package cstruct

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file cstruct.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
(*
 * Copyright (c) 2012 Anil Madhavapeddy <anil@recoil.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *)

type buffer = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t

(* Note:
 *
 * We try to maintain the property that no constructed [t] can ever point out of
 * its underlying buffer. This property is guarded by all of the constructing
 * functions and the fact that the type is private, and used by various
 * functions that would otherwise be completely unsafe.
 *
 * Furthermore, no operation on [t] is allowed to extend the view on the
 * underlying Bigarray structure, only narrowing is allowed.
 *
 * All well-intended souls are kindly invited to cross-check that the code
 * indeed maintains this invariant.
 *)

type t = {
  buffer: buffer;
  off   : int;
  len   : int;
}

let pp_t ppf t =
  Format.fprintf ppf "[%d,%d](%d)" t.off t.len (Bigarray.Array1.dim t.buffer)
let string_t ppf str =
  Format.fprintf ppf "[%d]" (String.length str)
let bytes_t ppf str =
  Format.fprintf ppf "[%d]" (Bytes.length str)

let err fmt =
  let b = Buffer.create 20 in                         (* for thread safety. *)
  let ppf = Format.formatter_of_buffer b in
  let k ppf = Format.pp_print_flush ppf (); invalid_arg (Buffer.contents b) in
  Format.kfprintf k ppf fmt

let err_of_bigarray t = err "Cstruct.of_bigarray off=%d len=%d" t
let err_sub t = err "Cstruct.sub: %a off=%d len=%d" pp_t t
let err_shift t = err "Cstruct.shift %a %d" pp_t t
let err_shiftv n = err "Cstruct.shiftv short by %d" n
let err_copy_to_string caller t = err "Cstruct.%s %a off=%d len=%d" caller pp_t t
let err_to_hex_string t = err "Cstruct.to_hex_string %a off=%d len=%d" pp_t t
let err_blit_src src dst =
  err "Cstruct.blit src=%a dst=%a src-off=%d len=%d" pp_t src pp_t dst
let err_blit_dst src dst =
  err "Cstruct.blit src=%a dst=%a dst-off=%d len=%d" pp_t src pp_t dst
let err_blit_from_string_src src dst =
  err "Cstruct.blit_from_string src=%a dst=%a src-off=%d len=%d"
    string_t src pp_t dst
let err_blit_from_string_dst src dst =
  err "Cstruct.blit_from_string src=%a dst=%a dst-off=%d len=%d"
    string_t src pp_t dst
let err_blit_from_bytes_src src dst =
  err "Cstruct.blit_from_bytes src=%a dst=%a src-off=%d len=%d"
    bytes_t src pp_t dst
let err_blit_from_bytes_dst src dst =
  err "Cstruct.blit_from_bytes src=%a dst=%a dst-off=%d len=%d"
    bytes_t src pp_t dst
let err_blit_to_bytes_src src dst =
  err "Cstruct.blit_to_bytes src=%a dst=%a src-off=%d len=%d"
    pp_t src bytes_t dst
let err_blit_to_bytes_dst src dst=
  err "Cstruct.blit_to_bytes src=%a dst=%a dst-off=%d len=%d"
    pp_t src bytes_t dst
let err_invalid_bounds f =
  err "invalid bounds in Cstruct.%s %a off=%d len=%d" f pp_t [@@inline never]
let err_split t = err "Cstruct.split %a start=%d off=%d" pp_t t
let err_iter t = err "Cstruct.iter %a i=%d len=%d" pp_t t

let of_bigarray ?(off=0) ?len buffer =
  let dim = Bigarray.Array1.dim buffer in
  let len =
    match len with
    | None     -> dim - off
    | Some len -> len in
  if off < 0 || len < 0 || off + len < 0 || off + len > dim then err_of_bigarray off len
  else { buffer; off; len }

let to_bigarray buffer =
  Bigarray.Array1.sub buffer.buffer buffer.off buffer.len

let create_unsafe len =
  let buffer = Bigarray.(Array1.create char c_layout len) in
  { buffer ; len ; off = 0 }

let check_bounds t len =
  len >= 0 && Bigarray.Array1.dim t.buffer >= len

let empty = create_unsafe 0

external check_alignment_bigstring : buffer -> int -> int -> bool = "caml_check_alignment_bigstring"

let check_alignment t alignment =
  if alignment > 0 then
    check_alignment_bigstring t.buffer t.off alignment
  else invalid_arg "check_alignment must be positive integer"

type byte = char

let byte (i:int) : byte = Char.chr i
let byte_to_int (b:byte) = int_of_char b

type uint8 = int
type uint16 = int
type uint32 = int32
type uint64 = int64

let debug t =
  let max_len = Bigarray.Array1.dim t.buffer in
  if t.off+t.len > max_len || t.len < 0 || t.off < 0 then (
    Format.printf "ERROR: t.off+t.len=%d %a\n%!" (t.off+t.len) pp_t t;
    assert false;
  ) else
    Format.asprintf "%a" pp_t t

