package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/TacInduction.ml.html
Source file TacInduction.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang (* remove parts with n from p into hs accumulator *) let filter_pred n hs p = F.p_conj @@ List.filter (fun p -> if F.occursp n p then (hs := p :: !hs ; false) else true) (match F.p_expr p with And ps -> ps | _ -> [p]) (* remove parts with n from step s into hs accumulator *) let filter_step n hs s = match s.Conditions.condition with | (Have _ | Type _ | Core _ | Init _ | When _) -> Conditions.map_step (filter_pred n hs) s | Probe _ -> s | (State _ | Branch _ | Either _) as c -> if F.Vars.mem n s.vars then (hs := Conditions.pred_cond c :: !hs ; Conditions.step (Have F.p_true)) else s let filter_seq n hs seq = Conditions.sequence @@ List.map (filter_step n hs) @@ Conditions.list seq let process value n0 sequent = (* Transfrom seq into: hyps => (forall n, goal) *) let n = Lang.freshvar ~basename:"n" Qed.Logic.Int in let i = Lang.freshvar ~basename:"i" Qed.Logic.Int in let vn = F.e_var n in let vi = F.e_var i in let sigma = Lang.sigma () in F.Subst.add sigma value vn ; let seq, goal = Conditions.map_sequent (F.p_subst sigma) sequent in let hind = ref [] in let seq = filter_seq n hind seq in let goal_n = F.p_hyps !hind goal in let goal_i = F.p_subst_var n vi goal_n in (* Base: n = n0 *) let goal_base = F.p_imply (F.p_equal vn n0) goal_n in (* Hind: n0 <= i < n *) let goal_sup = let hsup = [ F.p_leq n0 vi ; F.p_lt vi vn ] in let hind = F.p_forall [i] (F.p_hyps hsup goal_i) in F.p_hyps [F.p_lt n0 vn; hind] goal_n in (* Hind: n < i <= n0 *) let goal_inf = let hinf = [ F.p_lt vn vi ; F.p_leq vi n0 ] in let hind = F.p_forall [i] (F.p_hyps hinf goal_i) in F.p_hyps [F.p_lt vn n0; hind] goal_n in (* All Cases *) List.map (fun (name,goal) -> name , (seq,goal)) [ "Base" , goal_base ; "Induction (sup)" , goal_sup ; "Induction (inf)" , goal_inf ; ] (* -------------------------------------------------------------------------- *) (* --- Induction Tactical --- *) (* -------------------------------------------------------------------------- *) let vbase,pbase = Tactical.composer ~id:"base" ~title:"Base" ~descr:"Value of base case." () class induction = object(self) inherit Tactical.make ~id:"Wp.induction" ~title:"Induction" ~descr:"Proof by integer induction." ~params:[pbase] method private get_base () = match self#get_field vbase with | Tactical.Compose(Code(t, _, _)) | Inside(_, t) when Lang.F.typeof t = Lang.t_int -> Some t | Compose(Cint i) -> Some (Lang.F.e_bigint i) | _ -> None method select feedback (s : Tactical.selection) = begin match self#get_field vbase with | Empty -> self#set_field vbase (Tactical.int 0) ; feedback#update_field vbase | _ -> () end ; let value = Tactical.selected s in if F.is_int value then match self#get_base () with | Some base -> Tactical.Applicable(process value base) | None -> Not_configured else Not_applicable end let tactical = Tactical.export (new induction) (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>