package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-29.0-Copper.tar.gz
sha256=d2fbb3b8d0ff83945872e9e6fa258e934a706360e698dae3b4d5f971addf7493
doc/src/frama-c-wp.core/TacCongruence.ml.html
Source file TacCongruence.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang open Qed.Logic (* Only integer patterns *) type pattern = | IMUL_K of Integer.t * F.term | IDIV_K of F.term * Integer.t | QDIV of F.term * F.term | Ival of F.term * Integer.t option | Rval of F.term let pattern e = match F.repr e with | Kint n -> Ival(e,Some n) | Times(k,e) when F.is_int e -> IMUL_K(k,e) | Div(a,b) when not (F.is_int e) -> QDIV(a,b) | Div(a,b) when F.is_int e -> begin match F.repr b with | Kint k -> if Integer.(equal k zero) then raise Not_found ; IDIV_K(a,k) | _ -> Ival(e,None) end | _ -> if F.is_int e then Ival(e,None) else if F.is_real e then Rval e else raise Not_found (* let pp_pattern fmt = function | Ival(_,Some z) -> Format.fprintf fmt "(%s : constant)" (Integer.to_string z) | Ival(e,None) -> Format.fprintf fmt "@[<hov 2>(%a : int)@]" F.pp_term e | Rval e -> Format.fprintf fmt "@[<hov 2>(%a : real)@]" F.pp_term e | IMUL_K(k,e) -> Format.fprintf fmt "@[<hov 2>%s.(%a : int)@]" (Integer.to_string k) F.pp_term e | IDIV_K(e,k) -> Format.fprintf fmt "@[<hov 2>(%a : int)/%s@]" F.pp_term e (Integer.to_string k) | QDIV(a,b) -> Format.fprintf fmt "@[<hov 2>(%a : real)@,/(%a : real)@]" F.pp_term a F.pp_term b *) let to_term = function | IMUL_K(k,a) -> F.e_times k a | IDIV_K(a,k) -> F.e_div a (F.e_zint k) | QDIV(a,b) -> F.e_div a b | Ival(e,_) | Rval e -> e let pdiv a b = let k = Integer.c_div a b in Ival(F.e_zint k,Some k) let nzero x = F.p_neq F.e_zero x let positive x = F.p_lt F.e_zero x let negative x = F.p_lt x F.e_zero type cmp = LEQ | LT | EQ let icmp cmp a b = match cmp with | LEQ -> Integer.le a b | LT -> Integer.lt a b | EQ -> Integer.equal a b let fcmp cmp a b = match cmp with | LEQ -> F.p_leq a b | LT -> F.p_lt a b | EQ -> F.p_equal a b let compare_ratio cmp a u b v = let x = F.e_mul a v in let y = F.e_mul b v in let pu = positive u in let nu = negative u in let pv = positive v in let nv = negative v in F.p_conj [ nzero u ; nzero v ; F.p_hyps [pu;pv] (fcmp cmp x y) ; F.p_hyps [nu;pv] (fcmp cmp y x) ; F.p_hyps [pu;nv] (fcmp cmp y x) ; F.p_hyps [nu;nv] (fcmp cmp x y) ] let compare_div cmp a b g = let ra = F.e_mod a g in let rb = F.e_mod b g in fcmp cmp (F.e_sub a ra) (F.e_sub b rb) let rec compare cmp a b = match a, b with | IMUL_K( k,a ) , Ival(_,Some n) -> if Integer.(lt zero k) then compare cmp (pattern a) (pdiv n k) else if Integer.(lt k zero) then compare cmp (pdiv n k) (pattern a) else if icmp cmp Integer.zero n then F.p_true else F.p_false | Ival(_,Some n) , IMUL_K( k,a ) -> if Integer.(lt zero k) then compare cmp (pdiv n k) (pattern a) else if Integer.(lt k zero) then compare cmp (pattern a) (pdiv n k) else if icmp cmp Integer.zero n then F.p_true else F.p_false | IDIV_K( a,k ) , Ival(b,_) -> if Integer.(lt zero k) then let c = F.e_times k (F.e_add b F.e_one) in fcmp cmp a c else if Integer.