package eio

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file buf_write.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
(* This module is based on code from Faraday (0.7.2), which had the following
   license:

  ----------------------------------------------------------------------------
    Copyright (c) 2016 Inhabited Type LLC.

    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in the
       documentation and/or other materials provided with the distribution.

    3. Neither the name of the author nor the names of his contributors
       may be used to endorse or promote products derived from this software
       without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
    OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
    ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
  ----------------------------------------------------------------------------*)


type bigstring = Bigstringaf.t

exception Dequeue_empty

module Deque(T:sig type t val sentinel : t end) : sig
  type elem = T.t

  type t

  val create : int -> t
  (* [t = create n] creates a new deque with initial capacity [n].

     [to_list t = []] *)

  val is_empty : t -> bool
  (* [is_empty t = (to_list t = []) *)

  val enqueue : elem -> t -> unit
  (* [enqueue elem t]

     [to_list t'] = to_list t @ [elem] *)

  val dequeue_exn : t -> elem
  (* [dequeue_exn t = List.hd (to_list t)]

     [to_list t' = List.tl (to_list t)] *)

  val enqueue_front : elem -> t -> unit
  (* [enqueue_front elem t]

     to_list t' = elem :: to_list t *)

  val to_list : t -> elem list
end = struct
  type elem = T.t

  type t =
    { mutable elements : elem array
    ; mutable front    : int
    ; mutable back     : int }

  let sentinel = T.sentinel

  let create size =
    { elements = Array.make size sentinel; front = 0; back = 0 }

  let is_empty t =
    t.front = t.back

  let ensure_space t =
    if t.back = Array.length t.elements - 1 then begin
      let len = t.back - t.front in
      if t.front > 0 then begin
        (* Shift everything to the front of the array and then clear out
         * dangling pointers to elements from their previous locations. *)
        Array.blit t.elements t.front t.elements 0 len;
        Array.fill t.elements len t.front sentinel
      end else begin
        let old  = t.elements in
        let new_ = Array.(make (2 * length old) sentinel) in
        Array.blit old t.front new_ 0 len;
        t.elements <- new_
      end;
      t.front <- 0;
      t.back <- len
    end

  let enqueue e t =
    ensure_space t;
    t.elements.(t.back) <- e;
    t.back <- t.back + 1

  let dequeue_exn t =
    if is_empty t then
      raise Dequeue_empty
    else
      let result = Array.unsafe_get t.elements t.front in
      Array.unsafe_set t.elements t.front sentinel;
      t.front <- t.front + 1;
      result

  let enqueue_front e t =
    (* This is in general not true for Deque data structures, but the usage
     * below ensures that there is always space to push an element back on the
     * front. An [enqueue_front] is always preceded by a [dequeue], with no
     * intervening operations. *)
    assert (t.front > 0);
    t.front <- t.front - 1;
    t.elements.(t.front) <- e

  let to_list t =
    let result = ref [] in
    for i = t.back - 1 downto t.front do
      result := t.elements.(i) :: !result
    done;
    !result
end

module Buffers = Deque(struct
  type t = Cstruct.t
  let sentinel =
    let deadbeef = "\222\173\190\239" in
    Cstruct.of_string deadbeef
end)

module Flushes = Deque(struct
    type t = int * ((unit, exn) result Promise.u)
    let sentinel =
      let _, r = Promise.create () in
      Promise.resolve_ok r ();
      0, r
  end)

type state =
  | Active
  | Paused
  | Closed

type t =
  { mutable buffer         : bigstring
  ; mutable scheduled_pos  : int        (* How much of [buffer] is in [scheduled] *)
  ; mutable write_pos      : int        (* How much of [buffer] has been written to *)
  ; scheduled              : Buffers.t
  ; flushed                : Flushes.t
  ; mutable bytes_received : int        (* Total scheduled bytes. Wraps. *)
  ; mutable bytes_written  : int        (* Total written bytes. Wraps. *)
  ; mutable state          : state
  ; mutable wake_writer    : unit -> unit
  ; mutable printf         : (Format.formatter * bool ref) option
  }
(* Invariant: [write_pos >= scheduled_pos] *)

exception Flush_aborted

let writable_exn t =
  match t.state with
  | Active | Paused -> ()
  | Closed ->
    failwith "cannot write to closed writer"

let wake_writer t =
  match t.state with
  | Paused -> ()
  | Active | Closed ->
    let wake = t.wake_writer in
    if wake != ignore then (
      t.wake_writer <- ignore;
      wake ()
    )

