (of_list [1,1;2,2;3,3])
  let of_list l = of_enum (BatList.enum l) in \
  equal (=) (update_stdlib 1 (fun x -> assert(x = Some 1); None)   (of_list [1,1; 2,2]))    (of_list [2,2])
  let of_list l = of_enum (BatList.enum l) in \
  let s = (of_list [1,1; 2,2]) in (update_stdlib 3 (fun x -> assert(x = None  ); None  ) s) == s
  let of_list l = of_enum (BatList.enum l) in \
  let s = (of_list [1,1; 2,2]) in (update_stdlib 1 (fun x -> assert(x = Some 1); Some 1) s) == s
 *)

let find x m = Concrete.find x Pervasives.compare m

(*$T add; find
  empty |> add 1 true |> add 2 false |> find 1
  empty |> add 1 true |> add 2 false |> find 2 |> not
  empty |> add 1 true |> add 2 false |> find 1
  empty |> add 1 true |> add 2 false |> find 2 |> not
  empty |> add 2 'y' |> add 1 'x' |> find 1 = 'x'
  empty |> add 2 'y' |> add 1 'x' |> find 2 = 'y'
*)

let find_opt x m = Concrete.find_option x Pervasives.compare m

(*$T find_opt
    find_opt  4 (add 1 2 empty) = None
    find_opt 1 (add 1 2 empty) = Some 2
*)

let find_default def x m =
  Concrete.find_default def x Pervasives.compare m

(*$T find_default
    find_default 3 4 (add 1 2 empty) = 3
    find_default 3 1 (add 1 2 empty) = 2
 *)

let find_first f map = Concrete.find_first f map
let find_first_opt f map = Concrete.find_first_opt f map
let find_last f map = Concrete.find_last f map
let find_last_opt f map = Concrete.find_last_opt f map

(*$Q find ; add
  (Q.list Q.small_int) (fun xs -> \
  let of_list xs y m0 = List.fold_left (fun acc x -> add x y acc) m0 xs in \
  of_list (List.filter ((<>) 100) xs) false (singleton 100 true) |> find 100)
*)


let remove x m = Concrete.remove x Pervasives.compare m

(*$Q add ; remove
  (Q.list Q.small_int) (fun xs -> \
  let of_list xs y m0 = List.fold_left (fun acc x -> add x y acc) m0 xs in \
  List.fold_left (fun acc x -> remove x acc) (of_list xs true empty) xs |> is_empty)
*)

let remove_exn x m = Concrete.remove_exn x Pervasives.compare m

(*$Q add ; remove_exn
  (Q.list Q.small_int) (fun xs -> \
  let xs = List.unique xs in \
  let of_list xs y m0 = List.fold_left (fun acc x -> add x y acc) m0 xs in \
  List.fold_left (fun acc x -> remove_exn x acc) (of_list xs true empty) xs |> is_empty)
*)
(*$T remove_exn
  try remove_exn 1 empty |> ignore ; false with Not_found -> true
*)

let mem x m = Concrete.mem x Pervasives.compare m

let iter = Concrete.iter
let map = Concrete.map
let mapi = Concrete.mapi
let fold = Concrete.fold
let foldi = Concrete.foldi
let at_rank_exn = Concrete.at_rank_exn

(*$Q foldi
  (Q.list Q.small_int) (fun xs -> \
  let m = List.fold_left (fun acc x -> add x true acc) empty xs in \
  foldi (fun x _y acc -> x :: acc) m [] |> List.rev = List.sort_unique BatInt.compare xs)
*)

let enum = Concrete.enum

(*$Q keys
  (Q.list Q.small_int) (fun xs -> \
  List.fold_left (fun acc x -> add x true acc) \
    empty xs |> keys |> List.of_enum \
  = List.sort_unique BatInt.compare xs)
*)

let backwards = Concrete.backwards

let keys    t = BatEnum.map fst (enum t)
let values  t = BatEnum.map snd (enum t)

let of_enum e = Concrete.of_enum Pervasives.compare e

let print = Concrete.print

let filterv  f t = Concrete.filterv f t Pervasives.compare
let filter f t = Concrete.filter f t Pervasives.compare
let filter_map f t = Concrete.filter_map f t Pervasives.compare

let choose = Concrete.choose
let choose_opt = Concrete.choose_opt
let any = Concrete.any
let max_binding = Concrete.max_binding
let min_binding = Concrete.min_binding
let max_binding_opt = Concrete.max_binding_opt
let min_binding_opt = Concrete.min_binding_opt
let pop_min_binding = Concrete.pop_min_binding
let pop_max_binding = Concrete.pop_max_binding
                    