(lt k zero) then let c = F.e_times k (F.e_sub b F.e_one) in fcmp cmp c a else raise Not_found | Ival(a,_) , IDIV_K( b,k ) -> if Integer.(lt zero k) then let c = F.e_times k (F.e_sub a F.e_one) in fcmp cmp c b else if Integer.(lt k zero) then let c = F.e_times k (F.e_add a F.e_one) in fcmp cmp b c else raise Not_found | IDIV_K( a,p ) , IDIV_K( b,q ) when not Integer.(equal p zero) && not Integer.(equal q zero) -> let g = Integer.pgcd (Integer.abs p) (Integer.abs q) in let ka = Integer.e_div p g in let kb = Integer.e_div q g in compare_div cmp (F.e_times ka a) (F.e_times kb b) (F.e_zint g) | QDIV(a,u) , QDIV(b,v) -> compare_ratio cmp a u b v | QDIV(a,u) , (Ival(b,_) | Rval b) -> compare_ratio cmp a u b F.e_one | (Ival(a,_) | Rval a) , QDIV(b,v) -> compare_ratio cmp a F.e_one b v | _ -> raise Not_found let eq_ratio eq a u b v = F.p_conj [ nzero u ; nzero v ; eq (F.e_mul a v) (F.e_mul b u) ] let rec equal eq a b = match a , b with | IMUL_K( k,a ) , Ival(_,Some n) | Ival(_,Some n) , IMUL_K( k,a ) -> let r = Integer.c_rem k n in if Integer.equal r Integer.zero then equal eq (pattern a) (pdiv n k) else eq F.e_one F.e_zero | IMUL_K( k,a ) , IMUL_K( k',b ) -> let r = Integer.pgcd k k' in eq (F.e_times (Integer.c_div k r) a) (F.e_times (Integer.c_div k' r) b) | IDIV_K( a,p ) , IDIV_K( b,q ) when not Integer.(equal p zero) && not Integer.(equal q zero) -> let g = Integer.pgcd (Integer.abs p) (Integer.abs q) in let ka = Integer.e_div p g in let kb = Integer.e_div q g in compare_div EQ (F.e_times ka a) (F.e_times kb b) (F.e_zint g) | QDIV(a,u) , QDIV(b,v) -> eq_ratio eq a u b v | QDIV(a,u) , (Ival(b,_) | Rval b) -> eq_ratio eq a u b F.e_one | (Ival(a,_) | Rval a) , QDIV(b,v) -> eq_ratio eq a F.e_one b v | _ -> eq (to_term a) (to_term b) let select goal = match F.repr (F.e_prop goal) with | Leq(a,b) -> compare LEQ (pattern a) (pattern b) | Lt(a,b) -> compare LT (pattern a) (pattern b) | Eq(a,b) -> equal F.p_equal (pattern a) (pattern b) | Neq(a,b) -> equal F.p_neq (pattern a) (pattern b) | _ -> raise Not_found class congruence = object inherit Tactical.make ~id:"Wp.congruence" ~title:"Congruence" ~descr:"Resolve congruences with euclidian divisions." ~params:[] method select _feedback = function | Tactical.Clause(Tactical.Goal p) -> let q = select p in if q != p then Tactical.Applicable(fun seq -> ["congruence" , (fst seq , q)]) else Tactical.Not_applicable | _ -> Tactical.Not_applicable end let tactical = Tactical.export (new congruence) let strategy = Strategy.make tactical ~arguments:[] (* -------------------------------------------------------------------------- *) (* --- Auto Congruence --- *) (* -------------------------------------------------------------------------- *) class autodiv = object method id = "wp:congruence" method title = "Auto Congruence" method descr = "Resolve divisions and multiplications." method search push (seq : Conditions.sequent) = try let p = snd seq in let q = select p in if q != p then push (strategy Tactical.(Clause (Goal p))) with Not_found -> () end let () = Strategy.register (new autodiv)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>