let sub t off len =
  (* from https://github.com/mirage/ocaml-cstruct/pull/245

     Cstruct.sub should select what a programmer intuitively expects a
     sub-cstruct to be. I imagine holding out my hands, with the left
     representing the start offset and the right the end. I think of a
     sub-cstruct as any span within this range. If I move my left hand only to
     the right (new_start >= t.off), and my right hand only to the left
     (new_end <= old_end), and they don't cross (new_start <= new_end), then I
     feel sure the result will be a valid sub-cstruct. And if I violate any one
     of these constraints (e.g. moving my left hand further left), then I feel
     sure that the result wouldn't be something I'd consider to be a sub-cstruct.

     Wrapping considerations in modular arithmetic:

     Note that if x is non-negative, and x + y wraps, then x + y must be
     negative. This is easy to see with modular arithmetic because if y is
     negative then the two arguments will cancel to some degree the result
     cannot be further from zero than one of the arguments. If y is positive
     then x + y can wrap, but even max_int + max_int doesn't wrap all the way to
     zero.

     The three possibly-wrapping operations are:

     new_start = t.off + off. t.off is non-negative so if this wraps then
     new_start will be negative and will fail the new_start >= t.off test.

     new_end = new_start + len. The above test ensures that new_start is
     non-negative in any successful return. So if this wraps then new_end will
     be negative and will fail the new_start <= new_end test.

     old_end = t.off + t.len. This uses only the existing trusted values. It
     could only wrap if the underlying bigarray had a negative length!  *)
  let new_start = t.off + off in
  let new_end = new_start + len in
  let old_end = t.off + t.len in
  if new_start >= t.off && new_end <= old_end && new_start <= new_end then
    { t with off = new_start ; len }
  else
    err_sub t off len

let shift t amount =
  let off = t.off + amount in
  let len = t.len - amount in
  if amount < 0 || amount > t.len || not (check_bounds t (off+len)) then
    err_shift t amount
  else { t with off; len }

let rec skip_empty = function
  | t :: ts when t.len = 0 -> skip_empty ts
  | x -> x

let rec shiftv ts = function
  | 0 -> skip_empty ts
  | n ->
    match ts with
    | [] -> err_shiftv n
    | t :: ts when n >= t.len -> shiftv ts (n - t.len)
    | t :: ts -> shift t n :: ts

external unsafe_blit_bigstring_to_bigstring : buffer -> int -> buffer -> int -> int -> unit = "caml_blit_bigstring_to_bigstring" [@@noalloc]

external unsafe_blit_string_to_bigstring : string -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc]

external unsafe_blit_bytes_to_bigstring : Bytes.t -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc]

external unsafe_blit_bigstring_to_bytes : buffer -> int -> Bytes.t -> int -> int -> unit = "caml_blit_bigstring_to_string" [@@noalloc]

external unsafe_compare_bigstring : buffer -> int -> buffer -> int -> int -> int = "caml_compare_bigstring" [@@noalloc]

external unsafe_fill_bigstring : buffer -> int -> int -> int -> unit = "caml_fill_bigstring" [@@noalloc]

let copy_to_string caller src srcoff len =
  if len < 0 || srcoff < 0 || src.len - srcoff < len then
    err_copy_to_string caller src srcoff len
  else
    let b = Bytes.create len in
    unsafe_blit_bigstring_to_bytes src.buffer (src.off+srcoff) b 0 len;
    (* The following call is safe, since b is not visible elsewhere. *)
    Bytes.unsafe_to_string b

let copy = copy_to_string "copy"

let blit src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || src.len - srcoff < len then
    err_blit_src src dst srcoff len
  else if dstoff < 0 || dst.len - dstoff < len then
    err_blit_dst src dst dstoff len
  else
    unsafe_blit_bigstring_to_bigstring src.buffer (src.off+srcoff) dst.buffer
      (dst.off+dstoff) len

let sub_copy cstr off len : t =
  let cstr2 = create_unsafe len in
  blit cstr off cstr2 0 len;
  cstr2

let blit_from_string src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || dstoff < 0 || String.length src - srcoff < len then
    err_blit_from_string_src src dst srcoff len
  else if dst.len - dstoff < len then
    err_blit_from_string_dst src dst dstoff len
  else
    unsafe_blit_string_to_bigstring src srcoff dst.buffer (dst.off+dstoff) len

let blit_from_bytes src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || dstoff < 0 || Bytes.length src - srcoff < len then
    err_blit_from_bytes_src src dst srcoff len
  else if dst.len - dstoff < len then
    err_blit_from_bytes_dst src dst dstoff len
  else
    unsafe_blit_bytes_to_bigstring src srcoff dst.buffer (dst.off+dstoff) len

