Source file tree_intf.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
open! Import
module Proof = struct
type ('hash, 'step, 'metadata) t =
| Blinded of 'hash
| Node of ('step * ('hash, 'step, 'metadata) t) list
| Inode of {
length : int;
proofs : (int * ('hash, 'step, 'metadata) t) list;
}
| Contents of 'hash * 'metadata
let t hash_t step_t metadata_t =
let open Type in
mu (fun t ->
variant "proof" (fun blinded node inode contents -> function
| Blinded x1 -> blinded x1
| Node x1 -> node x1
| Inode { length; proofs } -> inode (length, proofs)
| Contents (x1, x2) -> contents (x1, x2))
|~ case1 "Blinded" hash_t (fun x1 -> Blinded x1)
|~ case1 "Node" [%typ: (step * t) list] (fun x1 -> Node x1)
|~ case1 "Inode" [%typ: int * (int * t) list] (fun (length, proofs) ->
Inode { length; proofs })
|~ case1 "Contents" [%typ: hash * metadata] (fun (x1, x2) ->
Contents (x1, x2))
|> Type.sealv)
end
module type S = sig
type key
type step
type metadata
type contents
type node
type hash
(** [Tree] provides immutable, in-memory partial mirror of the store, with
lazy reads and delayed writes.
Trees are like staging area in Git: they are immutable temporary
non-persistent areas (they disappear if the host crash), held in memory
for efficiency, where reads are done lazily and writes are done only when
needed on commit: if you modify a key twice, only the last change will be
written to the store when you commit. *)
type t
(** The type of trees. *)
(** {1 Constructors} *)
val empty : t
(** [empty] is the empty tree. The empty tree does not have associated backend
configuration values, as they can perform in-memory operation,
independently of any given backend. *)
val of_contents : ?metadata:metadata -> contents -> t
(** [of_contents c] is the subtree built from the contents [c]. *)
val of_node : node -> t
(** [of_node n] is the subtree built from the node [n]. *)
type elt = [ `Node of node | `Contents of contents * metadata ]
(** The type for tree elements. *)
val v : elt -> t
(** General-purpose constructor for trees. *)
type kinded_hash = [ `Contents of hash * metadata | `Node of hash ]
[@@deriving irmin]
val pruned : kinded_hash -> t
(** [pruned h] is a purely in-memory tree with the hash [h]. Such trees can be
used as children of other in-memory tree nodes, for instance in order to
compute the hash of the parent, but they cannot be dereferenced.
Any operation that would require loading the contents of a pruned node
(e.g. calling {!find} on one of its children) will instead raise a
{!Pruned_hash} exception. Attempting to export a tree containing pruned
sub-trees to a repository will fail similarly. *)
val kind : t -> key -> [ `Contents | `Node ] option Lwt.t
(** [kind t k] is the type of [s] in [t]. It could either be a tree node or
some file contents. It is [None] if [k] is not present in [t]. *)
val is_empty : t -> bool
(** [is_empty t] is true iff [t] is {!empty} (i.e. a tree node with no
children). Trees with {!kind} = [`Contents] are never considered empty. *)
(** {1 Diffs} *)
val diff : t -> t -> (key * (contents * metadata) Diff.t) list Lwt.t
(** [diff x y] is the difference of contents between [x] and [y]. *)
(** {1 Manipulating Contents} *)
type error = [ `Dangling_hash of hash | `Pruned_hash of hash ]
(** The type for errors. *)
type 'a or_error = ('a, error) result
(** Operations on lazy nodes can fail if the underlying store does not contain
the expected hash. *)
exception Dangling_hash of { context : string; hash : hash }
(** The exception raised by functions that can force lazy tree nodes but do
not return an explicit {!or_error}. *)
exception Pruned_hash of { context : string; hash : hash }
(** The exception raised by functions that attempt to load {!pruned} tree
nodes. *)
(** Operations on lazy tree contents. *)
module Contents : sig
type t
(** The type of lazy tree contents. *)
val hash : ?cache:bool -> t -> hash
(** [hash t] is the hash of the {!contents} value returned when [t] is
{!force}d successfully.
{2 caching}
[cache] regulates the caching behaviour regarding the node's internal
data which are be lazily loaded from the backend.
[cache] defaults to [true] which may greatly reduce the IOs and the
runtime but may also grealy increase the memory consumption.
