Source file node.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
open! Import
open S
include Node_intf
let src = Logs.Src.create "irmin.node" ~doc:"Irmin trees/nodes"
module Log = (val Logs.src_log src : Logs.LOG)
module No_metadata = struct
type t = unit [@@deriving irmin]
let default = ()
let merge = Merge.v t (fun ~old:_ () () -> Merge.ok ())
end
module Make
(K : Type.S) (P : sig
type step [@@deriving irmin]
end)
(M : METADATA) =
struct
type hash = K.t [@@deriving irmin]
type step = P.step [@@deriving irmin]
type metadata = M.t [@@deriving irmin]
type kind = [ `Node | `Contents of M.t ]
let equal_metadata = Type.(unstage (equal M.t))
let kind_t =
let open Type in
variant "Tree.kind" (fun node contents contents_m -> function
| `Node -> node
| `Contents m ->
if equal_metadata m M.default then contents else contents_m m)
|~ case0 "node" `Node
|~ case0 "contents" (`Contents M.default)
|~ case1 "contents" M.t (fun m -> `Contents m)
|> sealv
type entry = { kind : kind; name : P.step; node : K.t } [@@deriving irmin]
let equal_entry_opt = Type.(unstage (equal [%typ: entry option]))
let to_entry (k, v) =
match v with
| `Node h -> { name = k; kind = `Node; node = h }
| `Contents (h, m) -> { name = k; kind = `Contents m; node = h }
let of_entry n =
( n.name,
match n.kind with
| `Node -> `Node n.node
| `Contents m -> `Contents (n.node, m) )
module StepMap = Map.Make (struct
type t = P.step
let compare = Type.(unstage (compare P.step_t))
end)
type value = [ `Contents of hash * metadata | `Node of hash ]
type t = entry StepMap.t
let of_seq l =
Seq.fold_left
(fun acc x -> StepMap.add (fst x) (to_entry x) acc)
StepMap.empty l
let of_list l = of_seq (List.to_seq l)
let seq ?(offset = 0) ?length ?cache:_ (t : t) =
let take seq = match length with None -> seq | Some n -> Seq.take n seq in
StepMap.to_seq t
|> Seq.drop offset
|> take
|> Seq.map (fun (_, e) -> of_entry e)
let list ?offset ?length ?cache:_ t = List.of_seq (seq ?offset ?length t)
let find ?cache:_ t s =
try
let _, v = of_entry (StepMap.find s t) in
Some v
with Not_found -> None
let empty = StepMap.empty
let is_empty e = StepMap.is_empty e
let length e = StepMap.cardinal e
let clear _ = ()
let add t k v =
let e = to_entry (k, v) in
StepMap.update k
(fun e' -> if equal_entry_opt (Some e) e' then e' else Some e)
t
let remove t k = StepMap.remove k t
let default = M.default
let value_t =
let open Type in
variant "value" (fun n c x -> function
| `Node h -> n h
| `Contents (h, m) -> if equal_metadata m M.default then c h else x (h, m))
|~ case1 "node" K.t (fun k -> `Node k)
|~ case1 "contents" K.t (fun h -> `Contents (h, M.default))
|~ case1 "contents-x" (pair K.t M.t) (fun (h, m) -> `Contents (h, m))
|> sealv
let of_entries e = of_list (List.rev_map of_entry e)
let entries e = List.rev_map (fun (_, e) -> e) (StepMap.bindings e)
let t = Type.map Type.(list entry_t) of_entries entries
type nonrec proof = (hash, step, value) Proof.t [@@deriving irmin]
let to_proof (t : t) : proof =
let e = List.map of_entry (entries t) in
Values e
let of_proof (t : proof) =
match t with
| Blinded _ | Inode _ -> failwith "unsupported"
| Values e ->
let e = List.map to_entry e in
of_entries e
end
module Store
(C : Contents.STORE)
(P : Path.S)
(M : METADATA) (S : sig
include CONTENT_ADDRESSABLE_STORE with type key = C.key
module Key : Hash.S with type t = key
module Val :
S
with type t = value
and type hash = key
and type metadata = M.t
and type step = P.step
end) =
struct
module Contents = C
module Key = Hash.Typed (S.Key) (S.Val)
module Path = P
module Metadata = M
type 'a t = 'a C.t * 'a S.t
type key = S.key
type value = S.value
let mem (_, t) = S.mem t
let find (_, t) = S.find t
let clear (_, t) = S.clear t
let add (_, t) = S.add t
let unsafe_add (_, t) = S.unsafe_add t
let all_contents t =
let kvs = S.Val.list t in
List.fold_left
(fun acc -> function k, `Contents c -> (k, c) :: acc | _ -> acc)
[] kvs
let all_succ t =
let kvs = S.Val.list t in
List.fold_left
(fun acc -> function k, `Node n -> (k, n) :: acc | _ -> acc)
[] kvs
let contents_t = C.Key.t
let metadata_t = M.t
let step_t = Path.step_t
let merge_contents_meta c =
let explode = function
