package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/WpTac.ml.html
Source file WpTac.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang open Lang.F open Qed.Logic (** Debug **) let dkey = Wp_parameters.register_category "cnf" let debug fmt = Wp_parameters.debug ~dkey fmt let debugN level fmt = Wp_parameters.debug ~level ~dkey fmt (** Can be moved into Qed **) let s_bool p = [p; e_not p] (* is it an atom for CNF/DNF *) let is_cnf_dnf_atom_repr = function | If(_,x,y) | Eq(x,y) | Neq(x,y) -> not (is_prop x && is_prop y) | And _ | Or _ | Imply _ | Not _ -> false | _ -> true let is_cnf_dnf_literal_repr = function | Not _ -> true | _ as repr -> is_cnf_dnf_atom_repr repr let is_cnf_dnf_literal e = is_cnf_dnf_literal_repr (repr e) let is_conj0_literal_repr = function | And xs -> List.for_all is_cnf_dnf_literal xs | _ as repr -> is_cnf_dnf_literal_repr repr let is_conj0_literal e = is_conj0_literal_repr (repr e) let is_disj0_literal_repr = function | Or xs -> List.for_all is_cnf_dnf_literal xs | _ as repr -> is_cnf_dnf_literal_repr repr let is_disj0_literal e = is_disj0_literal_repr (repr e) (* is it already into a Conjunctive Normal Form *) let is_cnf_repr = function | And xs -> List.for_all is_disj0_literal xs | _ as repr -> is_disj0_literal_repr repr let is_cnf e = is_cnf_repr (repr e) (* is it already into a Disjunctive Normal Form *) let is_dnf_repr = function | Or xs -> List.for_all is_conj0_literal xs | _ as repr -> is_conj0_literal_repr repr let is_dnf e = is_dnf_repr (repr e) (** CNF/DNF tools **) exception Absorbant exception TooBig type xf_t = term list type xnf_t = xf_t list type xNf_t = xf_t * xnf_t let is_true_repr = function | True -> true | _ -> false let is_false_repr = function | False -> true | _ -> false let is_conj_literal_repr = function | And xs -> List.for_all is_cnf_dnf_literal xs | _ -> false let is_disj_literal_repr = function | Or xs -> List.for_all is_cnf_dnf_literal xs | _ -> false let conj_args e = match repr e with | And xs -> xs | _ -> [e] let disj_args e = match repr e with | Or xs -> xs | _ -> [e] let normalize_cf ts = (* TODO: use something like Qed.Term.conjunction *) let c = e_and ts in match repr c with | False -> raise Absorbant | True -> [] | And cf -> cf | _ -> [ c ] let normalize_df ts = (* TODO: use something like Qed.Term.disjunction *) let c = e_or ts in match repr c with | True -> raise Absorbant | False -> [] | Or cf -> cf | _ -> [ c ] (*** one step of CNF/DNF ***) let s_cnf_ite c p q = [e_imply [c] p; e_imply [e_not c] q] let s_dnf_ite c p q = [e_and [c;p]; e_and [e_not c;e_not q]] let s_cnf_iff p q = [e_imply [p] q; e_imply [q] p] let s_dnf_iff p q = [e_and [p;q]; e_and [e_not p;e_not q]] let s_cnf_xor p q = [e_imply [e_not p] q; e_imply [e_not q] p] let s_dnf_xor p q = [e_and [e_not p; q]; e_and [e_not q; p]] type repr = QED.repr type cnf_dnt_tools = { normalize_xf: xf_t -> xf_t ; is_neutral_repr: repr -> bool ; is_absorbant_repr: repr -> bool ; neutral: term ; absorbant: term ; mk_top: xf_t -> term ; mk_sub: xf_t -> term ; sub_args: term -> xf_t ; is_sub_repr: repr -> bool ; s_ite: term -> term -> term -> term list ; s_iff: term -> term -> term list ; s_xor: term -> term -> term list ; } let cnf_record = { normalize_xf=normalize_cf; is_neutral_repr=is_true_repr; is_absorbant_repr=is_false_repr; neutral=e_true; absorbant=e_false; mk_top=e_and; mk_sub=e_or; sub_args=disj_args; is_sub_repr=is_disj_literal_repr; s_ite=s_cnf_ite; s_iff=s_cnf_iff; s_xor=s_cnf_xor; } let dnf_record = { normalize_xf=normalize_df; is_neutral_repr=is_false_repr; is_absorbant_repr=is_true_repr; neutral=e_false; absorbant=e_true; mk_top=e_or; mk_sub=e_and; sub_args=conj_args; is_sub_repr=is_conj_literal_repr; s_ite=s_dnf_ite; s_iff=s_dnf_iff; s_xor=s_dnf_xor; } let neutral:xNf_t = [],[] (*** Pretty ***) let pp_indent ~pol fmt = function | x when x <= 0 -> Format.fprintf fmt "xxx * " | x -> Format.fprintf fmt "xxx%s * " (String.make (2*(x-1)+(if pol then 0 else 1)) ' ') let pp_xf ~pol fmt = function | [] -> Format.fprintf fmt "%sf [%s neutral)]" (if pol then "c" else "d") (if pol then "TRUE" else "FALSE ") | xf -> Format.printf "%sf [" (if pol then "c" else "d"); List.iter (fun x -> Format.fprintf fmt "%s %a " (if pol then "&&" else "||") Lang.F.pp_term x) xf; Format.printf "]" let pp_xNf ~pol ~depth fmt xNf = let pp_xNf fmt = function | [] -> Format.fprintf fmt " (%sNF %s absorbant);@?" (if pol then "C" else "D") (if pol then "FALSE" else "TRUE ") | xf -> List.iter (fun x -> Format.fprintf fmt "%s %a @?" (if pol then "||" else "&&") Lang.F.pp_term x) xf; in match xNf with | [],[] -> Format.fprintf fmt "%sNF %s neutral=[]@?" (if pol then "C" else "D") (if pol then "TRUE " else "FALSE") | xf,xnf -> Format.fprintf fmt "%sNF [@?" (if pol then "C" else "D") ; if xf <> [] then List.iter (fun x -> Format.fprintf fmt "%s (%a) @?" (if pol then "&&" else "||") Lang.F.pp_term x) xf; List.iter (fun x -> Format.fprintf fmt "@.%a %s [%a]@?" (pp_indent ~pol) depth (if pol then "&&" else "||") pp_xNf x) xnf; Format.fprintf fmt "]@?" (** Transforms [e] into CNF/DNF **) let cnf_dnf ~pol ~depth e = let literal (cf,cnf,others) e = (e::cf),cnf,others in let normalized (cf,cnf,others) e = cf,(e::cnf),others in let unnormalized (cf,cnf,others) e = cf,cnf,(e::others) in let tools ~pol = if pol then cnf_record else dnf_record in let flat ~tool ~pol = let rec flatten acc = List.fold_left flat acc and flat acc e = match repr e with | Eq(x,y) when (F.is_prop x) && (F.is_prop y) -> flatten acc (tool.s_iff x y) | Neq(x,y) when (F.is_prop x) && (F.is_prop y) -> flatten acc (tool.s_xor x y) | If(c,p,q) -> flatten acc (tool.s_ite c p q) | Imply _ when pol -> unnormalized acc e | Imply (xe,x) -> flatten acc (x::(List.map (fun x -> e_not x) xe)) | Or xs when not pol -> flatten acc xs | And xs when pol -> flatten acc xs | repr when tool.is_absorbant_repr repr -> raise Absorbant | repr when tool.is_neutral_repr repr -> acc | repr when is_cnf_dnf_literal_repr repr -> literal acc e | repr when tool.is_sub_repr repr -> normalized acc e | And _ | Or _ -> unnormalized acc e | _ -> unnormalized acc e in flat ([],[],[]) in let c_cNf_cNf2cNf ~tool ~pol ~depth ((cf1,cnf1):xNf_t) ((cf2,cnf2):xNf_t) : xNf_t = (*[LC] TODO: check ignored variables *) ignore pol ; ignore depth ; match cnf2 with | ([]::_) -> raise Absorbant (* @absorbant @ _ = @absorbant *) | _ -> (* TODO: uses Qed.Term.consequence_style *) let cf,cnf = List.fold_left (fun (cf,cnf) -> function | [] -> raise Absorbant | [x] -> (x::cf),cnf | df -> cf,(df::cnf)) neutral cnf1 in let cf = if cf1=[] && cf=[] then cf2 else tool.normalize_xf cf@cf1@cf2 in cf, (cnf@cnf2) in (* distribution for CNF/DNF as literal list list *) let dNf2cNf ~tool ~pol ~depth (dNf:xNf_t) : xNf_t = let pp_i fmt () = (pp_indent ~pol) fmt depth in let df2cNf (df:xf_t) : xNf_t = match df with | [] -> raise Absorbant (* #neutral = @absorbant *) | [_] -> df,[] | _ -> [],[df] in let c_df_cNf2cNf (df:xf_t) (cNf:xNf_t) : xNf_t = c_cNf_cNf2cNf ~tool ~pol ~depth (df2cNf df) cNf in (* (d1#...#dm) # (c1@...@cn) = (c1#d1#...#dm) @ ... @ (cn#d1#...#dm) (d1#...#dm) # @neutral/#absorbant = @neutral = ([],[]) *) let d_df_cf2cNf (df:xf_t) (cf:xf_t) : xNf_t = match df with | [] -> cf,[] (* #neutral # (c1@...@cn) = (c1@...@cn) *) | df -> List.fold_left (fun (acc:xNf_t) (x:term) -> c_df_cNf2cNf (x::df) acc) neutral cf in (* (d1#...#dm) # (D1@...@Dn) = (D1#d1#...#dm) @ ... @ (Dn#d1#...#dm) (d1#...#dm) # @neutral/#absorbant = @neutral = ([],[]) *) (*[LC] TODO: check function never called *) let _d_df_cnf2cNf (df:xf_t) (cnf:xnf_t) : xNf_t = match df with | [] -> ([],cnf) (* #neutral # (D1@...@Dn) = (D1@...@Dn) *) | df -> List.fold_left (fun (acc:xNf_t) (df':xf_t) -> c_df_cNf2cNf (df'@df) acc) neutral cnf in (* (c1@...@cn) # (c1'@...@ck'@D1@...@Dm) = ((c1@...@cn)#c1') @ ... @ ((c1@...@cn)#c1k') @ ((c1@...@cn)#D1) @ ...@ ((c1@...@cn)#Dm) (c1@...@cn) # @neutral/#absorbant = @neutral *) let d_cf_cNf2cNf (cf:xf_t) (cNf':xNf_t) : xNf_t = let r = match cf,cNf' with | _,([],[]) -> debugN 4 "%a> d_cf_cNf2cNf cas1/4@." pp_i (); cNf' (* (c1@...@cn) # @neutral/#absorbant= @neutral *) | [],_ -> debugN 4 "%a> d_cf_cNf2cNf cas2/4@." pp_i (); neutral (* @neutral/#absorbant # (c1'@...@ck'@D1@...@Dm) = @neutral *) | _, (_,[]::_) -> debugN 4 "%a> d_cf_cNf2cNf cas3/4@." pp_i (); cf,[] (* (c1@...@cn) # #neutral/@absorbant= (c1@...@cn) *) | _,(cf',cnf') -> debugN 4 "%a> d_cf_cNf2cNf cas4/4 cf(%d) cNf(%d,%d)@." pp_i () (List.length cf) (List.length cf') (List.length cnf'); if 2048 < (List.length cf)*((List.length cf')+(List.length cnf')) then raise TooBig ; let cNf1 = List.fold_left (fun (acc:xNf_t) (x:term) -> c_cNf_cNf2cNf ~tool ~pol ~depth (d_df_cf2cNf [x] cf) acc) neutral cf' in List.fold_left (fun (acc:xNf_t) (df:xf_t) -> c_cNf_cNf2cNf ~tool ~pol ~depth (d_df_cf2cNf df cf) acc) cNf1 cnf' in debugN 4 "%a> d_cf_cNf2cNf %sNf(%d,%b) %a %a =@.%a> d_cf_cNf2cNf = %a@." pp_i () (if pol then "C" else "D") depth pol (pp_xf ~pol) cf (pp_xNf ~pol ~depth) cNf' pp_i () (pp_xNf ~pol ~depth) r; r in (* (c1@...@ck@D1@...@Dn) # (C1#...#Cm) = (C1#(c1@...@ck@D1@...@Dn)) # (C2#...#Cm) *) let rec d_cNf_dnf2cNf (cNf:xNf_t) (dnf:xnf_t) : xNf_t = debugN 3 "%a> d_cNf_dnff2cNf cNf(%d,%d) dnf(%d)=...