let blit_to_bytes src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || dstoff < 0 || src.len - srcoff < len then
    err_blit_to_bytes_src src dst srcoff len
  else if Bytes.length dst - dstoff < len then
    err_blit_to_bytes_dst src dst dstoff len
  else
    unsafe_blit_bigstring_to_bytes src.buffer (src.off+srcoff) dst dstoff len

let compare t1 t2 =
  let l1 = t1.len
  and l2 = t2.len in
  match compare l1 l2 with
  | 0 ->
    ( match unsafe_compare_bigstring t1.buffer t1.off t2.buffer t2.off l1 with
      | 0 -> 0
      | r -> if r < 0 then -1 else 1 )
  | r -> r

let equal t1 t2 = compare t1 t2 = 0

(* Note that this is only safe as long as all [t]s are coherent. *)
let memset t x = unsafe_fill_bigstring t.buffer t.off t.len x

let create len =
  let t = create_unsafe len in
  memset t 0;
  t

let set_uint8 t i c =
  if i >= t.len || i < 0 then err_invalid_bounds "set_uint8" t i 1
  else Bigarray.Array1.set t.buffer (t.off+i) (Char.unsafe_chr c)

let set_char t i c =
  if i >= t.len || i < 0 then err_invalid_bounds "set_char" t i 1
  else Bigarray.Array1.set t.buffer (t.off+i) c

let get_uint8 t i =
  if i >= t.len || i < 0 then err_invalid_bounds "get_uint8" t i 1
  else Char.code (Bigarray.Array1.get t.buffer (t.off+i))

let get_char t i =
  if i >= t.len || i < 0 then err_invalid_bounds "get_char" t i 1
  else Bigarray.Array1.get t.buffer (t.off+i)


external ba_set_int16 : buffer -> int -> uint16 -> unit = "%caml_bigstring_set16u"
external ba_set_int32 : buffer -> int -> uint32 -> unit = "%caml_bigstring_set32u"
external ba_set_int64 : buffer -> int -> uint64 -> unit = "%caml_bigstring_set64u"
external ba_get_int16 : buffer -> int -> uint16 = "%caml_bigstring_get16u"
external ba_get_int32 : buffer -> int -> uint32 = "%caml_bigstring_get32u"
external ba_get_int64 : buffer -> int -> uint64 = "%caml_bigstring_get64u"

external swap16 : int -> int = "%bswap16"
external swap32 : int32 -> int32 = "%bswap_int32"
external swap64 : int64 -> int64 = "%bswap_int64"

let set_uint16 swap p t i c =
  if i > t.len - 2 || i < 0 then err_invalid_bounds (p ^ ".set_uint16") t i 2
  else ba_set_int16 t.buffer (t.off+i) (if swap then swap16 c else c) [@@inline]

let set_uint32 swap p t i c =
  if i > t.len - 4 || i < 0 then err_invalid_bounds (p ^ ".set_uint32") t i 4
  else ba_set_int32 t.buffer (t.off+i) (if swap then swap32 c else c) [@@inline]

let set_uint64 swap p t i c =
  if i > t.len - 8 || i < 0 then err_invalid_bounds (p ^ ".set_uint64") t i 8
  else ba_set_int64 t.buffer (t.off+i) (if swap then swap64 c else c) [@@inline]

let get_uint16 swap p t i =
  if i > t.len - 2 || i < 0 then err_invalid_bounds (p ^ ".get_uint16") t i 2
  else
    let r = ba_get_int16 t.buffer (t.off+i) in
    if swap then swap16 r else r [@@inline]

let get_uint32 swap p t i =
  if i > t.len - 4 || i < 0 then err_invalid_bounds (p ^ ".get_uint32") t i 4
  else
    let r = ba_get_int32 t.buffer (t.off+i) in
    if swap then swap32 r else r [@@inline]

let get_uint64 swap p t i =
  if i > t.len - 8 || i < 0 then err_invalid_bounds (p ^ ".get_uint64") t i 8
  else
    let r = ba_get_int64 t.buffer (t.off+i) in
    if swap then swap64 r else r [@@inline]

module BE = struct
  let set_uint16 t i c = set_uint16 (not Sys.big_endian) "BE" t i c [@@inline]
  let set_uint32 t i c = set_uint32 (not Sys.big_endian) "BE" t i c [@@inline]
  let set_uint64 t i c = set_uint64 (not Sys.big_endian) "BE" t i c [@@inline]
  let get_uint16 t i = get_uint16 (not Sys.big_endian) "BE" t i [@@inline]
  let get_uint32 t i = get_uint32 (not Sys.big_endian) "BE" t i [@@inline]
  let get_uint64 t i = get_uint64 (not Sys.big_endian) "BE" t i [@@inline]
end