(*$T pop_min_binding
  (empty |> add 1 true |> pop_min_binding) = ((1, true), empty)
  (empty |> add 1 true |> add 2 false |> pop_min_binding) = \
  ((1, true), add 2 false empty)
  try ignore (pop_min_binding empty); false with Not_found -> true
*)

(*$T pop_max_binding
  (empty |> add 1 true |> pop_max_binding) = ((1, true), empty)
  (empty |> add 1 true |> add 2 false |> pop_max_binding) = \
  ((2, false), add 1 true empty)
  try ignore (pop_max_binding empty); false with Not_found -> true
*)

(*$T choose
  let of_list l = of_enum (BatList.enum l) in \
  (1,1) = choose (of_list [1,1])
  try ignore(choose empty); false with Not_found -> true
 *)
                    
(*$T choose_opt
  let of_list l = of_enum (BatList.enum l) in \
  Some (1,1) = choose_opt (of_list [1,1])
  None = choose_opt (empty)
 *)

(*$T max_binding
  let of_list l = of_enum (BatList.enum l) in \
  (3,3) = max_binding (of_list [1,1;2,2;3,3])
  try ignore(max_binding empty); false with Not_found -> true
 *)
                    
(*$T max_binding_opt
  let of_list l = of_enum (BatList.enum l) in \
  Some (3,3) = max_binding_opt (of_list [1,1;2,2;3,3])
  None = max_binding_opt empty
 *)
                    
(*$T min_binding
  let of_list l = of_enum (BatList.enum l) in \
  (1,1) = min_binding (of_list [1,1;2,2;3,3])
  try ignore(min_binding empty); false with Not_found -> true
 *)
                    
(*$T min_binding_opt
  let of_list l = of_enum (BatList.enum l) in \
  Some (1,1) = min_binding_opt (of_list [1,1;2,2;3,3])
  None = min_binding_opt empty
 *)

(*$T add
  let s = empty |> add 1 1 |> add 2 2 in s == (s |> add 2 2)
  *)

(*$T remove
  let s = empty |> add 1 1 |> add 2 2 in s == (s |> remove 4)
  *)

(*$T update
  let s = empty |> add 1 1 |> add 2 2 in \
  s == (s |> update 2 2 2)
  *)

(*$T update_stdlib
  let s = empty |> add 1 1 |> add 2 2 in \
  s == (s |> update_stdlib 2 (fun _ -> Some 2))
  *)

(*$T filter
  let s = empty |> add 1 1 |> add 2 2 in \
  s == (filter (fun _ _ -> true) s)
  *)

                    
let of_seq s =
  Concrete.of_seq Pervasives.compare s

let add_seq s m =
  Concrete.add_seq Pervasives.compare s m

let to_seq = Concrete.to_seq
let to_rev_seq = Concrete.to_rev_seq

let to_seq_from x m =
  Concrete.to_seq_from Pervasives.compare x m

let union_stdlib f m1 m2 = Concrete.union_stdlib f Pervasives.compare m1 Pervasives.compare m2
(*$T union_stdlib
  equal (=) (union_stdlib (fun _ -> failwith "must not be called") empty empty) empty
  let of_list l = of_enum (BatList.enum l) in \
  equal (=) (union_stdlib (fun _ -> failwith "must not be called") (of_list [1,1;2,2]) empty) (of_list [1,1;2,2])
  let of_list l = of_enum (BatList.enum l) in \
  equal (=) (union_stdlib (fun _ -> failwith "must not be called") empty (of_list [1,1;2,2])) (of_list [1,1;2,2])
  let of_list l = of_enum (BatList.enum l) in \
  equal (=) (union_stdlib (fun _ -> failwith "must not be called") (of_list [3,3;4,4]) (of_list [1,1;2,2])) (of_list [1,1;2,2;3,3;4,4])
 *)