[cache = false] doesn't replace a call to [clear], it only prevents the
storing of new data, it doesn't discard the existing one. *)
val force : t -> contents or_error Lwt.t
(** [force t] forces evaluation of the lazy content value [t], or returns an
error if no such value exists in the underlying repository. *)
val force_exn : t -> contents Lwt.t
(** Equivalent to {!force}, but raises an exception if the lazy content
value is not present in the underlying repository. *)
val clear : t -> unit
(** [clear t] clears [t]'s cache. *)
end
val mem : t -> key -> bool Lwt.t
(** [mem t k] is true iff [k] is associated to some contents in [t]. *)
val find_all : t -> key -> (contents * metadata) option Lwt.t
(** [find_all t k] is [Some (b, m)] if [k] is associated to the contents [b]
and metadata [m] in [t] and [None] if [k] is not present in [t]. *)
val length : node -> int Lwt.t
(** [find n] is the number of entries in [n]. *)
val find : t -> key -> contents option Lwt.t
(** [find] is similar to {!find_all} but it discards metadata. *)
val get_all : t -> key -> (contents * metadata) Lwt.t
(** Same as {!find_all} but raise [Invalid_arg] if [k] is not present in [t]. *)
val list :
t ->
?offset:int ->
?length:int ->
?cache:bool ->
key ->
(step * t) list Lwt.t
(** [list t key] is the list of files and sub-nodes stored under [k] in [t].
The result order is not specified but is stable.
[offset] and [length] are used for pagination.
[cache] defaults to [true], see {!caching} for an explanation of the
parameter. *)
val get : t -> key -> contents Lwt.t
(** Same as {!get_all} but ignore the metadata. *)
val add : t -> key -> ?metadata:metadata -> contents -> t Lwt.t
(** [add t k c] is the tree where the key [k] is bound to the contents [c] but
is similar to [t] for other bindings. *)
val update :
t ->
key ->
?metadata:metadata ->
(contents option -> contents option) ->
t Lwt.t
(** [update t k f] is the tree [t'] that is the same as [t] for all keys
except [k], and whose binding for [k] is determined by [f (find t k)].
If [k] refers to an internal node of [t], [f] is called with [None] to
determine the value with which to replace it. *)
val remove : t -> key -> t Lwt.t
(** [remove t k] is the tree where [k] bindings has been removed but is
similar to [t] for other bindings. *)
(** {1 Manipulating Subtrees} *)
val mem_tree : t -> key -> bool Lwt.t
(** [mem_tree t k] is false iff [find_tree k = None]. *)
val find_tree : t -> key -> t option Lwt.t
(** [find_tree t k] is [Some v] if [k] is associated to [v] in [t]. It is
[None] if [k] is not present in [t]. *)
val get_tree : t -> key -> t Lwt.t
(** [get_tree t k] is [v] if [k] is associated to [v] in [t]. Raise
[Invalid_arg] if [k] is not present in [t].*)
val add_tree : t -> key -> t -> t Lwt.t
(** [add_tree t k v] is the tree where the key [k] is bound to the non-empty
tree [v] but is similar to [t] for other bindings.
If [v] is empty, this is equivalent to [remove t k]. *)
val update_tree : t -> key -> (t option -> t option) -> t Lwt.t
(** [update_tree t k f] is the tree [t'] that is the same as [t] for all
subtrees except under [k], and whose subtree at [k] is determined by
[f (find_tree t k)].
[f] returning either [None] or [Some empty] causes the subtree at [k] to
be unbound (i.e. it is equivalent to [remove t k]). *)
val merge : t Merge.t
(** [merge] is the 3-way merge function for trees. *)
(** {1 Folds} *)
val destruct : t -> [ `Node of node | `Contents of Contents.t * metadata ]
(** General-purpose destructor for trees. *)
type marks
(** The type for fold marks. *)
val empty_marks : unit -> marks
(** [empty_marks ()] is an empty collection of marks. *)
type 'a force = [ `True | `False of key -> 'a -> 'a Lwt.t ]
(** The type for {!fold}'s [force] parameter. [`True] forces the fold to read
the objects of the lazy nodes and contents. [`False f] is applying [f] on
every lazy node and content value instead. *)
type uniq = [ `False | `True | `Marks of marks ]
(** The type for {!fold}'s [uniq] parameters. [`False] folds over all the
nodes. [`True] does not recurse on nodes already seen. [`Marks m] uses the
collection of marks [m] to store the cache of keys: the fold will modify
[m]. This can be used for incremental folds. *)
type 'a node_fn = key -> step list -> 'a -> 'a Lwt.t
(** The type for {!fold}'s [pre] and [post] parameters. *)
type depth = [ `Eq of int | `Le of int | `Lt of int | `Ge of int | `Gt of int ]
[@@deriving irmin]
(** The type for fold depths.
- [Eq d] folds over nodes and contents of depth exactly [d].
- [Lt d] folds over nodes and contents of depth strictly less than [d].
- [Gt d] folds over nodes and contents of depth strictly more than [d].
[Le d] is [Eq d] and [Lt d]. [Ge d] is [Eq d] and [Gt d]. *)
val fold :
?order:[ `Sorted | `Undefined | `Random of Random.State.t ] ->
?force:'a force ->
?cache:bool ->
?uniq:uniq ->
?pre:'a node_fn ->
?post:'a node_fn ->
?depth:depth ->
?contents:(key -> contents -> 'a -> 'a Lwt.t) ->
?node:(key -> node -> 'a -> 'a Lwt.t) ->
?tree:(key -> t -> 'a -> 'a Lwt.t) ->
t ->
'a ->
'a Lwt.t
(** [fold f t acc] folds [f] over [t]'s leafs.