module LE = struct
  let set_uint16 t i c = set_uint16 Sys.big_endian "LE" t i c [@@inline]
  let set_uint32 t i c = set_uint32 Sys.big_endian "LE" t i c [@@inline]
  let set_uint64 t i c = set_uint64 Sys.big_endian "LE" t i c [@@inline]
  let get_uint16 t i = get_uint16 Sys.big_endian "LE" t i [@@inline]
  let get_uint32 t i = get_uint32 Sys.big_endian "LE" t i [@@inline]
  let get_uint64 t i = get_uint64 Sys.big_endian "LE" t i [@@inline]
end

module HE = struct
  let set_uint16 t i c = set_uint16 false "HE" t i c [@@inline]
  let set_uint32 t i c = set_uint32 false "HE" t i c [@@inline]
  let set_uint64 t i c = set_uint64 false "HE" t i c [@@inline]
  let get_uint16 t i = get_uint16 false "HE" t i [@@inline]
  let get_uint32 t i = get_uint32 false "HE" t i [@@inline]
  let get_uint64 t i = get_uint64 false "HE" t i [@@inline]
end

let length { len ; _ } = len

(** [sum_lengths ~caller acc l] is [acc] plus the sum of the lengths
    of the elements of [l].  Raises [Invalid_argument caller] if
    arithmetic overflows. *)
let rec sum_lengths_aux ~caller acc = function
  | [] -> acc
  | h :: t ->
     let sum = length h + acc in
     if sum < acc then invalid_arg caller
     else sum_lengths_aux ~caller sum t

let sum_lengths ~caller l = sum_lengths_aux ~caller 0 l

let lenv l = sum_lengths ~caller:"Cstruct.lenv" l

let copyv ts =
  let sz = sum_lengths ~caller:"Cstruct.copyv" ts in
  let dst = Bytes.create sz in
  let _ = List.fold_left
    (fun off src ->
      let x = length src in
      unsafe_blit_bigstring_to_bytes src.buffer src.off dst off x;
      off + x
    ) 0 ts in
  (* The following call is safe, since dst is not visible elsewhere. *)
  Bytes.unsafe_to_string dst

let fillv ~src ~dst =
  let rec aux dst n = function
    | [] -> n, []
    | hd::tl ->
        let avail = length dst in
        let first = length hd in
        if first <= avail then (
          blit hd 0 dst 0 first;
          aux (shift dst first) (n + first) tl
        ) else (
          blit hd 0 dst 0 avail;
          let rest_hd = shift hd avail in
          (n + avail, rest_hd :: tl)
        ) in
  aux dst 0 src

let to_string ?(off=0) ?len:sz t =
  let len = match sz with None -> length t - off | Some l -> l in
  copy_to_string "to_string" t off len

let to_hex_string ?(off=0) ?len:sz t : string =
  let[@inline] nibble_to_char (i:int) : char =
    if i < 10 then
      Char.chr (i + Char.code '0')
    else
      Char.chr (i - 10 + Char.code 'a')
  in

  let len = match sz with None -> length t - off | Some l -> l in
  if len < 0 || off < 0 || t.len - off < len then
    err_to_hex_string t off len
  else (
    let out = Bytes.create (2 * len) in
    for i=0 to len-1 do
      let c = Char.code @@ Bigarray.Array1.get t.buffer (i+t.off+off) in
      Bytes.set out (2*i) (nibble_to_char (c lsr 4));
      Bytes.set out (2*i+1) (nibble_to_char (c land 0xf));
    done;
    Bytes.unsafe_to_string out
  )


let to_bytes ?off ?len t =
  Bytes.unsafe_of_string (to_string ?off ?len t)

let [@inline always] of_data_abstract blitfun lenfun ?allocator ?(off=0) ?len buf =
  let buflen =
    match len with
    | None -> lenfun buf - off
    | Some len -> len in
  match allocator with
  | None ->
    let c = create_unsafe buflen in
    blitfun buf off c 0 buflen;
    c
  | Some fn ->
    let c = fn buflen in
    blitfun buf off c 0 buflen;
    { c with len = buflen }

let of_string ?allocator ?off ?len buf =
  of_data_abstract blit_from_string String.length ?allocator ?off ?len buf

let of_bytes ?allocator ?off ?len buf =
  of_data_abstract blit_from_bytes Bytes.length ?allocator ?off ?len buf