let singleton k v = Concrete.singleton k v

let for_all = Concrete.for_all
let exists = Concrete.exists

let partition f m = Concrete.partition f Pervasives.compare m
let cardinal = Concrete.cardinal

let split k m = Concrete.split k Pervasives.compare m

let add_carry x d m = Concrete.add_carry x d Pervasives.compare m
let modify x f m = Concrete.modify x f Pervasives.compare m

let modify_def v0 x f m = Concrete.modify_def v0 x f Pervasives.compare m

let modify_opt x f m = Concrete.modify_opt x f Pervasives.compare m
(*$T modify_opt
  empty |> add 1 false |> \
  modify_opt 1 (function Some false -> Some true | _ -> assert false) |> \
  find 1
  empty |> add 1 true |> \
  modify_opt 1 (function Some true -> None | _ -> assert false) |> \
  mem 1 |> not
*)

let extract x m = Concrete.extract x Pervasives.compare m

let pop = Concrete.pop

let split k m = Concrete.split k Pervasives.compare m

(* We can't compare external primitives directly using the physical equality
   operator, since two different occurrences of an external primitive are two
   different closures. So we first make a local binding of [Pervasives.compare]
   and only then pass it to corresponding functions from Concrete. This way the
   physical equality check in [compatible_cmp] will work as needed *)

let union m1 m2 =
  let comp = Pervasives.compare in
  Concrete.union comp m1 comp m2

(*$T union
  let m1 = empty |> add 1 1 |> add 2 2 in \
  let m2 = empty |> add 2 20 |> add 3 30 in \
  (union m1 m2 |> find 2 = 20) && (union m2 m1 |> find 2 = 2)
 *)

let union_stdlib f m1 m2 =
  Concrete.union_stdlib f Pervasives.compare m1 Pervasives.compare m2

let diff m1 m2 =
  let comp = Pervasives.compare in
  Concrete.diff comp m1 comp m2

let intersect merge m1 m2 =
  let comp = Pervasives.compare in
  Concrete.intersect merge comp m1 comp m2


let merge f m1 m2 = Concrete.merge f Pervasives.compare m1 m2

let bindings = Concrete.bindings

let compare cmp_val m1 m2 =
  Concrete.compare Pervasives.compare cmp_val m1 m2

let equal eq_val m1 m2 = Concrete.equal Pervasives.compare eq_val m1 m2

module Exceptionless =
struct
  let find k m = try Some (find k m) with Not_found -> None
  let choose m = try Some (choose m) with Not_found -> None
  let any m = try Some (any m) with Not_found -> None
end

module Infix =
struct
  let (-->) map key = find key map
  let (<--) map (key, value) = add key value map
end

include Infix

module PMap = struct (*$< PMap *)
  (**
     * PMap - Polymorphic maps
  *)

  type ('k, 'v) t =
    {
      cmp : 'k -> 'k -> int;
      map : ('k, 'v) Concrete.map;
    }

  let create cmp = { cmp = cmp; map = Concrete.empty }
  let get_cmp {cmp; _} = cmp

  (*$T get_cmp
    get_cmp (create BatInt.compare) == BatInt.compare
  *)

  let empty = { cmp = Pervasives.compare; map = Concrete.empty }
  let get_cmp {cmp; _} = cmp
  let is_empty x = x.map = Concrete.Empty

  let add x d m =
    let newmap = Concrete.add x d m.cmp m.map in
    if newmap == m.map
    then m
    else { m with map = newmap }

  let update k1 k2 v2 m =
    let newmap = Concrete.update k1 k2 v2 m.cmp m.map in
    if newmap == m.map
    then m
    else { m with map = newmap }

  let update_stdlib k f m =
    let newmap = Concrete.update_stdlib k f m.cmp m.map in
    if newmap == m.map
    then m
    else { m with map = newmap }

  let find x m =
    Concrete.find x m.cmp m.map

  let find_opt x m =
    Concrete.find_option x m.cmp m.map

  let find_default def x m =
    Concrete.find_default def x m.cmp m.map

  (*$T add; find
    empty |> add 1 true |> add 2 false |> find 1
    empty |> add 1 true |> add 2 false |> find 2 |> not
    create BatInt.compare |> add 1 true |> add 2 false |> find 1
    create BatInt.compare |> add 1 true |> add 2 false |> find 2 |> not
    empty |> add 2 'y' |> add 1 'x' |> find 1 = 'x'
    empty |> add 2 'y' |> add 1 'x' |> find 2 = 'y'
  *)

