Library
Module
Module type
Parameter
Class
Class type
type t = vec
val random :
?rnd_state:Random.State.t ->
?re_from:float ->
?re_range:float ->
?im_from:float ->
?im_range:float ->
int ->
Lacaml_complex32.vec
random ?rnd_state ?re_from ?re_range ?im_from ?im_range n
val create : int -> Lacaml_complex32.vec
create n
val make : int -> Lacaml_complex32.num_type -> Lacaml_complex32.vec
make n x
val make0 : int -> Lacaml_complex32.vec
make0 n x
val init : int -> (int -> Lacaml_complex32.num_type) -> Lacaml_complex32.vec
init n f
val of_array : Lacaml_complex32.num_type array -> Lacaml_complex32.vec
of_array ar
val to_array : Lacaml_complex32.vec -> Lacaml_complex32.num_type array
to_array v
val of_list : Lacaml_complex32.num_type list -> Lacaml_complex32.vec
of_list l
val to_list : Lacaml_complex32.vec -> Lacaml_complex32.num_type list
to_list v
val append :
Lacaml_complex32.vec ->
Lacaml_complex32.vec ->
Lacaml_complex32.vec
append v1 v2
val concat : Lacaml_complex32.vec list -> Lacaml_complex32.vec
concat vs
val empty : Lacaml_complex32.vec
empty
, the empty vector.
val linspace :
?y:Lacaml_complex32.vec ->
Lacaml_complex32.num_type ->
Lacaml_complex32.num_type ->
int ->
Lacaml_complex32.vec
linspace ?z a b n
val logspace :
?y:Lacaml_complex32.vec ->
Lacaml_complex32.num_type ->
Lacaml_complex32.num_type ->
?base:float ->
int ->
Lacaml_complex32.vec
logspace ?z a b base n
val dim : Lacaml_complex32.vec -> int
dim x
val map :
(Lacaml_complex32.num_type -> Lacaml_complex32.num_type) ->
?n:int ->
?ofsy:int ->
?incy:int ->
?y:Lacaml_complex32.vec ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.vec
map f ?n ?ofsx ?incx x
val iter :
(Lacaml_complex32.num_type -> unit) ->
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
unit
iter ?n ?ofsx ?incx f x
applies function f
in turn to all elements of vector x
.
val iteri :
(int -> Lacaml_complex32.num_type -> unit) ->
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
unit
iteri ?n ?ofsx ?incx f x
same as iter
but additionally passes the index of the element as first argument and the element itself as second argument.
val fold :
('a -> Lacaml_complex32.num_type -> 'a) ->
'a ->
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
'a
fold f a ?n ?ofsx ?incx x
is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx}
if incx > 0
and the same in the reverse order of appearance of the x
values if incx < 0
.
val rev : Lacaml_complex32.vec -> Lacaml_complex32.vec
rev x
reverses vector x
(non-destructive).
val max :
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type
max ?n ?ofsx ?incx x
computes the greater of the n
elements in vector x
(2-norm), separated by incx
incremental steps. NaNs are ignored. If only NaNs are encountered, the negative infinity
value will be returned.
val min :
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type
min ?n ?ofsx ?incx x
computes the smaller of the n
elements in vector x
(2-norm), separated by incx
incremental steps. NaNs are ignored. If only NaNs are encountered, the infinity
value will be returned.
val sort :
?cmp:(Lacaml_complex32.num_type -> Lacaml_complex32.num_type -> int) ->
?decr:bool ->
?n:int ->
?ofsp:int ->
?incp:int ->
?p:Lacaml_common.int_vec ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
unit
sort ?cmp ?n ?ofsx ?incx x
sorts the array x
in increasing order according to the comparison function cmp
.
val fill :
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type ->
unit
fill ?n ?ofsx ?incx x a
fills vector x
with value a
in the designated range.
val sum :
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type
sum ?n ?ofsx ?incx x
computes the sum of the n
elements in vector x
, separated by incx
incremental steps.
val prod :
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type
prod ?n ?ofsx ?incx x
computes the product of the n
elements in vector x
, separated by incx
incremental steps.