(* Schedule [cs] now, without any checks. Users use {!schedule_cstruct} instead. *)
let schedule_iovec t cs =
  t.bytes_received <- t.bytes_received + Cstruct.length cs;
  Buffers.enqueue cs t.scheduled

(* Schedule all pending data in [buffer]. *)
let flush_buffer t =
  let len = t.write_pos - t.scheduled_pos in
  if len > 0 then begin
    let off = t.scheduled_pos in
    schedule_iovec t (Cstruct.of_bigarray ~off ~len t.buffer);
    t.scheduled_pos <- t.write_pos
  end

let free_bytes_in_buffer t =
  let buf_len = Bigstringaf.length t.buffer in
  buf_len - t.write_pos

let schedule_cstruct t cs =
  writable_exn t;
  flush_buffer t;
  if Cstruct.length cs > 0 then (
    schedule_iovec t cs;
    wake_writer t;
  )

let ensure_space t len =
  if free_bytes_in_buffer t < len then begin
    flush_buffer t;
    t.buffer <- Bigstringaf.create (max (Bigstringaf.length t.buffer) len);
    t.write_pos <- 0;
    t.scheduled_pos <- 0
  end

let advance_pos t n =
  t.write_pos <- t.write_pos + n;
  wake_writer t

let write_gen t ~blit ~off ~len a =
  writable_exn t;
  ensure_space t len;
  blit a ~src_off:off t.buffer ~dst_off:t.write_pos ~len;
  advance_pos t len

let string =
  let blit = Bigstringaf.blit_from_string in
  fun t ?(off=0) ?len a ->
    let len =
      match len with
      | None     -> String.length a - off
      | Some len -> len
    in
    write_gen t ~blit ~off ~len a

let bytes =
  let blit = Bigstringaf.blit_from_bytes in
  fun t ?(off=0) ?len a ->
    let len =
      match len with
      | None     -> Bytes.length a - off
      | Some len -> len
    in
    write_gen t ~blit ~off ~len a

let cstruct t { Cstruct.buffer; off; len } =
  write_gen t ~off ~len buffer
    ~blit:Bigstringaf.unsafe_blit

let char t c =
  writable_exn t;
  ensure_space t 1;
  Bigstringaf.unsafe_set t.buffer t.write_pos c;
  advance_pos t 1

let uint8 t b =
  writable_exn t;
  ensure_space t 1;
  Bigstringaf.unsafe_set t.buffer t.write_pos (Char.unsafe_chr b);
  advance_pos t 1

module BE = struct
  let uint16 t i =
    writable_exn t;
    ensure_space t 2;
    Bigstringaf.unsafe_set_int16_be t.buffer t.write_pos i;
    advance_pos t 2

  let uint32 t i =
    writable_exn t;
    ensure_space t 4;
    Bigstringaf.unsafe_set_int32_be t.buffer t.write_pos i;
    advance_pos t 4

  let uint48 t i =
    writable_exn t;
    ensure_space t 6;
    Bigstringaf.unsafe_set_int16_be t.buffer t.write_pos
      Int64.(to_int (shift_right_logical i 32));
    Bigstringaf.unsafe_set_int32_be t.buffer (t.write_pos + 2)
      Int64.(to_int32 i);
    advance_pos t 6

  let uint64 t i =
    writable_exn t;
    ensure_space t 8;
    Bigstringaf.unsafe_set_int64_be t.buffer t.write_pos i;
    advance_pos t 8

  let float t f =
    writable_exn t;
    ensure_space t 4;
    Bigstringaf.unsafe_set_int32_be t.buffer t.write_pos (Int32.bits_of_float f);
    advance_pos t 4

  let double t d =
    writable_exn t;
    ensure_space t 8;
    Bigstringaf.unsafe_set_int64_be t.buffer t.write_pos (Int64.bits_of_float d);
    advance_pos t 8
end

module LE = struct
  let uint16 t i =
    writable_exn t;
    ensure_space t 2;
    Bigstringaf.unsafe_set_int16_le t.buffer t.write_pos i;
    advance_pos t 2

