package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_ed25519.ml.html
Source file gadget_ed25519.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2023 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** Specification for Ed25519 is given in RFC 8032 https://www.rfc-editor.org/rfc/rfc8032.txt *) module Ed25519 = struct module Curve = Mec.Curve.Curve25519.AffineEdwards module P : sig type sk = Bytes.t type pk = Curve.t type signature = {r : Curve.t; s : bool list} type msg = Bytes.t val point_of_compressed_bytes_opt : Bytes.t -> Curve.t option val point_of_compressed_bytes_exn : Bytes.t -> Curve.t val scalar_of_bytes_exn : Bytes.t -> bool list val neuterize : sk -> pk val sign : sk -> msg -> signature val verify : msg -> pk -> signature -> bool end = struct module H = Hacl_star.Hacl.SHA2_512 type sk = Bytes.t type pk = Curve.t type signature = {r : Curve.t; s : bool list} type msg = Bytes.t let recover_x y sign = let y2 = Curve.Base.mul y y in let x2 = Curve.Base.((y2 + negate one) / ((Curve.d * y2) + one)) in if Curve.Base.is_zero x2 then if sign = 0 then Some x2 else None else let x_opt = Curve.Base.sqrt_opt x2 in match x_opt with | None -> None | Some x -> let x_sign = Z.(Curve.Base.to_z x mod of_int 2) |> Z.to_int in let x = if x_sign <> sign then Curve.Base.negate x else x in Some x let point_of_compressed_bytes_opt bs = let bs = Bytes.copy bs in let len = Bytes.length bs in if len <> 32 then None else let last_byte = int_of_char @@ Bytes.get bs (len - 1) in let px_sign = last_byte lsr 7 in let last_byte_without_sign = last_byte land 0b01111111 in Bytes.set bs (len - 1) (char_of_int last_byte_without_sign) ; let yn = Z.of_bits (Bytes.to_string bs) in if yn >= Curve.Base.order then None else let py = Curve.Base.of_bytes_opt bs in match py with | None -> None | Some y -> ( let px = recover_x y px_sign in match px with | None -> None | Some x -> (* NOTE: Curve.from_coordinates_opt also checks if a point is in the subgroup *) Curve.from_coordinates_opt ~u:x ~v:y) let point_of_compressed_bytes_exn bs = match point_of_compressed_bytes_opt bs with | None -> raise @@ Failure (Format.sprintf "point_of_compressed_bytes_exn: cannot recover a point from \ %s" (Hex.show (Hex.of_bytes bs))) | Some p -> p (* nat_to_bytes_le 32 (pow2 255 * (x % 2) + y) *) let point_to_compressed_bytes p = let px = Curve.get_u_coordinate p |> Curve.Base.to_z in let py = Curve.get_v_coordinate p |> Curve.Base.to_z in let px_sign = Z.(px mod of_int 2) in let res = Z.(((one lsl 255) * px_sign) + py) in Bytes.of_string @@ Z.to_bits res let scalar_of_curve_scalar s = Curve.Scalar.to_z s |> Utils.bool_list_of_z ~nb_bits:(Z.numbits Curve.Scalar.order) let scalar_of_bytes_exn s = let sn = Z.of_bits (Bytes.to_string s) in if sn < Curve.Scalar.order then Curve.Scalar.of_bytes_exn s |> scalar_of_curve_scalar else raise @@ Failure (Format.sprintf "scalar_of_bytes_exn: scalar is not less than the order %s" (Hex.show (Hex.of_bytes s))) (* Compute the expanded keys for the EdDSA signature *) let expand_keys sk = assert (Bytes.length sk = 32) ; (* h <- (h_0, h_1, ..., h_{2b-1}) <- H (sk) *) let h = H.hash sk in let b = Bytes.length h / 2 in let h_low = Bytes.sub h 0 b in let h_high = Bytes.sub h b b in (* s <- 2^n + \sum_i h_i * 2^i for c <= i < n, where Curve.cofactor = 2^c and c <= n < b. For Ed25519, c = 3 and n = 254 *) let s = Bytes.set_uint8 h_low 0 (Int.logand (Bytes.get_uint8 h_low 0) 248) ; Bytes.set_uint8 h_low 31 (Int.logor (Int.logand (Bytes.get_uint8 h_low 31) 127) 64) ; Curve.Scalar.of_bytes_exn h_low in (* pk <- [s]G *) let pk = Curve.mul Curve.one s in (s, pk, h_high) let