package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.kzg/polynomial_commitment.ml.html
Source file polynomial_commitment.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
open Bls open Utils module Commit = Commitment.Commit module Commitment = Commitment.Commitment_G1 (* Implements a batched version of the KZG10 scheme, described in Section 3 of the PlonK paper: https://eprint.iacr.org/2019/953.pdf *) module Public_parameters = struct (* Structured Reference String - srs1 : [[1]₁, [x¹]₁, …, [x^(d-1)]₁] ; - encoding_1 : [1]₂; - encoding_x : [x]₂ *) type prover = {srs1 : Srs_g1.t; encoding_1 : G2.t; encoding_x : G2.t} [@@deriving repr] type verifier = {encoding_1 : G2.t; encoding_x : G2.t} [@@deriving repr] type commitment = Commitment.public_parameters type setup_params = int let setup_verifier srs_g2 = let encoding_1 = Srs_g2.get srs_g2 0 in let encoding_x = Srs_g2.get srs_g2 1 in {encoding_1; encoding_x} let setup_prover (srs_g1, srs_g2) = let {encoding_1; encoding_x} = setup_verifier srs_g2 in {srs1 = srs_g1; encoding_1; encoding_x} let setup _ (srs, _) = let prv = setup_prover srs in let vrf = setup_verifier (snd srs) in (* TODO change the lens ? *) let transcript = Transcript.of_srs ~len1:5 ~len2:5 srs in (prv, vrf, transcript) let get_commit_parameters {srs1; _} = srs1 end (* polynomials to be committed *) type secret = Commitment.secret (* maps evaluation point names to evaluation point values *) type query = Scalar.t SMap.t [@@deriving repr] (* maps evaluation point names to (map from polynomial names to evaluations) *) type answer = Scalar.t SMap.t SMap.t [@@deriving repr] type proof = G1.t SMap.t [@@deriving repr] let commit ?all_keys pp = Commitment.commit ?all_keys Public_parameters.(pp.srs1) (* compute W := (f(x) - s) / (x - z), where x is the srs secret exponent, for every evaluation point [zname], key of the [query] map, where z := SMap.find zname query s := SMap.find zname batched_answer f := SMap.find zname batched_polys the computation is performed by first calculating polynomial (f(X) - s) / (X - z) and then committing to it using the srs. Here, f (respecitvely s) is a batched polynomial (respecively batched evaluation) of all polynomials (and their respective evaluations) that are evaluated at a common point z. They have been batched with the uniformly sampled randomness from [y_map], see {!sample_ymap} *) let compute_Ws srs batched_polys batched_answer query = SMap.mapi (fun x z -> let f = SMap.find x batched_polys in let s = SMap.find x batched_answer in (* WARNING: This modifies [batched_polys], but we won't use it again: *) Poly.sub_inplace f f @@ Poly.constant s ; let h = fst @@ Poly.division_xn f 1 (Scalar.negate z) in Commitment.commit_single Public_parameters.(srs.srs1) h) query (* verify the KZG equation: e(F - [s]₁ + z W, [1]₂) = e(W, [x]₂) for every evaluation point [zname], key of the [query] map, where z := SMap.find zname query s := SMap.find zname s_map W := SMap.find zname w_map and F is computed as a linear combination (determined by [coeffs]) of the commitments in [SMap.find zname cmt_map]. All verification equations are checked at once by batching them with fresh randomness sampled in [r_map]. The combination of [cmt_map] and other G1.mul is delayed as much as possible, in order to combine all of them with a single pippenger *) let verifier_check srs cmt_map coeffs query s_map w_map = let r_map = SMap.map (fun _ -> Scalar.random ()) w_map in let cmts = SMap.values cmt_map in let exponents = SMap.fold (fun x r exponents -> let x_coeffs = SMap.find x coeffs in SMap.mapi (fun name exp -> match SMap.find_opt name x_coeffs with | None -> exp | Some c -> Scalar.(exp + (r * c))) exponents) r_map (SMap.map (fun _ -> Scalar.zero) cmt_map) |> SMap.values in let s = SMap.fold (fun x r s -> Scalar.(sub s (r * SMap.find x s_map))) r_map Scalar.zero in let w_left_exps = List.map (fun (x, r) -> Scalar.mul r @@ SMap.find x query) @@ SMap.bindings r_map in let w_right_exps = (* We negate them before the pairing_check, which is done on the lhs *) SMap.values r_map |> List.map Scalar.negate in let ws = SMap.values w_map in let left = Commit.with_affine_array_1 (Array.of_list @@ (G1.one :: ws) @ cmts) (Array.of_list @@ (s :: w_left_exps) @ exponents) in let right = Commit.with_affine_array_1 (Array.of_list ws) (Array.of_list w_right_exps) in Public_parameters.