let of_hex ?(off=0) ?len str =
  let str =
    let l = match len with None -> String.length str - off | Some l -> l in
    String.sub str off l
  in
  let string_fold ~f ~z str =
    let st = ref z in
    ( String.iter (fun c -> st := f !st c) str  ; !st )
  in
  let hexdigit p = function
    | 'a' .. 'f' as x -> int_of_char x - 87
    | 'A' .. 'F' as x -> int_of_char x - 55
    | '0' .. '9' as x -> int_of_char x - 48
    | x ->
      Format.ksprintf invalid_arg "of_hex: invalid character at pos %d: %C" p x
  in
  let whitespace = function
    | ' ' | '\t' | '\r' | '\n' -> true
    | _ -> false
  in
  match
    string_fold
      ~f:(fun (cs, i, p, acc) ->
          let p' = succ p in
          function
          | char when whitespace char -> (cs, i, p', acc)
          | char ->
            match acc, hexdigit p char with
            | (None  , x) -> (cs, i, p', Some (x lsl 4))
            | (Some y, x) -> set_uint8 cs i (x lor y) ; (cs, succ i, p', None))
      ~z:(create_unsafe (String.length str lsr 1), 0, 0, None)
      str
  with
  | _ , _, _, Some _ ->
    Format.ksprintf invalid_arg "of_hex: odd numbers of characters"
  | cs, i, _, _ -> sub cs 0 i

let hexdump_pp fmt t =
  let before fmt =
    function
    | 0 -> ()
    | 8 -> Format.fprintf fmt "  ";
    | _ -> Format.fprintf fmt " "
  in
  let after fmt =
    function
    | 15 -> Format.fprintf fmt "@;"
    |  _ -> ()
  in
  Format.pp_open_vbox fmt 0 ;
  for i = 0 to length t - 1 do
    let column = i mod 16 in
    let c = Char.code (Bigarray.Array1.get t.buffer (t.off+i)) in
    Format.fprintf fmt "%a%.2x%a" before column c after column
  done ;
  Format.pp_close_box fmt ()

let hexdump = Format.printf "@\n%a@." hexdump_pp

let hexdump_to_buffer buf t =
  let f = Format.formatter_of_buffer buf in
  Format.fprintf f "@\n%a@." hexdump_pp t

let split ?(start=0) t off =
  try
    let header =sub t start off in
    let body = sub t (start+off) (length t - off - start) in
    header, body
  with Invalid_argument _ -> err_split t start off

type 'a iter = unit -> 'a option
let iter lenfn pfn t =
  let body = ref (Some t) in
  let i = ref 0 in
  fun () ->
    match !body with
      |Some buf when length buf = 0 ->
        body := None;
        None
      |Some buf -> begin
        match lenfn buf with
        |None ->
          body := None;
          None
        |Some plen ->
          incr i;
          let p,rest =
            try split buf plen with Invalid_argument _ -> err_iter buf !i plen
          in
          body := Some rest;
          Some (pfn p)
      end
      |None -> None

let rec fold f next acc = match next () with
  | None -> acc
  | Some v -> fold f next (f acc v)

let append cs1 cs2 =
  let l1 = length cs1 and l2 = length cs2 in
  let cs = create_unsafe (l1 + l2) in
  blit cs1 0 cs 0  l1 ;
  blit cs2 0 cs l1 l2 ;
  cs

let concat = function
  | []   -> create_unsafe 0
  | [cs] -> cs
  | css  ->
      let result = create_unsafe (sum_lengths ~caller:"Cstruct.concat" css) in
      let aux off cs =
        let n = length cs in
        blit cs 0 result off n ;
        off + n in
      ignore @@ List.fold_left aux 0 css ;
      result

let rev t =
  let n = length t in
  let out = create_unsafe n in
  for i_src = 0 to n - 1 do
    let byte = get_uint8 t i_src in
    let i_dst = n - 1 - i_src in
    set_uint8 out i_dst byte
  done;
  out

(* Convenience function. *)

external unsafe_blit_string_to_bigstring
  : string -> int -> buffer -> int -> int -> unit
  = "caml_blit_string_to_bigstring"
[@@noalloc]

let get { buffer; off; len; } zidx =
  if zidx < 0 || zidx >= len then invalid_arg "index out of bounds" ;
  Bigarray.Array1.get buffer (off + zidx)

let get_byte { buffer; off; len; } zidx =
  if zidx < 0 || zidx >= len then invalid_arg "index out of bounds" ;
  Char.code (Bigarray.Array1.get buffer (off + zidx))

let string ?(off= 0) ?len str =
  let str_len = String.length str in
  let len = match len with None -> str_len | Some len -> len in
  if off < 0 || len < 0 || off + len > str_len then invalid_arg "index out of bounds" ;
  let buffer = Bigarray.(Array1.create char c_layout str_len) in
  unsafe_blit_string_to_bigstring str 0 buffer 0 str_len ;
  of_bigarray ~off ~len buffer