| None -> (None, M.default)
| Some (c, m) -> (Some c, m)
in
let implode = function None, _ -> None | Some c, m -> Some (c, m) in
Merge.like [%typ: (contents * metadata) option]
(Merge.pair (C.merge c) M.merge)
explode implode
let merge_contents_meta c =
Merge.alist step_t [%typ: contents * metadata] (fun _step ->
merge_contents_meta c)
let merge_parents merge_key =
Merge.alist step_t S.Key.t (fun _step -> merge_key)
let merge_value (c, _) merge_key =
let explode t = (all_contents t, all_succ t) in
let implode (contents, succ) =
let xs = List.rev_map (fun (s, c) -> (s, `Contents c)) contents in
let ys = List.rev_map (fun (s, n) -> (s, `Node n)) succ in
S.Val.of_list (xs @ ys)
in
let merge = Merge.pair (merge_contents_meta c) (merge_parents merge_key) in
Merge.like S.Val.t merge explode implode
let rec merge t =
let merge_key =
Merge.v [%typ: S.Key.t option] (fun ~old x y ->
Merge.(f (merge t)) ~old x y)
in
let merge = merge_value t merge_key in
let read = function
| None -> Lwt.return S.Val.empty
| Some k -> ( find t k >|= function None -> S.Val.empty | Some v -> v)
in
let add v =
if S.Val.is_empty v then Lwt.return_none else add t v >>= Lwt.return_some
in
Merge.like_lwt [%typ: S.Key.t option] merge read add
module Val = S.Val
end
module Graph (S : STORE) = struct
module Path = S.Path
module Contents = S.Contents.Key
module Metadata = S.Metadata
type step = Path.step [@@deriving irmin]
type metadata = Metadata.t [@@deriving irmin]
type contents = Contents.t [@@deriving irmin]
type node = S.Key.t [@@deriving irmin]
type path = Path.t [@@deriving irmin]
type 'a t = 'a S.t
type value = [ `Contents of contents * metadata | `Node of node ]
let empty t = S.add t S.Val.empty
let list t n =
Log.debug (fun f -> f "steps");
S.find t n >|= function None -> [] | Some n -> S.Val.list n
module U = struct
type t = unit [@@deriving irmin]
end
module Graph = Object_graph.Make (S.Key) (U)
let edges t =
List.rev_map
(function _, `Node n -> `Node n | _, `Contents (c, _) -> `Contents c)
(S.Val.list t)
let pp_key = Type.pp S.Key.t
let pp_keys = Fmt.(Dump.list pp_key)
let pp_path = Type.pp S.Path.t
let equal_val = Type.(unstage (equal S.Val.t))
let pred t = function
| `Node k -> ( S.find t k >|= function None -> [] | Some v -> edges v)
| _ -> Lwt.return_nil
let closure t ~min ~max =
Log.debug (fun f -> f "closure min=%a max=%a" pp_keys min pp_keys max);
let min = List.rev_map (fun x -> `Node x) min in
let max = List.rev_map (fun x -> `Node x) max in
let+ g = Graph.closure ~pred:(pred t) ~min ~max () in
List.fold_left
(fun acc -> function `Node x -> x :: acc | _ -> acc)
[] (Graph.vertex g)
let ignore_lwt _ = Lwt.return_unit
let iter t ~min ~max ?(node = ignore_lwt) ?(contents = ignore_lwt) ?edge
?(skip_node = fun _ -> Lwt.return_false)
?(skip_contents = fun _ -> Lwt.return_false) ?(rev = true) () =
let min = List.rev_map (fun x -> `Node x) min in
let max = List.rev_map (fun x -> `Node x) max in
let node = function
| `Node x -> node x
| `Contents c -> contents c
| `Branch _ | `Commit _ -> Lwt.return_unit
in
let edge =
Option.map
(fun edge n pred ->
match (n, pred) with
| `Node src, `Node dst -> edge src dst
| _ -> Lwt.return_unit)
edge
in
let skip = function
| `Node x -> skip_node x
| `Contents c -> skip_contents c
| _ -> Lwt.return_false
in
Graph.iter ~pred:(pred t) ~min ~max ~node ?edge ~skip ~rev ()
let v t xs = S.add t (S.Val.of_list xs)
let find_step t node step =
Log.debug (fun f -> f "contents %a" pp_key node);
S.find t node >|= function None -> None | Some n -> S.Val.find n step
let find t node path =
Log.debug (fun f -> f "read_node_exn %a %a" pp_key node pp_path path);
let rec aux node path =
match Path.decons path with
| None -> Lwt.return_some (`Node node)
| Some (h, tl) -> (
find_step t node h >>= function
| (None | Some (`Contents _)) as x -> Lwt.return x
| Some (`Node node) -> aux node tl)
in
aux node path
let err_empty_path () = invalid_arg "Irmin.node: empty path"
let map_one t node f label =
Log.debug (fun f -> f "map_one %a" Type.(pp Path.step_t) label);
let old_key = S.Val.find node label in
let* old_node =
match old_key with
| None | Some (`Contents _) -> Lwt.return S.Val.empty