For every node [n], ui [n] is a leaf node, call [f path n]. Otherwise:
- Call [pre path n]. By default [pre] is the identity;
- Recursively call [fold] on each children.
- Call [post path n]; By default [post] is the identity.
See {!force} for details about the [force] parameters. By default it is
[`True].
See {!uniq} for details about the [uniq] parameters. By default it is
[`False].
The fold depth is controlled by the [depth] parameter.
[cache] defaults to [false], see {!caching} for an explanation of the
parameter.
If [order] is [`Sorted] (the default), the elements are traversed in
lexicographic order of their keys. If [`Random state], they are traversed
in a random order. For large nodes, these two modes are memory-consuming,
use [`Undefined] for a more memory efficient [fold]. *)
(** {1 Stats} *)
type stats = {
nodes : int; (** Number of node. *)
leafs : int; (** Number of leafs. *)
skips : int; (** Number of lazy nodes. *)
depth : int; (** Maximal depth. *)
width : int; (** Maximal width. *)
}
[@@deriving irmin]
(** The type for tree stats. *)
val stats : ?force:bool -> t -> stats Lwt.t
(** [stats ~force t] are [t]'s statistics. If [force] is true, this will force
the reading of lazy nodes. By default it is [false]. *)
(** {1 Concrete Trees} *)
type concrete =
[ `Tree of (step * concrete) list | `Contents of contents * metadata ]
[@@deriving irmin]
(** The type for concrete trees. *)
val concrete_t : concrete Type.t
(** The value-type for {!concrete}. *)
val of_concrete : concrete -> t
(** [of_concrete c] is the subtree equivalent of the concrete tree [c].
@raise Invalid_argument
if [c] contains duplicate bindings for a given path. *)
val to_concrete : t -> concrete Lwt.t
(** [to_concrete t] is the concrete tree equivalent of the subtree [t]. *)
(** {1 Proofs} *)
module Proof : sig
type tree
type t = (hash, step, metadata) Proof.t [@@deriving irmin]
val of_tree : tree -> t
(** [of_tree t] is the proof representing the tree [t]. Shallow hashes will
be blinded. *)
val to_tree : t -> tree
(** [of_proof p] is the tree representing the proof [p]. Blinded parts of
the proof will raise [Dangling_hash] when traversed. *)
val of_keys : tree -> key list -> t Lwt.t
(** [of_keys t keys] is the minimal proof that can be used to prove that
operations over the domain [keys] are valid with [t]. *)
end
with type tree := t
(** {1 Caches} *)
val clear : ?depth:int -> t -> unit
(** [clear ?depth t] clears all caches in the tree [t] for subtrees with a
depth higher than [depth]. If [depth] is not set, all of the subtrees are
cleared.
A call to [clear] doesn't discard the subtrees of [t], only their cache
are discarded. Even the lazily loaded and unmodified subtrees remain. *)
(** {1 Performance counters} *)
type counters = {
mutable contents_hash : int;
mutable contents_find : int;
mutable contents_add : int;
mutable node_hash : int;
mutable node_mem : int;
mutable node_add : int;
mutable node_find : int;
mutable node_val_v : int;
mutable node_val_find : int;
mutable node_val_list : int;
}
val counters : unit -> counters
val dump_counters : unit Fmt.t
val reset_counters : unit -> unit
val inspect : t -> [ `Contents | `Node of [ `Map | `Hash | `Value | `Pruned ] ]
end
module type Tree = sig
module Proof : sig
type ('hash, 'step, 'metadata) t = ('hash, 'step, 'metadata) Proof.t =
| Blinded of 'hash
| Node of ('step * ('hash, 'step, 'metadata) t) list
| Inode of {
length : int;
proofs : (int * ('hash, 'step, 'metadata) t) list;
}
| Contents of 'hash * 'metadata
[@@deriving irmin]
end
module type S = sig
include S
(** @inline *)
end
module Make (P : Private.S) : sig
include
S
with type key = P.Node.Path.t
and type step = P.Node.Path.step
and type metadata = P.Node.Metadata.t
and type contents = P.Contents.value
and type hash = P.Hash.t
type kinded_hash := [ `Contents of hash * metadata | `Node of hash ]
val import : P.Repo.t -> kinded_hash -> t option Lwt.t
val import_no_check : P.Repo.t -> kinded_hash -> t
val export :
?clear:bool ->
P.Repo.t ->
[> write ] P.Contents.t ->
[> read_write ] P.Node.t ->
node ->
P.Node.key Lwt.t
val dump : t Fmt.t
val equal : t -> t -> bool
val node_t : node Type.t
val tree_t : t Type.t
val hash : ?cache:bool -> t -> kinded_hash
val of_private_node : P.Repo.t -> P.Node.value -> node
val to_private_node : node -> P.Node.value or_error Lwt.t
end
end