let buffer ?(off= 0) ?len buffer =
  let buffer_len = Bigarray.Array1.dim buffer in
  let len = match len with None -> buffer_len - off | Some len -> len in
  if off < 0 || len < 0 || off + len > buffer_len then invalid_arg "index out of bounds" ;
  of_bigarray ~off ~len buffer

let start_pos { off; _ } = off
let stop_pos { off; len; _ } = off + len

let head ?(rev= false) ({ len; _ } as cs) =
  if len = 0 then None
  else Some (get_char cs (if rev then len - 1 else 0))

let tail ?(rev= false) ({ buffer; off; len; } as cs) =
  if len = 0 then cs
  else if rev then of_bigarray ~off ~len:(len - 2) buffer
  else of_bigarray ~off:(off + 1) ~len:(len - 1) buffer

let is_empty { len; _ } = len = 0

let is_prefix ~affix:({ len= alen; _ } as affix)
    ({ len; _ } as cs) =
  if alen > len then false
  else
    let max_zidx = alen - 1 in
    let rec loop i =
      if i > max_zidx then true
      else if get_char affix i <> get_char cs i
      then false else loop (succ i) in
    loop 0

let is_infix ~affix:({ len= alen; _ } as affix)
    ({ len; _ } as cs) =
  if alen > len then false
  else
    let max_zidx_a = alen - 1 in
    let max_zidx_s = len - alen in
    let rec loop i k =
      if i > max_zidx_s then false
      else if k > max_zidx_a then true
      else if k > 0 then
        if get_char affix k = get_char cs (i + k)
        then loop i (succ k)
        else loop (succ i) 0
      else if get_char affix 0 = get_char cs i
      then loop i 1
      else loop (succ i) 0 in
    loop 0 0

let is_suffix ~affix:({ len= alen; _ } as affix)
    ({ len; _ } as cs) =
  if alen > len then false
  else
    let max_zidx = alen - 1 in
    let max_zidx_a = alen - 1 in
    let max_zidx_s = len - 1 in
    let rec loop i =
      if i > max_zidx then true
      else if get_char affix (max_zidx_a - i) <> get_char cs (max_zidx_s - i)
      then false else loop (succ i) in
    loop 0

let for_all sat cs =
  let rec go acc i =
    if i < length cs
    then go (sat (get_char cs i) && acc) (succ i)
    else acc in
  go true 0

let exists sat cs =
  let rec go acc i =
    if i < length cs
    then go (sat (get_char cs i) || acc) (succ i)
    else acc in
  go false 0

let start { buffer; off; _ } =
  of_bigarray buffer ~off ~len:0

let stop { buffer; off; len; } =
  of_bigarray buffer ~off:(off + len) ~len:0

let is_white = function ' ' | '\t' .. '\r' -> true | _ -> false

let trim ?(drop = is_white) ({ buffer; off; len; } as cs) =
  if len = 0 then cs
  else
    let max_zpos = len in
    let max_zidx = len - 1 in
    let rec left_pos i =
      if i > max_zidx then max_zpos
      else if drop (get_char cs i) then left_pos (succ i) else i in
    let rec right_pos i =
      if i < 0 then 0
      else if drop (get_char cs i) then right_pos (pred i) else succ i in
    let left = left_pos 0 in
    if left = max_zpos
    then of_bigarray buffer ~off:((off * 2 + len) / 2) ~len:0
    else
      let right = right_pos max_zidx in
      if left = 0 && right = max_zpos then cs
      else of_bigarray buffer ~off:(off + left) ~len:(right - left)

let fspan ~min ~max ~sat ({ buffer= v; off; len; } as cs) =
  if min < 0 then invalid_arg "span: negative min" ;
  if max < 0 then invalid_arg "span: negative max" ;
  if min > max || max = 0 then (buffer ~off:off ~len:0 v, cs)
  else
    let max_zidx = len - 1 in
    let max_zidx =
      let k = max - 1 in
      if k > max_zidx || k < 0 then max_zidx else k in
    let need_zidx = min in
    let rec loop i =
      if i <= max_zidx && sat (get_char cs i) then loop (i + 1)
      else if i < need_zidx || i = 0 then buffer ~off:off ~len:0 v, cs
      else if i = len then (cs, buffer ~off:(off + len) ~len:0 v)
      else buffer ~off:off ~len:i v, buffer ~off:(off + i) ~len:(len - i) v in
    loop 0

let rspan ~min ~max ~sat ({ buffer= v; off; len; } as cs) =
  if min < 0 then invalid_arg "span: negative min" ;
  if max < 0 then invalid_arg "span: negative max" ;
  if min > max || max = 0 then (cs, buffer ~off:(off + len) ~len:0 v)
  else
    let max_zidx = len - 1 in
    let min_zidx =
      let k = len - max in if k < 0 then 0 else k in
    let need_zidx = len - min - 1 in
    let rec loop i =
      if i >= min_zidx && sat (get_char cs i) then loop (i - 1)
      else if i > need_zidx || i = max_zidx then (cs, buffer ~off:(off + len) ~len:0 v)
      else if i < 0 then (buffer ~off:off ~len:0 v, cs)
      else (buffer ~off:off ~len:(i + 1) v, buffer ~off:(off + i + 1) ~len:(len - (i + 1)) v) in
    loop max_zidx