  let uint32 t i =
    writable_exn t;
    ensure_space t 4;
    Bigstringaf.unsafe_set_int32_le t.buffer t.write_pos i;
    advance_pos t 4

  let uint48 t i =
    writable_exn t;
    ensure_space t 6;
    Bigstringaf.unsafe_set_int16_le t.buffer t.write_pos
      Int64.(to_int i);
    Bigstringaf.unsafe_set_int32_le t.buffer (t.write_pos + 2)
      Int64.(to_int32 (shift_right_logical i 16));
    advance_pos t 6

  let uint64 t i =
    writable_exn t;
    ensure_space t 8;
    Bigstringaf.unsafe_set_int64_le t.buffer t.write_pos i;
    advance_pos t 8

  let float t f =
    writable_exn t;
    ensure_space t 4;
    Bigstringaf.unsafe_set_int32_le t.buffer t.write_pos (Int32.bits_of_float f);
    advance_pos t 4

  let double t d =
    writable_exn t;
    ensure_space t 8;
    Bigstringaf.unsafe_set_int64_le t.buffer t.write_pos (Int64.bits_of_float d);
    advance_pos t 8
end

let close t =
  t.state <- Closed;
  flush_buffer t;
  wake_writer t

let is_closed t =
  match t.state with
  | Closed -> true
  | Active | Paused -> false

let abort t =
  close t;
  let rec aux () =
    match Flushes.dequeue_exn t.flushed with
    | exception Dequeue_empty -> ()
    | (_threshold, r) ->
      Promise.resolve_error r Flush_aborted;
      aux ()
  in
  aux ()

let of_buffer ?sw buffer =
  let t = { buffer
          ; write_pos       = 0
          ; scheduled_pos   = 0
          ; scheduled       = Buffers.create 4
          ; flushed         = Flushes.create 1
          ; bytes_received  = 0
          ; bytes_written   = 0
          ; state           = Active
          ; wake_writer     = ignore
          ; printf          = None
          }
  in
  begin match sw with
    | Some sw -> Switch.on_release sw (fun () -> abort t)
    | None -> ()
  end;
  t

let create ?sw size =
  of_buffer ?sw (Bigstringaf.create size)

let pending_bytes t =
  (t.write_pos - t.scheduled_pos) + (t.bytes_received - t.bytes_written)

let has_pending_output t =
  pending_bytes t <> 0

let pause t =
  match t.state with
  | Active -> t.state <- Paused
  | Paused | Closed -> ()

let unpause t =
  match t.state with
  | Active | Closed -> ()
  | Paused ->
    t.state <- Active;
    if has_pending_output t then
      wake_writer t

let flush t =
  flush_buffer t;
  unpause t;
  if not (Buffers.is_empty t.scheduled) then (
    let p, r = Promise.create () in
    Flushes.enqueue (t.bytes_received, r) t.flushed;
    Promise.await_exn p
  )

let make_formatter t =
  Format.make_formatter
    (fun buf off len -> write_gen t buf ~off ~len ~blit:Bigstringaf.blit_from_string)
    (fun () -> flush t)

let printf t =
  let ppf, is_formatting =
    match t.printf with
    | Some (_, is_formatting as x) ->
      is_formatting := true;
      x
    | None ->
      let is_formatting = ref true in
      let ppf =
        Format.make_formatter
          (fun buf off len -> write_gen t buf ~off ~len ~blit:Bigstringaf.blit_from_string)
          (fun () ->
             (* As per the Format module manual, an explicit flush writes to the
                output channel and ensures that "all pending text is displayed"
                and "these explicit flush calls [...] could dramatically impact efficiency".
                Therefore it is clear that we need to call `flush t` instead of `flush_buffer t`. *)
             if !is_formatting then flush t)
      in
      t.printf <- Some (ppf, is_formatting);
      ppf, is_formatting
  in
  Format.kfprintf (fun ppf ->
      if not !is_formatting then raise (Sys_error "Buf_write.printf: invalid concurrent access");
      (* Ensure that [ppf]'s internal buffer is flushed to [t], but without flushing [t] itself: *)
      is_formatting := false;
      Format.pp_print_flush ppf ()
    ) ppf

let rec shift_buffers t written =
  match Buffers.dequeue_exn t.scheduled with
  | { Cstruct.len; _ } as iovec ->
    if len <= written then
      shift_buffers t (written - len)
    else
      Buffers.enqueue_front (Cstruct.shift iovec written) t.scheduled
  | exception Dequeue_empty ->
    assert (written = 0);
    if t.scheduled_pos = t.write_pos then begin
      t.scheduled_pos <- 0;
      t.write_pos <- 0
    end

