package batteries
A community-maintained standard library extension
Install
Dune Dependency
Authors
Maintainers
Sources
v3.9.0.tar.gz
md5=ea26b5c72e6731e59d856626049cca4d
sha512=55975b62c26f6db77433a3ac31f97af609fc6789bb62ac38b267249c78fd44ff37fe81901f1cf560857b9493a6046dd37b0d1c0234c66bd59e52843aac3ce6cb
doc/src/batteries.unthreaded/batDeque.ml.html
Source file batDeque.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
(* * Deque -- functional double-ended queues * Copyright (C) 2011 Batteries Included Development Team * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) type 'a dq = { front : 'a list ; flen : int ; rear : 'a list ; rlen : int } let invariants t = assert (List.length t.front = t.flen); assert (List.length t.rear = t.rlen) type 'a t = 'a dq type 'a enumerable = 'a t type 'a mappable = 'a t let empty = { front = [ ] ; flen = 0 ; rear = [ ] ; rlen = 0 } let size q = q.flen + q.rlen let cons x q = { q with front = x :: q.front ; flen = q.flen + 1 } (*$T cons size (cons 1 empty) = 1 to_list(cons 1 empty) <> to_list(cons 2 empty) *) (*$Q cons (Q.list Q.pos_int) ~count:10 \ (fun l -> List.fold_left (fun q x -> cons x q) empty l |> to_list = List.rev l) *) let snoc q x = { q with rear = x :: q.rear ; rlen = q.rlen + 1 } (*$T cons; snoc to_list(cons 1 empty) = to_list(snoc empty 1) to_list(cons 1 (cons 2 empty)) = (to_list (snoc (snoc empty 2) 1) |> List.rev) *) (*$Q snoc (Q.list Q.int) (fun l -> List.fold_left snoc empty l |> to_list = l) *) let front q = match q with | {front = h :: front; flen = flen; _} -> Some (h, { q with front = front ; flen = flen - 1 }) | {rear = []; _} -> None | {rear = rear; rlen = rlen; _} -> (* beware: when rlen = 1, we must put the only element of * the deque at the front (ie new_flen = 1, new_rlen = 0) *) let new_flen = (rlen + 1) / 2 in let new_rlen = rlen / 2 in (* we split the non empty list in half because if we transfer * everything to the front, then a call to rear would also * transfer everything to the rear etc. -> no amortization * (but we could transfer 3/4 instead of 1/2 of the list for instance) *) let rear, rev_front = BatList.split_at new_rlen rear in let front = List.rev rev_front in Some (List.hd front, { front = List.tl front ; flen = new_flen - 1 ; rear = rear ; rlen = new_rlen }) (*$T front front(cons 1 empty) = Some(1,empty) front(snoc empty 1) = Some(1,empty) *) let rear q = match q with | {rear = t :: rear; rlen = rlen; _} -> Some ({ q with rear = rear ; rlen = rlen - 1 }, t) | {front = []; _} -> None | {front = front; flen = flen; _} -> let new_rlen = (flen + 1) / 2 in let new_flen = flen / 2 in let front, rev_rear = BatList.split_at new_flen front in let rear = List.rev rev_rear in Some ({ front = front ; flen = new_flen ; rear = List.tl rear ; rlen = new_rlen - 1 }, List.hd rear) (*$T rear match rear(empty |> cons 1 |> cons 2) with | Some(_, 1) -> true | _ -> false *) let eq ?(eq=(=)) q1 q2 = (* lexicographic comparison of the lists (front1 @ rev rear1) and (front2 @ rev rear2). If front1 is a prefix of front2, then (rev rear1) is used to continue. Reversing rear lists is only used if front lists are equal. *) let rec eq_lexico front1 rear1 front2 rear2 = match front1, front2 with | [], [] -> begin match rear1, rear2 with | [], [] -> true | _::_, _::_ -> eq_lexico rear1 [] rear2 [] | _ -> false end | _::_, [] -> begin match rear2 with | [] -> false | _::_ -> eq_lexico front1 rear1 (List.rev rear2) [] end | [], _::_ -> begin match rear1 with | [] -> false | _::_ -> eq_lexico (List.rev rear1) [] front2 rear2 end | x1::front1', x2::front2' -> eq x1 x2 && eq_lexico front1' rear1 front2' rear2 in q1.flen + q1.rlen = q2.flen + q2.rlen && eq_lexico q1.front q1.rear q2.front q2.rear let rev q = { front = q.rear ; flen = q.rlen ; rear = q.front ; rlen = q.flen } (*$Q rev (Q.list Q.pos_int) (fun l -> let q = of_list l in rev q |> to_list = List.rev l) *) (*$T eq eq (empty |> cons 1 |> cons 2 |> cons 3) (rev (empty |> cons 3 |> cons 2 |> cons 1)) not (eq (empty |> cons 1 |> cons 2) (empty |> cons 2 |> cons 1)) *) let of_list l = { front = l ; flen = List.length l ; rear = [] ; rlen = 0 } (*$Q eq (Q.list Q.pos_int) ~count:20 (fun l -> eq (of_list l) (rev (of_list (List.rev l)))) *) let is_empty q = size q = 0 let append q r = if size q > size r then { q with rlen = q.rlen + size r ; rear = BatList.append r.rear (List.rev_append r.front q.rear) } else { r with flen = r.flen + size q ; front = BatList.append q.front (List.rev_append q.rear r.front) } let append_list q l = let n = List.length l in { q with rear = List.rev_append l q.rear; rlen = q.rlen + n } let prepend_list l q = let n = List.length l in { q with front = BatList.append l q.front ; flen = q.flen + n } let rotate_forward q = match front q with | Some (h, d) -> snoc d h | None -> q (*$T rotate_forward to_list (rotate_forward empty) = [] to_list (rotate_forward (of_list [1; 2; 3])) = [2; 3; 1] *) let rotate_backward q = match rear q with | Some (t, d) -> cons d t | None -> q (*$T rotate_backward to_list (rotate_backward empty) = [] to_list (rotate_backward (of_list [1; 2; 3])) = [3; 1; 2] *) let at ?(backwards=false) q n = let size_front = q.flen in let size_rear = q.rlen in if n < 0 || n >= size_rear + size_front then None else Some ( if backwards then if n < size_rear then BatList.at q.rear n else BatList.at q.front (size_front - 1 - (n - size_rear)) else if n < size_front then BatList.at q.front n else BatList.at q.rear (size_rear - 1 - (n - size_front)) ) let map f q = let rec go q r = match front q with | None -> r | Some (x, q) -> go q (snoc r (f x)) in go q empty let mapi f q = let rec go n q r = match front q with | None -> r | Some (x, q) -> go (n + 1) q (snoc r (f n x)) in go 0 q empty let iter f q = let rec go q = match front q with | None -> () | Some (x, q) -> f x ; go q in go q let iteri f q = let rec go n q = match front q with | None -> () | Some (x, q) -> f n x ; go (n + 1) q in go 0 q let rec fold_left fn acc q = match front q with | None -> acc | Some (f, q) -> fold_left fn (fn acc f) q let rec fold_right fn q acc = match rear q with | None -> acc | Some (q, r) -> fold_right fn q (fn r acc) let to_list q = BatList.append q.front (BatList.rev q.rear) let find ?(backwards=false) test q = let rec spin k f r = match f with | [] -> begin match r with | [] -> None | _ -> spin k (List.rev r) [] end | x :: f -> if test x then Some (k, x) else spin (k + 1) f r in if backwards then spin 0 q.rear q.front else spin 0 q.front q.rear let rec enum q = let cur = ref q in let next () = match front !cur with | None -> raise BatEnum.No_more_elements | Some (x, q) -> cur := q ; x in let count () = size !cur in let clone () = enum !cur in BatEnum.make ~next ~count ~clone let of_enum e = BatEnum.fold snoc empty e (*$Q enum (Q.list Q.int) (fun l -> List.of_enum (enum (List.fold_left snoc empty l)) = l) *)(*$Q of_enum (Q.list Q.int) (fun l -> to_list (of_enum (List.enum l)) = l) *) let print ?(first="[") ?(last="]") ?(sep="; ") elepr out dq = let rec spin dq = match front dq with | None -> () | Some (a, dq) when size dq = 0 -> elepr out a | Some (a, dq) -> elepr out a ; BatInnerIO.nwrite out sep ; spin dq in BatInnerIO.nwrite out first ; spin dq ; BatInnerIO.nwrite out last (*$Q print (Q.list Q.int) (fun l -> \ BatIO.to_string (print ~first:"<" ~last:">" ~sep:"," Int.print) (of_list l) \ = BatIO.to_string (List.print ~first:"<" ~last:">" ~sep:"," Int.print) l) *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>