| Some (`Node k) -> (
S.find t k >|= function None -> S.Val.empty | Some v -> v)
in
let* new_node = f old_node in
if equal_val old_node new_node then Lwt.return node
else if S.Val.is_empty new_node then
let node = S.Val.remove node label in
if S.Val.is_empty node then Lwt.return S.Val.empty else Lwt.return node
else
let+ k = S.add t new_node in
S.Val.add node label (`Node k)
let map t node path f =
Log.debug (fun f -> f "map %a %a" pp_key node pp_path path);
let rec aux node path =
match Path.decons path with
| None -> Lwt.return (f node)
| Some (h, tl) -> map_one t node (fun node -> aux node tl) h
in
let* node =
S.find t node >|= function None -> S.Val.empty | Some n -> n
in
aux node path >>= S.add t
let add t node path n =
Log.debug (fun f -> f "add %a %a" pp_key node pp_path path);
match Path.rdecons path with
| Some (path, file) -> map t node path (fun node -> S.Val.add node file n)
| None -> (
match n with
| `Node n -> Lwt.return n
| `Contents _ -> failwith "TODO: Node.add")
let rdecons_exn path =
match Path.rdecons path with
| Some (l, t) -> (l, t)
| None -> err_empty_path ()
let remove t node path =
let path, file = rdecons_exn path in
map t node path (fun node -> S.Val.remove node file)
let value_t = S.Val.value_t
end
module V1 (N : S with type step = string) = struct
module K = struct
let h = Type.string_of `Int64
let to_bin_string = Type.(unstage (to_bin_string N.hash_t))
let of_bin_string = Type.(unstage (of_bin_string N.hash_t))
let size_of = Type.Size.using to_bin_string (Type.Size.t h)
let encode_bin =
let encode_bin = Type.(unstage (encode_bin h)) in
fun e k -> encode_bin (to_bin_string e) k
let decode_bin =
let decode_bin = Type.(unstage (decode_bin h)) in
fun buf off ->
let n, v = decode_bin buf off in
( n,
match of_bin_string v with
| Ok v -> v
| Error (`Msg e) -> Fmt.failwith "decode_bin: %s" e )
let t = Type.like N.hash_t ~bin:(encode_bin, decode_bin, size_of)
end
type step = N.step
type hash = N.hash [@@deriving irmin]
type metadata = N.metadata [@@deriving irmin]
type value = N.value
type t = { n : N.t; entries : (step * value) list }
type proof = N.proof [@@deriving irmin]
let import n = { n; entries = N.list n }
let export t = t.n
let to_proof t = N.to_proof t.n
let of_proof p = import (N.of_proof p)
let of_seq entries =
let n = N.of_seq entries in
let entries = List.of_seq entries in
{ n; entries }
let of_list entries =
let n = N.of_list entries in
{ n; entries }
let seq ?(offset = 0) ?length ?cache:_ t =
let take seq = match length with None -> seq | Some n -> Seq.take n seq in
List.to_seq t.entries |> Seq.drop offset |> take
let list ?offset ?length ?cache t = List.of_seq (seq ?offset ?length ?cache t)
let empty = { n = N.empty; entries = [] }
let is_empty t = t.entries = []
let length e = N.length e.n
let clear _ = ()
let default = N.default
let find ?cache t k = N.find ?cache t.n k
let add t k v =
let n = N.add t.n k v in
if t.n == n then t else { n; entries = N.list n }
let remove t k =
let n = N.remove t.n k in
if t.n == n then t else { n; entries = N.list n }
let v1_step = Type.string_of `Int64
let step_to_bin_string = Type.(unstage (to_bin_string v1_step))
let step_of_bin_string = Type.(unstage (of_bin_string v1_step))
let step_t : step Type.t =
let to_string p = step_to_bin_string p in
let of_string s =
step_of_bin_string s |> function
| Ok x -> x
| Error (`Msg e) -> Fmt.failwith "Step.of_string: %s" e
in
Type.(map (string_of `Int64)) of_string to_string
let is_default = Type.(unstage (equal N.metadata_t)) N.default
let value_t =
let open Type in
record "node" (fun contents metadata node ->
match (contents, metadata, node) with
| Some c, None, None -> `Contents (c, N.default)
| Some c, Some m, None -> `Contents (c, m)
| None, None, Some n -> `Node n
| _ -> failwith "invalid node")
|+ field "contents" (option K.t) (function
| `Contents (x, _) -> Some x
| _ -> None)
|+ field "metadata" (option N.metadata_t) (function
| `Contents (_, x) when not (is_default x) -> Some x
| _ -> None)
|+ field "node" (option K.t) (function `Node n -> Some n | _ -> None)
|> sealr
let t : t Type.t =
Type.map Type.(list ~len:`Int64 (pair step_t value_t)) of_list list
end