@." pp_i () (List.length (fst cNf)) (List.length (snd cNf)) (List.length dnf); match dnf with | [] -> cNf (* (c1@...@ck@D1@...@Dn) # @absorbant/#neutral = (D1@...@Dn) *) | []::_ -> neutral (* (c1@...@ck@D1@...@Dn) # @neutral/#absorbant = @neutral *) | cf::[]-> d_cf_cNf2cNf cf cNf (* (c1@...@ck@D1@...@Dn) # (c11@...@c1k) = (c11@...@c1k) # (c1@...@ck@D1@...@Dn) *) | cf::dnf -> (* (c1@...@ck@D1@...@Dn) # ((c11@...@c1k)#C2#...#Cm) = ((c11@...@c1k)#(c1@...@ck@D1@...#@n)) @ (C2#...#Cm) *) d_cNf_dnf2cNf (d_cf_cNf2cNf cf cNf) dnf in debugN 3 "%a> %sNf->%sNf(%d,%b) %a=...@." pp_i () (if pol then "D" else "C") (if pol then "C" else "D") depth pol (pp_xNf ~pol:(not pol) ~depth) dNf; (* (d1#...#dk)#(C1#...#Cm) = (d1#...#dk) # (C1#...#Cm) *) let r = match dNf with | [],[] -> raise Absorbant (* #neutral = @absorbant *) | ([_] as df),dnf -> d_cNf_dnf2cNf (df,[]) dnf | df,dnf -> d_cNf_dnf2cNf ([],[df]) dnf in debugN 3 "%a> %sNf->%sNf(%d,%b) %a =@.%a> %a@." pp_i () (if pol then "D" else "C") (if pol then "C" else "D") depth pol (pp_xNf ~pol:(not pol) ~depth) dNf pp_i () (pp_xNf ~pol ~depth) r; r in let rec cnf_dnf ~depth ~pol e = debugN 2 "@.%a%sNf(%d,%b) %a@." (pp_indent ~pol) depth (if pol then "C" else "D") depth pol pp_term e; if depth <> -1 && depth <= 0 then [e],[] else let tool = tools ~pol in try let c_cf_cnf2cNf (cf:xf_t) (cnf:xf_t) : xNf_t = (* TODO: uses Qed.Term.consequence_style *) (tool.normalize_xf cf), (List.map tool.sub_args cnf) in let cf,cnf,cxf = flat ~tool ~pol e in (* [cf@cnf] part is into normal form, but the [cxf] part isn't. May raise Absorbant. *) let (cf,cnf) as cNf = c_cf_cnf2cNf cf cnf in let depth = if depth <> -1 && (not pol) then depth-1 else depth in try let c_cNf_cdf2cNf cNf xf = let dNf = cnf_dnf ~depth ~pol:(not pol) xf in c_cNf_cNf2cNf ~tool ~pol ~depth cNf (dNf2cNf ~tool ~pol ~depth dNf) in List.fold_left c_cNf_cdf2cNf cNf cxf with | TooBig -> debug "Too big CNF/DNF@." ; (cf@cxf),cnf with | Absorbant -> [],[[]] in let tool = tools ~pol in let cNf = cnf_dnf ~depth ~pol e in try match cNf with | [],[] -> tool.neutral | cf,cnf -> let mk_sub = function | [] -> raise Absorbant | df -> let r = tool.mk_sub df in if tool.is_absorbant_repr (F.repr r) then raise Absorbant else r in tool.mk_top (cf@(List.map mk_sub cnf)) with Absorbant -> tool.absorbant let cnf_dnf ~pol ?(depth=(-1)) = cnf_dnf ~pol ~depth let e_cnf = cnf_dnf ~pol:true let e_dnf = cnf_dnf ~pol:false (** Register new available transformation at Conditions.closure **) (* feature at Conditions.closure and also for debugging purposes *) let () = Conditions.at_closure (fun ((step,goal) as sequent) -> match Wp_parameters.SplitCNF.get () with | 0 -> sequent | depth when depth < -1 -> (* Unspecified debug mode checking the correctness of CNF algo: `H |- P` is replaced by `H |- P <-> CNF(P)` *) let cnf = e_cnf ~depth:(-(depth+3)) (e_prop goal) in debug " CNF=%a@." pp_term cnf; step, p_equiv goal (F.p_bool cnf) | depth -> (* `H |- P` is replaced by `H |- CNF(P)` *) let cnf = e_cnf ~depth (e_prop goal) in debug " CNF=%a@." pp_term cnf; step, p_bool cnf )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>