package lacaml

  1. Overview
  2. Docs
type t = vec
Vector operations
Creation of vectors
val random : ?rnd_state:Random.State.t -> ?re_from:float -> ?re_range:float -> ?im_from:float -> ?im_range:float -> int -> Lacaml_complex64.vec

random ?rnd_state ?re_from ?re_range ?im_from ?im_range n

  • returns

    a vector of size n initialized with random elements sampled uniformly from re_range and im_range starting at re_from and im_from for real and imaginary numbers respectively. A random state rnd_state can be passed.

  • parameter rnd_state

    default = Random.get_state ()

  • parameter re_from

    default = -1.0

  • parameter re_range

    default = 2.0

  • parameter im_from

    default = -1.0

  • parameter im_range

    default = 2.0

Creation/conversion of vectors and dimension accessor
val create : int -> Lacaml_complex64.vec

create n

  • returns

    a vector with n rows (not initialized).

make n x

  • returns

    a vector with n rows initialized with value x.

val make0 : int -> Lacaml_complex64.vec

make0 n x

  • returns

    a vector with n rows initialized with the zero element.

val init : int -> (int -> Lacaml_complex64.num_type) -> Lacaml_complex64.vec

init n f

  • returns

    a vector containing n elements, where each element at position i is initialized by the result of calling f i.

of_array ar

  • returns

    a vector initialized from array ar.

to_array v

  • returns

    an array initialized from vector v.

of_list l

  • returns

    a vector initialized from list l.

to_list v

  • returns

    a list initialized from vector v.

append v1 v2

  • returns

    the vector resulting from appending vector v2 to v1.

concat vs

  • returns

    the concatenation of vectors vs.

empty, the empty vector.

linspace ?z a b n

  • returns

    the vector y overwritten with n linearly spaced points between and including a and b.

  • parameter y

    default = fresh vector of dim n

logspace ?z a b base n

  • returns

    the vector y overwritten with n points logarithmically spaced using base b between and including base ** a and base ** b.

  • parameter y

    default = fresh vector of dim n

  • parameter base

    default = 10.0

val dim : Lacaml_complex64.vec -> int

dim x

  • returns

    the dimension of vector x.

Iterators over vectors
val map : (Lacaml_complex64.num_type -> Lacaml_complex64.num_type) -> ?n:int -> ?ofsy:int -> ?incy:int -> ?y:Lacaml_complex64.vec -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.vec

map f ?n ?ofsx ?incx x

  • returns

    a new vector resulting from the application of f to each element of x.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter y

    default = new vector with ofsy+(n-1)(abs incy) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val iter : (Lacaml_complex64.num_type -> unit) -> ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> unit

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val iteri : (int -> Lacaml_complex64.num_type -> unit) -> ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> unit

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

val fold : ('a -> Lacaml_complex64.num_type -> 'a) -> 'a -> ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> 'a

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

Operations on one vector

rev x reverses vector x (non-destructive).

val max : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps. NaNs are ignored. If only NaNs are encountered, the negative infinity value will be returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val min : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps. NaNs are ignored. If only NaNs are encountered, the infinity value will be returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val sort : ?cmp:(Lacaml_complex64.num_type -> Lacaml_complex64.num_type -> int) -> ?decr:bool -> ?n:int -> ?ofsp:int -> ?incp:int -> ?p:Lacaml_common.int_vec -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> unit

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

  • parameter cmp

    a function such that cmp a b < 0 if a is less than b, cmp a b = 0 if a equal b and cmp a b > 0 if a is greater than b for the desired order. Default: the usual order on floating point values or the lexicographic order on complex ones (a special routine makes it fast). Whatever the order you choose, NaNs (in any component for complex numbers) are considered larger than any other value (so they will be last, in no specified order, in the sorted vector). Therefore, NaN are never passed to cmp.

  • parameter p

    if you pass a vector of size ofsp+(n - 1)(abs incp), the vector x will be unchanged and the permutation to sort it will be stored in p. Thus x.{p.{ofsp + (i-1) * incp}} will give the elements of x in increasing order. Default: no vector is provided.

  • parameter decr

    sort in decreasing order (stays fast for the default cmp).

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsp

    default = 1

  • parameter incp

    default = 1

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val fill : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type -> unit

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val sum : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val prod : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively. If y is given, the result will be stored in there using increments of incy, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

  • parameter y

    default = fresh vector with ofsy+(n - 1)(abs incy) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val sqr_nrm2 : ?stable:bool -> ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> float

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps. If stable is true, this is equivalent to squaring the result of calling the BLAS-function nrm2, which avoids over- and underflow if possible. If stable is false (default), dot will be called instead for greatly improved performance.

  • parameter stable

    default = false

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

val ssqr : ?n:int -> ?c:Lacaml_complex64.num_type -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps. Please do not confuse with sqr_nrm2! The current function behaves differently with complex numbers when zero is passed in for c. It computes the square for each entry then, whereas sqr_nrm2 uses the conjugate transpose in the product. The latter will therefore always return a real number.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter c

    default = zero

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps. If y is given, the result will be stored in there using increments of incy, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

  • parameter y

    default = fresh vector with ofsy+(n - 1)(abs incy) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps. If y is given, the result will be stored in there using increments of incy, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

  • parameter y

    default = fresh vector with ofsy+(n - 1)(abs incy) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

Operations on two vectors

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsz

    default = 1

  • parameter incz

    default = 1

  • parameter z

    default = fresh vector with ofsz+(n - 1)(abs incz) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsz

    default = 1

  • parameter incz

    default = 1

  • parameter z

    default = fresh vector with ofsz+(n - 1)(abs incz) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsz

    default = 1

  • parameter incz

    default = 1

  • parameter z

    default = fresh vector with ofsz+(n - 1)(abs incz) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively. If z is given, the result will be stored in there using increments of incz, otherwise a fresh vector will be used. The resulting vector is returned.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsz

    default = 1

  • parameter incz

    default = 1

  • parameter z

    default = fresh vector with ofsz+(n - 1)(abs incz) rows

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

val zpxy : ?n:int -> ?ofsz:int -> ?incz:int -> Lacaml_complex64.vec -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> ?ofsy:int -> ?incy:int -> Lacaml_complex64.vec -> unit

zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z. This function is useful for convolutions.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsz

    default = 1

  • parameter incz

    default = 1

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

val zmxy : ?n:int -> ?ofsz:int -> ?incz:int -> Lacaml_complex64.vec -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> ?ofsy:int -> ?incy:int -> Lacaml_complex64.vec -> unit

zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z. This function is useful for convolutions.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsz

    default = 1

  • parameter incz

    default = 1

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

val ssqr_diff : ?n:int -> ?ofsx:int -> ?incx:int -> Lacaml_complex64.vec -> ?ofsy:int -> ?incy:int -> Lacaml_complex64.vec -> Lacaml_complex64.num_type

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

  • parameter n

    default = greater n s.t. ofsx+(n-1)(abs incx) <= dim x

  • parameter ofsx

    default = 1

  • parameter incx

    default = 1

  • parameter ofsy

    default = 1

  • parameter incy

    default = 1

OCaml

Innovation. Community. Security.