(* Resolve any flushes that are now due. *)
let rec shift_flushes t =
  match Flushes.dequeue_exn t.flushed with
  | exception Dequeue_empty -> ()
  | (threshold, r) as flush ->
    (* Be careful: [bytes_written] and [threshold] both wrap, so subtract first. *)
    if t.bytes_written - threshold >= 0 then (
      (* We have written at least up to [threshold]
         (or we're more than [max_int] behind, which we assume won't happen). *)
      Promise.resolve_ok r ();
      shift_flushes t
    ) else (
      Flushes.enqueue_front flush t.flushed
    )

let shift t written =
  shift_buffers t written;
  t.bytes_written <- t.bytes_written + written;
  shift_flushes t

let rec await_batch t =
  flush_buffer t;
  match t.state, has_pending_output t with
  | Closed, false -> raise End_of_file
  | (Active | Closed), true -> Buffers.to_list t.scheduled
  | Paused, _ | Active, false ->
    Suspend.enter "Buf_write.await_batch" (fun ctx enqueue ->
        Fiber_context.set_cancel_fn ctx (fun ex ->
            t.wake_writer <- ignore;
            enqueue (Error ex)
          );
        t.wake_writer <- (fun () ->
            (* Our caller has already set [wake_writer <- ignore]. *)
            Fiber_context.clear_cancel_fn ctx;
            enqueue (Ok ())
          );
      );
    await_batch t

(* We have to do our own copy, because we can't [shift] until the write is complete. *)
let copy t flow =
  let rec aux () =
    let iovecs = await_batch t in
    let wrote = Flow.single_write flow iovecs in
    shift t wrote;
    aux ()
  in
  try aux ()
  with End_of_file -> ()

let with_flow ?(initial_size=0x1000) flow fn =
  Switch.run ~name:"Buf_write.with_flow" @@ fun sw ->
  let t = create ~sw initial_size in
  Fiber.fork ~sw (fun () -> copy t flow);
  match fn t with
  | x ->
    close t;
    x
  | exception ex ->
    close t;
    (* Raising the exception will cancel the writer thread, so do a flush first.
       We don't want to flush if cancelled, but in that case the switch will
       end the writer thread itself (and [flush] will raise). *)
    flush t;
    raise ex

let rec serialize t writev =
  match await_batch t with
  | exception End_of_file -> Ok ()
  | iovecs ->
    match writev iovecs with
    | Error `Closed as e -> close t; e
    | Ok n ->
      shift t n;
      if not (Buffers.is_empty t.scheduled) then Fiber.yield ();
      serialize t writev

let serialize_to_string t =
  close t;
  match await_batch t with
  | exception End_of_file -> ""
  | iovecs ->
    let len = Cstruct.lenv iovecs in
    let bytes = Bytes.create len in
    let pos = ref 0 in
    List.iter (function
        | { Cstruct.buffer; off; len } ->
          Bigstringaf.unsafe_blit_to_bytes buffer ~src_off:off bytes ~dst_off:!pos ~len;
          pos := !pos + len)
      iovecs;
    shift t len;
    assert (not (has_pending_output t));
    Bytes.unsafe_to_string bytes

let serialize_to_cstruct t =
  close t;
  match await_batch t with
  | exception End_of_file -> Cstruct.empty
  | iovecs ->
    let data = Cstruct.concat iovecs in
    shift t (Cstruct.length data);
    assert (not (has_pending_output t));
    data

let drain =
  let rec loop t acc =
    match await_batch t with
    | exception End_of_file -> acc
    | iovecs ->
      let len = Cstruct.lenv iovecs in
      shift t len;
      loop t (len + acc)
  in
  fun t -> loop t 0
OCaml

Innovation. Community. Security.