neuterize sk = let _s, pk, _prefix = expand_keys sk in pk (* h <- H (compressed (R) || compressed (pk) || msg ) mod Curve.Scalar.order *) let compute_h msg pk r = let r = point_to_compressed_bytes r in let pk = point_to_compressed_bytes pk in H.hash (Bytes.concat Bytes.empty [r; pk; msg]) |> Curve.Scalar.of_bytes_exn let sign sk msg = let s, pk, prefix = expand_keys sk in (* r <- H (prefix || msg) *) let r = H.hash (Bytes.cat prefix msg) |> Curve.Scalar.of_bytes_exn in (* R <- [r]G *) let sig_r = Curve.mul Curve.one r in (* h <- H (compressed (R) || compressed (pk) || msg ) *) let h = compute_h msg pk sig_r in (* s <- (r + h * s) mod Curve.Scalar.order *) let sig_s = Curve.Scalar.(r + (h * s)) |> scalar_of_curve_scalar in {r = sig_r; s = sig_s} (* the fact that pk & r are on curve is enforced by the type invariant of Curve.t *) let verify msg pk signature = (* h <- H (compressed (R) || compressed (pk) || msg ) *) let h = compute_h msg pk signature.r in let sig_s = Utils.bool_list_to_z signature.s in if sig_s < Curve.Scalar.order then (* [s]G =?= R + [h]pk *) Curve.( eq (mul Curve.one (Curve.Scalar.of_z sig_s)) (add signature.r (mul pk h))) else false end open Lang_core open Lang_stdlib module V : functor (L : LIB) -> sig open L open Gadget_edwards25519.MakeEdwards25519(L) type pk = point type signature = {r : point repr; s : bool list repr} module Encoding : sig open L.Encodings val pk_encoding : (Curve.t, pk repr, pk) encoding val signature_encoding : (P.signature, signature, pk * bool list) encoding end val verify : Bytes.tl repr -> pk repr -> signature -> bool repr t end = functor (L : LIB) -> struct open L include Gadget_edwards25519.MakeEdwards25519 (L) module H = Gadget_sha2.SHA512 (L) type pk = point type signature = {r : point repr; s : bool list repr} module Encoding = struct open L.Encodings let pk_encoding = point_encoding let signature_encoding = conv (fun {r; s} -> (r, s)) (fun (r, s) -> {r; s}) (fun ({r; s} : P.signature) -> (r, s)) (fun (r, s) -> {r; s}) (obj2_encoding point_encoding (atomic_list_encoding bool_encoding)) end (* h <- H (compressed (R) || compressed (pk) || msg ) *) let compute_h msg pk r = (* Ed25519 works with little-endian representation but SHA-512 with big-endian one *) let bytes_change_endianness b = ret @@ to_list (Utils.bool_list_change_endianness (of_list b)) in with_label ~label:"Ed25519.compute_h" @@ let* r_bytes = to_compressed_bytes r in let* pk_bytes = to_compressed_bytes pk in let* r_pk_msg = bytes_change_endianness @@ Bytes.concat [|msg; pk_bytes; r_bytes|] in let* h = H.digest r_pk_msg in bytes_change_endianness h (* the fact that pk & r are on curve is enforced by point encodings *) let verify msg pk signature = let {r; s} = signature in (* range_check checks if x is in [0; 2^n), n = 253 *) (* s <= Curve.Scalar.order - 1 <==> 0 <= Curve.Scalar.order - 1 - s *) let* sb = Num.scalar_of_bytes s in let* order_minus_s = Num.add ~ql:S.(negate one) ~qr:S.zero ~qc:S.(of_z Curve.Scalar.order + negate one) sb sb in Num.range_check ~nb_bits:253 order_minus_s >* with_label ~label:"Ed25519.verify" @@ (* h <- H (compressed (R) || compressed (pk) || msg ) *) let* h = compute_h msg pk r in (* NOTE: we do not reduce a result of compute_h modulo Curve.Scalar.order *) with_label ~label:"Ed25519.scalar_mul" (* we can use multi_scalar_mul once h is reduced: [s]G =?= R + [h]pk <==> R =?= [s]G - [h]pk *) @@ let* base_point in let* sg = scalar_mul s base_point in let* hpk = scalar_mul h pk in let* rhpk = add r hpk in with_label ~label:"Ed25519.check" @@ equal sg rhpk end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>