package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_edwards25519.ml.html
Source file gadget_edwards25519.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2023 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Lang_core open Lang_stdlib module type AFFINE = functor (L : LIB) -> sig open L module Curve = Mec.Curve.Curve25519.AffineEdwards (** Represents an element from a base field *) type nat_mod (** Represents a point on the curve in affine coordinates *) type point = nat_mod * nat_mod val point_encoding : (Curve.t, point repr, point) Encodings.encoding (** Returns a Plompiler representation of a point *) val input_point : ?kind:input_kind -> Z.t * Z.t -> point repr t (** [is_on_curve p] checks whether a point [p] is on the curve *) val is_on_curve : point repr -> bool repr t (** [from_coordinates x y] constructs a point [p = (x, y)] from coordinates [x] and [y]. The function also checks whether the point is on the curve (but not necessarily in the subgroup) *) val from_coordinates : nat_mod repr -> nat_mod repr -> point repr t (** [unsafe_from_coordinates x y] is similar to {!from_coordinates} but does not verify the point is on the curve. It can be used to build a variable of type [point] without adding any constraint *) val unsafe_from_coordinates : nat_mod repr -> nat_mod repr -> point repr t (** [get_x_coordinate p] returns a first coordinate [x] of a point [p] *) val get_x_coordinate : point repr -> nat_mod repr (** [get_y_coordinate p] returns a second coordinate [y] of a point [p] *) val get_y_coordinate : point repr -> nat_mod repr (** Returns the point at infinity of the curve (additive identity) *) val id : point repr t (** Returns the base point of the curve (a fixed generator) *) val base_point : point repr t (** [add p q] computes a point addition [p + q] *) val add : point repr -> point repr -> point repr t (** [negate p] computes a point negation [-p] *) val negate : point repr -> point repr t (** [cond_add p q b] returns [p + b * q], i.e., either a point addition [p] and [q] or a point [p] based on the value [b] *) val cond_add : point repr -> point repr -> bool repr -> point repr t (** [double p] computes a point doubling [p + p] *) val double : point repr -> point repr t (** [scalar_mul s p] computes a point multiplication [p] by a scalar [s]. The scalar [s] is encoded in little-endian order *) val scalar_mul : bool list repr -> point repr -> point repr t (** [multi_scalar_mul ls lp] computes the multi-scalar multiplication [s₁·p₁ + s₂·p₂ + … + sₖ·pₖ] *) val multi_scalar_mul : bool list list repr -> point list repr -> point repr t (** Returns the order of the prime-order subgroup of the elliptic curve group *) val scalar_order : Z.t (** Returns the prime number defining the underlying field *) val base_order : Z.t (** [to_compressed_bytes p] returns the compressed representation of a point [p = (x, y)] in little-endian bytes [pow2 255 * (x % 2) + y] *) val to_compressed_bytes : point repr -> Bytes.tl repr t end module MakeEdwards25519 : AFFINE = functor (L : LIB) -> struct open L module M = Gadget_mod_arith.ArithMod25519 (L) module Curve = Mec.Curve.Curve25519.AffineEdwards type nat_mod = M.mod_int type point = nat_mod * nat_mod let is_on_curve p : bool repr t = with_label ~label:"Edwards25519.is_on_curve" @@ let x, y = of_pair p in (* y^2 - x^2 = 1 + d * x^2 * y^2 *) let* x2 = M.mul x x in let* y2 = M.mul y y in let* lhs = M.sub y2 x2 in let* rhs = let qm = Curve.Base.to_z Curve.d in let* x2y2 = M.mul x2 y2 in let* dx2y2 = M.mul_constant x2y2 qm in M.add_constant dx2y2 Z.one in M.equal lhs rhs let point_encoding : (Curve.t, point repr, point) Encodings.encoding = let open Encodings in with_implicit_bool_check is_on_curve @@ conv of_pair (fun (x, y) -> pair x y) (fun c -> let to_limbs (x : Curve.Base.t) = Utils.z_to_limbs ~len:M.nb_limbs ~base:M.base @@ Curve.Base.to_z x |> List.map S.of_z in let x = Curve.get_u_coordinate c |> to_limbs in let y = Curve.get_v_coordinate c |> to_limbs in (x, y)) (fun (x, y) -> let of_limbs (n : S.t list) = Utils.z_of_limbs ~base:M.base @@ List.map S.to_z n |> Curve.Base.of_z in Curve.from_coordinates_exn ~u:(of_limbs x) ~v:(of_limbs y)) (Encodings.obj2_encoding M.mod_int_encoding M.mod_int_encoding) let input_point ?