let span ?(rev= false) ?(min= 0) ?(max= max_int) ?(sat= fun _ -> true) cs =
  match rev with
  | true  -> rspan ~min ~max ~sat cs
  | false -> fspan ~min ~max ~sat cs

let take ?(rev= false) ?min ?max ?sat cs =
  (if rev then snd else fst) @@ span ~rev ?min ?max ?sat cs

let drop ?(rev= false) ?min ?max ?sat cs =
  (if rev then fst else snd) @@ span ~rev ?min ?max ?sat cs

let fcut ~sep:({ len= sep_len; _ } as sep)
    ({ buffer= v; off; len; } as cs) =
  if sep_len = 0 then invalid_arg "cut: empty separator" ;
  let max_sep_zidx = sep_len - 1 in
  let max_s_zidx = len - sep_len in
  let rec check_sep i k =
    if k > max_sep_zidx
    then Some (buffer ~off:off ~len:i v,
               buffer ~off:(off + i + sep_len) ~len:(len - i - sep_len) v)
    else if get_char cs (i + k) = get_char sep k
    then check_sep i (k + 1)
    else scan (i + 1)
  and scan i =
    if i > max_s_zidx then None
    else if get_char cs i = get_char sep 0
    then check_sep i 1
    else scan (i + 1) in
  scan 0

let rcut ~sep:({ len= sep_len; _ } as sep) ({ buffer= v; off; len; } as cs) =
  if sep_len = 0 then invalid_arg "cut: empty separator" ;
  let max_sep_zidx = sep_len - 1 in
  let max_s_zidx = len - 1 in
  let rec check_sep i k =
    if k > max_sep_zidx then Some (buffer ~off:off ~len:i v,
                                   buffer ~off:(off + i + sep_len) ~len:(len - i - sep_len) v)
    else if get_char cs (i + k) = get_char sep k
    then check_sep i (k + 1)
    else rscan (i - 1)
  and rscan i =
    if i < 0 then None
    else if get_char cs i = get_char sep 0
    then check_sep i 1
    else rscan (i - 1) in
  rscan (max_s_zidx - max_sep_zidx)

let cut ?(rev= false) ~sep cs = match rev with
  | true  -> rcut ~sep cs
  | false -> fcut ~sep cs

let add_sub ~no_empty buf ~off ~len acc =
  if len = 0
  then ( if no_empty then acc else buffer ~off ~len buf :: acc )
  else buffer ~off ~len buf :: acc

let fcuts ~no_empty ~sep:({ len= sep_len; _ } as sep)
      ({ buffer; off; len; } as cs) =
  if sep_len = 0 then invalid_arg "cuts: empty separator" ;
  let max_sep_zidx = sep_len - 1 in
  let max_s_zidx = len - sep_len in
  let rec check_sep zanchor i k acc =
    if k > max_sep_zidx
    then
      let new_start = i + sep_len in
      scan new_start new_start (add_sub ~no_empty buffer ~off:(off + zanchor) ~len:(i - zanchor) acc)
    else
      if get_char cs (i + k) = get_char sep k
      then check_sep zanchor i (k + 1) acc
      else scan zanchor (i + 1) acc
  and scan zanchor i acc =
    if i > max_s_zidx
    then
      if zanchor = 0 then (if no_empty && len = 0 then [] else [ cs ])
      else List.rev (add_sub ~no_empty buffer ~off:(off + zanchor) ~len:(len - zanchor) acc)
    else
      if get_char cs i = get_char sep 0
      then check_sep zanchor i 1 acc
      else scan zanchor (i + 1) acc in
  scan 0 0 []

let rcuts ~no_empty ~sep:({ len= sep_len; _ } as sep)
      ({ buffer; len; _ } as cs) =
  if sep_len = 0 then invalid_arg "cuts: empty separator" ;
  let s_len = len in
  let max_sep_zidx = sep_len - 1 in
  let max_s_zidx = len - 1 in
  let rec check_sep zanchor i k acc =
    if k > max_sep_zidx
    then let off = i + sep_len in
         rscan i (i - sep_len) (add_sub ~no_empty buffer ~off ~len:(zanchor - off) acc)
    else
      if get_char cs (i + k) = get_char cs k
      then check_sep zanchor i (k + 1) acc
      else rscan zanchor (i - 1) acc
  and rscan zanchor i acc =
    if i < 0 then
      if zanchor = s_len then ( if no_empty && s_len = 0 then [] else [ cs ])
      else add_sub ~no_empty buffer ~off:0 ~len:zanchor acc
    else
      if get_char cs i = get_char sep 0
      then check_sep zanchor i 1 acc
      else rscan zanchor (i - 1) acc in
  rscan s_len (max_s_zidx - max_sep_zidx) []