  (*$T find_default
    find_default 3 4 (add 1 2 empty) = 3
    find_default 3 1 (add 1 2 empty) = 2
  *)

  let find_first f map = Concrete.find_first f map.map
  let find_first_opt f map = Concrete.find_first_opt f map.map
  let find_last f map = Concrete.find_last f map.map
  let find_last_opt f map = Concrete.find_last_opt f map.map

    
  (*$T update
    add 1 false empty |> update 1 1 true |> find 1
    add 1 false empty |> update 1 2 true |> find 2
    try ignore (update 1 1 false empty); false with Not_found -> true
    empty |> add 1 11 |> add 2 22 |> update 2 2 222 |> find 2 = 222
    let m = empty |> add 1 11 |> add 2 22 in \
    try ignore (m |> update 3 4 555); false with Not_found -> true
  *)

  (*$Q find ; add
    (Q.list Q.small_int) (fun xs -> \
    let of_list xs y m0 = List.fold_left (fun acc x -> add x y acc) m0 xs in \
    of_list (List.filter ((<>) 100) xs) false (singleton 100 true) |> find 100)
  *)


  let remove x m =
    { m with map = Concrete.remove x m.cmp m.map }

  (*$Q add ; remove
    (Q.list Q.small_int) (fun xs -> \
    let of_list xs y m0 = List.fold_left (fun acc x -> add x y acc) m0 xs in \
    List.fold_left (fun acc x -> remove x acc) (of_list xs true empty) xs |> is_empty)
  *)
  let remove_exn x m =
    { m with map = Concrete.remove_exn x m.cmp m.map }

  (*$Q add ; remove_exn
    (Q.list Q.small_int) (fun xs -> \
    let xs = List.unique xs in \
    let of_list xs y m0 = List.fold_left (fun acc x -> add x y acc) m0 xs in \
    List.fold_left (fun acc x -> remove_exn x acc) (of_list xs true empty) xs |> is_empty)
  *)
  (*$T remove_exn
    add 1 false empty |> remove_exn 1 |> mem 1 |> not
    try remove_exn 1 empty |> ignore ; false with Not_found -> true
  *)

  let mem x m =
    Concrete.mem x m.cmp m.map

  let iter f m =
    Concrete.iter f m.map

  let map f m =
    { m with map = Concrete.map f m.map }

  let mapi f m =
    { m with map = Concrete.mapi f m.map }

  let fold f m acc =
    Concrete.fold f m.map acc

  let foldi f m acc =
    Concrete.foldi f m.map acc

  (*$Q foldi
    (Q.list Q.small_int) (fun xs -> \
    let m = List.fold_left (fun acc x -> add x true acc) (create BatInt.compare) xs in \
    foldi (fun x _y acc -> x :: acc) m [] |> List.rev = List.sort_unique BatInt.compare xs)
  *)

  let at_rank_exn i m =
    Concrete.at_rank_exn i m.map

  let enum t = Concrete.enum t.map

  (*$Q keys
    (Q.list Q.small_int) (fun xs -> \
    List.fold_left (fun acc x -> add x true acc) \
    (create BatInt.compare) xs |> keys |> List.of_enum \
    = List.sort_unique BatInt.compare xs)
  *)

  let backwards t = Concrete.backwards t.map

  let keys    t = BatEnum.map fst (enum t)
  let values  t = BatEnum.map snd (enum t)

  let of_enum ?(cmp = Pervasives.compare) e =
    { cmp = cmp; map = Concrete.of_enum cmp e }

  let print ?first ?last ?sep ?kvsep print_k print_v out t =
    Concrete.print ?first ?last ?sep ?kvsep print_k print_v out t.map