[(left, srs.encoding_1); (right, srs.encoding_x)] |> Pairing.pairing_check (* return a map between evaluation point names (from [query]) and uniformly sampled scalars, used for batching; also return an updated transcript *) let sample_ys transcript query = let n = SMap.cardinal query in let ys, transcript = Fr_generation.random_fr_list transcript n in let y_map = SMap.of_list (List.map2 (fun y name -> (name, y)) ys @@ SMap.keys query) in (y_map, transcript) (* On input a scalar map [y_map] and [answer], e.g., y_map := { 'x0' -> y₀; 'x1' -> y₁ } answer := { 'x0' -> { 'a' -> a(x₀); 'b' -> b(x₀); 'c' -> c(x₀); ... }; 'x1' -> { 'a' -> a(x₁); 'c' -> c(x₁); 'd' -> d(x₁); ... }; } outputs a map of batched evaluations: { 'x0' -> a(x₀) + y₀b(x0) + y₀²c(x₀) + ...); 'x1' -> a(x₁) + y₁c(x1) + y₁²d(x₁) + ...); } and a map of batching coefficients: { 'x0' -> { 'a' -> 1; 'b' -> y₀; 'c' -> y₀²; ... }; 'x1' -> { 'a' -> 1; 'c' -> y₁; 'd' -> y₁²; ... }; } *) let batch_answer y_map answer = let couples = SMap.mapi (fun x s_map -> let y = SMap.find x y_map in let s, coeffs, _yk = SMap.fold (fun name s (acc_s, coeffs, yk) -> let acc_s = Scalar.(add acc_s @@ mul yk s) in let coeffs = SMap.add name yk coeffs in let yk = Scalar.mul yk y in (acc_s, coeffs, yk)) s_map (Scalar.zero, SMap.empty, Scalar.one) in (s, coeffs)) answer in (SMap.map fst couples, SMap.map snd couples) (* On input batching coefficients [coeffs] and a map of polys [f_map], e.g., coeffs := { 'x0' -> { 'a' -> 1; 'b' -> y₀; 'c' -> y₀²; ... }; 'x1' -> { 'a' -> 1; 'c' -> y₁; 'd' -> y₁²; ... }; } f_map := { 'a' -> a(X); 'b' -> b(X); 'c' -> c(X); ... }, outputs a map of batched polynomials: { 'x0' -> a(X) + y₀b(X) + y₀²c(X) + ...); 'x1' -> a(X) + y₁c(X) + y₁²d(X) + ...); } *) let batch_polys coeffs f_map = let polys = SMap.bindings f_map in SMap.map (fun f_coeffs -> let coeffs, polys = List.filter_map (fun (name, p) -> Option.map (fun c -> (c, p)) @@ SMap.find_opt name f_coeffs) polys |> List.split in Poly.linear polys coeffs) coeffs let prove_single srs transcript f_map query answer = let y_map, transcript = sample_ys transcript query in let batched_answer, coeffs = batch_answer y_map answer in let batched_polys = batch_polys coeffs f_map in let proof = compute_Ws srs batched_polys batched_answer query in (proof, Transcript.expand proof_t proof transcript) let verify_single srs transcript cmt_map query answer proof = let y_map, transcript = sample_ys transcript query in let batched_answer, coeffs = batch_answer y_map answer in let b = verifier_check srs cmt_map coeffs query batched_answer proof in (b, Transcript.expand proof_t proof transcript) (* group functions allow [prove] and [verify] rely on [prove_single] and [verify_single] respectively *) let group_secrets : secret list -> secret = SMap.union_disjoint_list let group_cmts : Commitment.t list -> Commitment.t = SMap.union_disjoint_list let group_queries : query list -> query = fun query_list -> let union = SMap.union (fun _ z z' -> if Scalar.eq z z' then Some z else failwith "group_query: equal query names must map to equal values") in List.fold_left union (List.hd query_list) (List.tl query_list) let group_answers : answer list -> answer = fun answer_list -> List.fold_left (SMap.union (fun _ m1 m2 -> Some (SMap.union_disjoint m1 m2))) (List.hd answer_list) (List.tl answer_list) (* evaluate every polynomial in [f_map] at all evaluation points in [query] *) let evaluate : Poly.t SMap.t -> query -> answer = fun f_map query -> SMap.map (fun z -> SMap.map (fun f -> Poly.evaluate f z) f_map) query let prove srs transcript f_map_list _prover_aux_list query_list answer_list = let transcript = Transcript.list_expand query_t query_list transcript in let transcript = Transcript.list_expand answer_t answer_list transcript in let f_map = group_secrets f_map_list in let query = group_queries query_list in let answer = group_answers answer_list in prove_single srs transcript f_map query answer let verify srs transcript cmt_map_list query_list answer_list proof = let transcript = Transcript.list_expand query_t query_list transcript in let transcript = Transcript.list_expand answer_t answer_list transcript in let cmt_map = group_cmts cmt_map_list in let query = group_queries query_list in let answer = group_answers answer_list in verify_single srs transcript cmt_map query answer proof
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>