let cuts ?(rev= false) ?(empty= true) ~sep cs = match rev with
  | true  -> rcuts ~no_empty:(not empty) ~sep cs
  | false -> fcuts ~no_empty:(not empty) ~sep cs

let fields ?(empty= false) ?(is_sep= is_white) ({ buffer; off; len; } as cs) =
  let no_empty = not empty in
  let max_pos = len in
  let rec loop i end_pos acc =
    if i < 0 then begin
        if end_pos = len
        then ( if no_empty && len = 0 then [] else [ cs ])
        else add_sub ~no_empty buffer ~off:off ~len:(end_pos - (i + 1)) acc
      end else begin
        if not (is_sep (get_char cs i))
        then loop (i - 1) end_pos acc
        else loop (i - 1) i (add_sub ~no_empty buffer ~off:(off + i + 1) ~len:(end_pos - (i + 1)) acc)
      end in
  loop (max_pos - 1) max_pos []

let ffind sat ({ buffer= v; len; _ } as cs) =
  let max_idx = len - 1 in
  let rec loop i =
    if i > max_idx then None
    else if sat (get_char cs i)
    then Some (buffer ~off:i ~len:1 v)
    else loop (i + 1) in
  loop 0

let rfind sat ({ buffer= v; len; _ } as cs) =
  let rec loop i =
    if i < 0 then None
    else if sat (get_char cs i)
    then Some (buffer ~off:i ~len:1 v)
    else loop (i - 1) in
  loop (len - 1)

let find ?(rev= false) sat cs = match rev with
  | true  -> rfind sat cs
  | false -> ffind sat cs

let ffind_sub ~sub:({ len= sub_len; _ } as sub) ({ buffer= v; off; len; } as cs) =
  if sub_len > len then None
  else
    let max_zidx_sub = sub_len - 1 in
    let max_zidx_s = len - sub_len in
    let rec loop i k =
      if i > max_zidx_s then None
      else if k > max_zidx_sub then Some (buffer v ~off:(off + i) ~len:sub_len)
      else if k > 0
      then ( if get_char sub k = get_char cs (i + k)
             then loop i (k + 1)
             else loop (i + 1) 0 )
      else if get_char sub 0 = get_char cs i
      then loop i 1
      else loop (i + 1) 0 in
    loop 0 0

let rfind_sub ~sub:({ len= sub_len; _ } as sub) ({ buffer= v; len; _ } as cs) =
  if sub_len > len then None
  else
    let max_zidx_sub = sub_len - 1 in
    let rec loop i k =
      if i < 0 then None
      else if k > max_zidx_sub then Some (buffer v ~off:i ~len:sub_len)
      else if k > 0
      then ( if get_char sub k = get_char cs (i + k)
             then loop i (k + 1)
             else loop (i - 1) 0 )
      else if get_char sub 0 = get_char cs i
      then loop i 1
      else loop (i - 1) 0 in
    loop (len - sub_len) 0

let find_sub ?(rev= false) ~sub cs = match rev with
  | true  -> rfind_sub ~sub cs
  | false -> ffind_sub ~sub cs

let filter sat ({ len; _ } as cs) =
  if len = 0 then empty
  else
    let b = create len in
    let max_zidx = len - 1 in
    let rec loop b k i =
      if i > max_zidx
      then (if k = len then b else sub b 0 k)
      else
        let chr = get_char cs i in
        if sat chr then ( set_char b k chr ; loop b (k + 1) (i + 1))
        else loop b k (i + 1) in
    loop b 0 0

let filter_map f ({ len; _ } as cs) =
  if len = 0 then empty
  else
    let b = create len in
    let max_zidx = len - 1 in
    let rec loop b k i =
      if i > max_zidx
      then (if k = len then b else sub b 0 k)
      else match f (get_char cs i) with
           | Some chr ->
              set_char b i chr ;
              loop b (k + 1) (i + 1)
           | None ->
              loop b k (i + 1) in
    loop b 0 0

let map f ({ len; _ } as cs) =
  if len = 0 then empty
  else
    let b = create len in
    for i = 0 to len - 1 do
      set_char b i (f (get_char cs i))
    done ; b

let mapi f ({ len; _ } as cs) =
  if len = 0 then empty
  else
    let b = create len in
    for i = 0 to len - 1 do
      set_char b i (f i (get_char cs i))
    done ; b
OCaml

Innovation. Community. Security.