  let filterv  f t = { t with map = Concrete.filterv f t.map t.cmp }
  let filter_map f t = { t with map = Concrete.filter_map f t.map t.cmp }
  let filter f t =
    let newmap =  Concrete.filter f t.map t.cmp in
    if newmap == t.map
    then t
    else { t with map = newmap }

  let max_binding t = Concrete.max_binding t.map
  let min_binding t = Concrete.min_binding t.map
  let max_binding_opt t = Concrete.max_binding_opt t.map
  let min_binding_opt t = Concrete.min_binding_opt t.map
  let pop_min_binding m =
    let mini, rest = Concrete.pop_min_binding m.map in
    (mini, { m with map = rest })
  let pop_max_binding m =
    let maxi, rest = Concrete.pop_max_binding m.map in
    (maxi, { m with map = rest })

  let singleton ?(cmp = Pervasives.compare) k v =
    { cmp = cmp; map = Concrete.singleton k v }

  let for_all f m = Concrete.for_all f m.map

  let exists f m = Concrete.exists f m.map

  let partition f m =
    let l, r = Concrete.partition f m.cmp m.map in
    { m with map = l }, { m with map = r }

  let cardinal m = Concrete.cardinal m.map

  let choose m = Concrete.choose m.map
  let choose_opt m = Concrete.choose_opt m.map
  let any m = Concrete.any m.map

  let split k m =
    let (l, v, r) = Concrete.split k m.cmp m.map in
    { m with map = l }, v, { m with map = r }

  let add_carry x d m =
    let map', carry = Concrete.add_carry x d m.cmp m.map in
    { m with map = map' }, carry

  let modify x f m =
    { m with map = Concrete.modify x f m.cmp m.map }

  let modify_def v0 x f m =
    { m with map = Concrete.modify_def v0 x f m.cmp m.map }

  let modify_opt x f m =
    { m with map = Concrete.modify_opt x f m.cmp m.map }

  let extract x m =
    let out, map' = Concrete.extract x m.cmp m.map in
    out, { m with map = map' }

  let pop m =
    let out, map' = Concrete.pop m.map in
    out, { m with map = map' }

  let split k m =
    let (l, v, r) = Concrete.split k m.cmp m.map in
    { m with map = l }, v, { m with map = r }

  let union m1 m2 =
    { m1 with map = Concrete.union m1.cmp m1.map m2.cmp m2.map }

  let diff m1 m2 =
    { m1 with map = Concrete.diff m1.cmp m1.map m2.cmp m2.map }

  let intersect merge m1 m2 =
    { m1 with map = Concrete.intersect merge m1.cmp m1.map m2.cmp m2.map }

  let merge f m1 m2 =
    { m1 with map = Concrete.heuristic_merge f m1.cmp m1.map m2.cmp m2.map }

  let merge_unsafe f m1 m2 =
    { m1 with map = Concrete.merge f m1.cmp m1.map m2.map }

  let of_seq ?(cmp = Pervasives.compare) s =
    { map = Concrete.of_seq cmp s; cmp = cmp }
    
  let to_seq m = Concrete.to_seq m.map

  let to_rev_seq m = Concrete.to_rev_seq m.map
             
  let to_seq_from k m =
    Concrete.to_seq_from m.cmp k m.map
                      
  let add_seq s m =
    { m with map = Concrete.add_seq m.cmp s m.map }

  let union_stdlib f m1 m2 =
    { m1 with map = Concrete.union_stdlib f m1.cmp m1.map m2.cmp m2.map }

  let bindings m =
    Concrete.bindings m.map

  let compare cmp_val m1 m2 = Concrete.compare m1.cmp cmp_val m1.map m2.map
  let equal eq_val m1 m2 = Concrete.equal m1.cmp eq_val m1.map m2.map

  module Exceptionless =
  struct
    let find k m = try Some (find k m) with Not_found -> None
    let choose m = try Some (choose m) with Not_found -> None
    let any m = try Some (any m) with Not_found -> None
  end

  module Infix =
  struct
    let (-->) map key = find key map
    let (<--) map (key, value) = add key value map
  end

  include Infix
end (*$>*)
OCaml

Innovation. Community. Security.