package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.6.0.tbz
sha256=d01e5f13db2eaba6e4fe330667149e0059d4886c651ff9d6b672db2dfc9765ed
sha512=33b68c972aca37985ed73c527076198e7d4961c7e27c89cdabfe4d1cff97cd41ccfb85ae9499eb98ad9a0aefd920bc55555df6393fc441ac2429e4d99cddafa8
doc/src/lambdapi.parsing/pratt.ml.html
Source file pratt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
(** Parsing of infix operators using the Pratter library. The interface for the Pratter library can be seen at @see <https://forge.tedomum.net/koizel/pratter>. *) open Common open Core open Syntax module Pratt : sig val parse : ?find_sym:Sig_state.find_sym -> Sig_state.t -> Env.t -> p_term -> p_term (** [parse ~find_sym ss env t] Pratt parses term [t], unsugaring infix operators and prefix operators using signature state [ss] and environment [env] to determine which term is an operator, and to build new terms. Note that it doesn't recurse into abstractions or implications and alike. [~find_sym] is used to scope symbol identifiers. *) end = struct open Lplib open Pos let is_op : Sig_state.find_sym -> Sig_state.t -> Env.t -> p_term -> (Pratter.fixity * float) option = fun find_sym ss env t -> match t.elt with | P_Iden({elt=(mp, s); _} as id, false) -> let open Option.Monad in let* sym = try (* Look if [id] is in [env]... *) if mp <> [] then raise Not_found; ignore (Env.find s env); None with Not_found -> (* ... or look into the signature *) Some(find_sym ~prt:true ~prv:true ss id) in (match Term.SymMap.find_opt sym ss.notations with | Some(Infix(assoc, prio)) -> Some(Pratter.Infix assoc, prio) | Some(Prefix(prio)) | Some(Succ(Some(Prefix(prio)))) -> Some(Pratter.Prefix, prio) | Some(Postfix(prio)) | Some(Succ(Some(Postfix(prio)))) -> Some(Pratter.Postfix, prio) | _ -> None) | _ -> None let appl : p_term -> p_term -> p_term = fun t u -> Pos.make (Pos.cat t.pos u.pos) (P_Appl(t, u)) (* NOTE the term is converted from appl nodes to list in [Pratt.parse], rebuilt into appl nodes by [Pratt.parse], and then decomposed again into a list by [get_args]. We could make [Pratt.parse] return a list of terms instead. *) let parse : ?find_sym:Sig_state.find_sym -> Sig_state.t -> Env.t -> p_term -> p_term = fun ?(find_sym=Sig_state.find_sym) st env t -> let h, args = Syntax.p_get_args t in let strm = Stream.of_list (h :: args) in let is_op = is_op find_sym st env in match Pratter.expression ~is_op ~appl strm with | Ok e -> e | Error `TooFewArguments -> Error.fatal t.pos "Malformed application in \"%a\"" Pretty.term t | Error `OpConflict (t, u) -> Error.fatal t.pos "Operator conflict between \"%a\" and \"%a\"" Pretty.term t Pretty.term u | Error `UnexpectedInfix t -> Error.fatal t.pos "Unexpected infix operator \"%a\"" Pretty.term t | Error `UnexpectedPostfix t -> Error.fatal t.pos "Unexpected postfix operator \"%a\"" Pretty.term t end include Pratt
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>