val add_const : Lacaml_complex32.num_type -> Lacaml_complex32.Types.Vec.unop
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x
adds constant c
to the n
elements of vector x
and stores the result in y
, using incx
and incy
as incremental steps respectively. If y
is given, the result will be stored in there using increments of incy
, otherwise a fresh vector will be used. The resulting vector is returned.
val sqr_nrm2 :
?stable:bool ->
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
float
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x
computes the square of the 2-norm (Euclidean norm) of vector x
separated by incx
incremental steps. If stable
is true, this is equivalent to squaring the result of calling the BLAS-function nrm2
, which avoids over- and underflow if possible. If stable
is false (default), dot
will be called instead for greatly improved performance.
val ssqr :
?n:int ->
?c:Lacaml_complex32.num_type ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type
ssqr ?n ?c ?ofsx ?incx x
computes the sum of squared differences of the n
elements in vector x
from constant c
, separated by incx
incremental steps. Please do not confuse with sqr_nrm2
! The current function behaves differently with complex numbers when zero is passed in for c
. It computes the square for each entry then, whereas sqr_nrm2
uses the conjugate transpose in the product. The latter will therefore always return a real number.
val neg : Lacaml_complex32.Types.Vec.unop
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x
negates n
elements of the vector x
using incx
as incremental steps. If y
is given, the result will be stored in there using increments of incy
, otherwise a fresh vector will be used. The resulting vector is returned.
val reci : Lacaml_complex32.Types.Vec.unop
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x
computes the reciprocal value of n
elements of the vector x
using incx
as incremental steps. If y
is given, the result will be stored in there using increments of incy
, otherwise a fresh vector will be used. The resulting vector is returned.
val add : Lacaml_complex32.Types.Vec.binop
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y
adds n
elements of vectors x
and y
elementwise, using incx
and incy
as incremental steps respectively. If z
is given, the result will be stored in there using increments of incz
, otherwise a fresh vector will be used. The resulting vector is returned.
val sub : Lacaml_complex32.Types.Vec.binop
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y
subtracts n
elements of vectors x
and y
elementwise, using incx
and incy
as incremental steps respectively. If z
is given, the result will be stored in there using increments of incz
, otherwise a fresh vector will be used. The resulting vector is returned.
val mul : Lacaml_complex32.Types.Vec.binop
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y
multiplies n
elements of vectors x
and y
elementwise, using incx
and incy
as incremental steps respectively. If z
is given, the result will be stored in there using increments of incz
, otherwise a fresh vector will be used. The resulting vector is returned.
val div : Lacaml_complex32.Types.Vec.binop
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y
divides n
elements of vectors x
and y
elementwise, using incx
and incy
as incremental steps respectively. If z
is given, the result will be stored in there using increments of incz
, otherwise a fresh vector will be used. The resulting vector is returned.
val zpxy :
?n:int ->
?ofsz:int ->
?incz:int ->
Lacaml_complex32.vec ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
?ofsy:int ->
?incy:int ->
Lacaml_complex32.vec ->
unit
zpxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y
multiplies n
elements of vectors x
and y
elementwise, using incx
and incy
as incremental steps respectively, and adds the result to and stores it in the specified range in z
. This function is useful for convolutions.
val zmxy :
?n:int ->
?ofsz:int ->
?incz:int ->
Lacaml_complex32.vec ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
?ofsy:int ->
?incy:int ->
Lacaml_complex32.vec ->
unit
zmxy ?n ?ofsz ?incz z ?ofsx ?incx x ?ofsy ?incy y
multiplies n
elements of vectors x
and y
elementwise, using incx
and incy
as incremental steps respectively, and substracts the result from and stores it in the specified range in z
. This function is useful for convolutions.
val ssqr_diff :
?n:int ->
?ofsx:int ->
?incx:int ->
Lacaml_complex32.vec ->
?ofsy:int ->
?incy:int ->
Lacaml_complex32.vec ->
Lacaml_complex32.num_type
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y
returns the sum of squared differences of n
elements of vectors x
and y
, using incx
and incy
as incremental steps respectively.