(kind = `Private) (x, y) : point repr t = let* x = M.input_mod_int ~kind x in let* y = M.input_mod_int ~kind y in ret (pair x y) let from_coordinates u v = with_label ~label:"Edwards25519.from_coordinates" @@ let p = pair u v in with_bool_check (is_on_curve p) >* ret p let unsafe_from_coordinates u v = with_label ~label:"Edwards25519.unsafe_from_coordinates" (pair u v |> ret) let get_x_coordinate p = of_pair p |> fst let get_y_coordinate p = of_pair p |> snd (* nat_to_bytes_le 32 (pow2 255 * (x % 2) + y) *) let to_compressed_bytes p = let px = get_x_coordinate p in let py = get_y_coordinate p in (* px_bytes and py_bytes are in little-endian *) let* px_bytes = M.bytes_of_mod_int px in let* py_bytes = M.bytes_of_mod_int py in let px0 = List.hd @@ of_list px_bytes in ret @@ to_list (of_list py_bytes @ [px0]) let id = let* zero = M.zero in let* one = M.one in unsafe_from_coordinates zero one let base_point = let* x = Curve.get_u_coordinate Curve.one |> Curve.Base.to_z |> M.constant in let* y = Curve.get_v_coordinate Curve.one |> Curve.Base.to_z |> M.constant in unsafe_from_coordinates x y let add p q : point repr t = let x1, y1 = of_pair p in let x2, y2 = of_pair q in let* x1x2 = M.mul x1 x2 in let* y1y2 = M.mul y1 y2 in let* dx1x2y1y2 = let* x1x2y1y2 = M.mul x1x2 y1y2 in M.mul_constant x1x2y1y2 (Curve.Base.to_z Curve.d) in (* x3 = (x1 * y2 + y1 * x2) / (1 + dx1x2y1y2) *) let* x3 = let* x1y2 = M.mul x1 y2 in let* y1x2 = M.mul y1 x2 in let* x1y2_plus_y1x2 = M.add x1y2 y1x2 in let* one_plus_dx1x2y1y2 = M.add_constant dx1x2y1y2 Z.one in M.div x1y2_plus_y1x2 one_plus_dx1x2y1y2 in (* y3 = (y1y2 + x1x2) / (1 - dx1x2y1y2) *) let* y3 = let* y1y2_plus_x1x2 = M.add y1y2 x1x2 in let* minus_dx1x2y1y2 = M.neg dx1x2y1y2 in let* one_minus_dx1x2y1y2 = M.add_constant minus_dx1x2y1y2 Z.one in M.div y1y2_plus_x1x2 one_minus_dx1x2y1y2 in unsafe_from_coordinates x3 y3 let negate p = let x, y = of_pair p in let* x = M.neg x in unsafe_from_coordinates x y let point_or_zero p b = let* id in Bool.ifthenelse b p id (* compute R = P + b * Q *) let cond_add p q b = let* bq = point_or_zero q b in add p bq let double p = add p p let scalar_order : Z.t = Curve.Scalar.order let base_order : Z.t = Curve.Base.order let scalar_mul s p = let* one = Bool.constant true in with_label ~label:"Edwards25519.scalar_mul" @@ let rev_s = List.rev (of_list s) in let* init = point_or_zero p (List.hd rev_s) in foldM (fun acc b -> let* acc = cond_add acc acc one in cond_add acc p b) init (List.tl rev_s) let multi_scalar_mul ls lp = let* one = Bool.constant true in with_label ~label:"Edwards.multi_scalar_mul" @@ (* Check we apply Shamir's trick on at least 2 points *) let () = assert (List.(length (of_list ls) > 1)) in (* Converting ls to ls' = [[s_11; ...; s_n1]; ...; [s_1m; ...; s_nm]] *) let ls = List.map of_list (of_list ls) |> Utils.transpose |> List.rev in let points = of_list lp in (* Check we perform scalar multiplications on lists of at least 1 bit *) assert (List.(length ls > 0)) ; (* Initializing the accumulator with the first round of Shamir's trick *) let heads = List.hd ls in let* init = point_or_zero (List.hd points) (List.hd heads) in let* init = fold2M cond_add init (List.tl points) (List.tl heads) in (* Applying Shamir's trick on the rest of the rounds *) foldM (fun acc lb -> let* acc = cond_add acc acc one in fold2M cond_add acc points (of_list lb)) init List.(map to_list (tl ls)) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>