package dedukti
An implementation of The Lambda-Pi Modulo Theory
Install
Dune Dependency
Authors
Maintainers
Sources
v2.7.tar.gz
sha512=97171b48dd96043d84587581d72edb442f63e7b5ac1695771aa1c3c9074739e15bc7d17678fedb7062acbf403a0bf323d97485c31b92376b80c63b5c2300ee3c
sha256=5e1b6a859dfa1eb2098947a99c7d11ee450f750d96da1720f4834e1505d1096c
doc/src/dedukti.api/meta.ml.html
Source file meta.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
open Kernel open Parsers module type ENCODING = sig val md : Basic.mident val entries : unit -> Entry.entry list val safe : bool val signature : Signature.t val encode_term : ?sg:Signature.t -> ?ctx:Term.typed_context -> Term.term -> Term.term val decode_term : Term.term -> Term.term val encode_rule : ?sg:Signature.t -> 'a Rule.rule -> 'a Rule.rule end module RNS = Set.Make (struct type t = Rule.rule_name let compare = compare end) type cfg = { meta_signature : Signature.t; (* Signature containing meta rules *) mutable meta_rules : RNS.t option; (* Set of meta_rules used to normalize *) beta : bool; (* Allows beta doing normalization *) register_before : bool; (* entries are registered before they have been normalized *) encoding : (module ENCODING) option; (* Encoding specify a quoting mechanism *) decoding : bool; (* If false, the term is not decoded after normalization *) } let rule_name (Rule.{name; _} : Rule.partially_typed_rule) = name let signature_add_rule sg r = Signature.add_rules sg [Rule.to_rule_infos r] (* Several rules might be bound to different constants *) let signature_add_rules sg rs = List.iter (signature_add_rule sg) rs let default_config ?meta_rules ?(beta = true) ?encoding ?(decoding = true) ?(register_before = true) () = let meta_mident = Basic.mk_mident "<meta>" in let meta_signature = Signature.make meta_mident Files.find_object_file in Option.iter (fun (module E : ENCODING) -> Signature.import_signature meta_signature E.signature) encoding; (* FIXME: only one traversal is needed instead of 2 *) let meta_rules = Option.map (fun rules -> signature_add_rules meta_signature rules; RNS.of_list (List.map rule_name rules)) meta_rules in {meta_signature; meta_rules; beta; encoding; decoding; register_before} let add_rules cfg rules = signature_add_rules cfg.meta_signature rules; let rules = RNS.of_list (List.map rule_name rules) in match cfg.meta_rules with | None -> cfg.meta_rules <- Some rules | Some previous_rules -> cfg.meta_rules <- Some (RNS.union rules previous_rules) (* This is a shortcut so that if a symbol is not found in the signature, we can still reduce. *) let unsafe_finder sg l name = (* FIXME: pattern match properly on the error. *) try Kernel.Signature.get_dtree sg l name with _ -> Dtree.empty (* A dkmeta configuration to a reduction configuration *) let red_cfg : cfg -> Reduction.red_cfg = fun cfg -> let open Reduction in let red_cfg = { default_cfg with beta = cfg.beta; target = Snf; finder = unsafe_finder; strat = ByValue; } in match cfg.meta_rules with | None -> {red_cfg with select = Some (fun _ -> true)} | Some meta_rules -> {red_cfg with select = Some (fun r -> RNS.mem r meta_rules)} module PROD = struct open Basic open Term let md = mk_mident "prod" let entries () = let mk_decl id = Entry.Decl ( dloc, mk_ident id, Signature.Public, Signature.Definable Free, mk_Type dloc ) in List.map mk_decl ["ty"; "prod"] let signature = let sg = Signature.make md Files.find_object_file in let mk_decl id = Signature.add_declaration sg dloc (mk_ident id) Signature.Public (Signature.Definable Free) (mk_Type dloc) in List.iter mk_decl ["ty"; "prod"]; sg let safe = false let name_of str = mk_name md (mk_ident str) let const_of str = mk_Const dloc (name_of str) let rec encode_term t = match t with | Kind -> assert false | Type lc -> encode_type lc | DB (lc, x, n) -> encode_DB lc x n | Const (lc, name) -> encode_Const lc name | Lam (lc, x, mty, te) -> encode_Lam lc x mty te | App (f, a, args) -> encode_App f a args | Pi (lc, x, a, b) -> encode_Pi lc x a b and encode_type lc = mk_Const lc (name_of "ty") and encode_DB lc x n = mk_DB lc x n and encode_Const _ name = mk_Const dloc name and encode_Lam _ x mty te = let mty' = match mty with None -> None | Some ty -> Some (encode_term ty) in mk_Lam dloc x mty' (encode_term te) and encode_App f a args = mk_App2 (encode_term f) (List.map encode_term (a :: args)) and encode_Pi _ x a b = mk_App (const_of "prod") (encode_term a) [mk_Lam dloc x (Some (encode_term a)) (encode_term b)] (* Using typed context here does not make sense *) let encode_pattern pattern : Rule.pattern = pattern let encode_rule (r : 'a Rule.rule) = let open Rule in {r with pat = encode_pattern r.pat; rhs = encode_term r.rhs} let encode_term ?sg:_ ?ctx:_ t = encode_term t let encode_rule ?sg:_ r = encode_rule r let rec decode_term t = match t with | Kind -> assert false | Pi _ -> assert false | App (f, a, args) -> decode_App f a args | Lam (lc, x, mty, te) -> decode_Lam lc x mty te | Const (lc, name) -> decode_Const lc name | Type _ | DB _ -> t and decode_Const lc name = if name_eq name (name_of "ty") then mk_Type lc else mk_Const lc name and decode_Lam lc x mty te = let mty' = match mty with None -> None | Some mty -> Some (decode_term mty) in mk_Lam lc x mty' (decode_term te) and decode_App f a args = match f with | Const (_, name) -> if name_eq name (name_of "prod") then match args with | [Lam (_, x, Some a, b)] -> mk_Pi dloc x (decode_term a) (decode_term b) | _ -> assert false else mk_App (decode_term f) (decode_term a) (List.map decode_term args) | _ -> mk_App (decode_term f) (decode_term a) (List.map decode_term args) end module LF = struct open Basic open Term let md = mk_mident "lf" let entries () = let mk_decl id = Entry.Decl ( dloc, mk_ident id, Signature.Public, Signature.Definable Free, mk_Type dloc ) in List.map mk_decl ["ty"; "var"; "sym"; "lam"; "app"; "prod"] let signature = let sg = Signature.make md Files.find_object_file in let mk_decl id = Signature.add_declaration sg dloc (mk_ident id) Signature.Public (Signature.Definable Free) (mk_Type dloc) in List.iter mk_decl ["ty"; "var"; "sym"; "lam"; "app"; "prod"]; sg let safe = false let name_of str = mk_name md (mk_ident str) let const_of str = mk_Const dloc (name_of str) let rec encode_term t = match t with | Kind -> assert false | Type lc -> encode_type lc | DB (lc, x, n) -> encode_DB lc x n | Const (lc, name) -> encode_Const lc name | Lam (lc, x, mty, te) -> encode_Lam lc x mty te | App (f, a, args) -> encode_App f a args | Pi (lc, x, a, b) -> encode_Pi lc x a b and encode_type _ = const_of "ty" and encode_DB lc x n = mk_App (const_of "var") (mk_DB lc x n) [] and encode_Const _ name = mk_App (const_of "sym") (mk_Const dloc name) [] and encode_Lam _ x mty te = let mty' = match mty with None -> None | Some ty -> Some (encode_term ty) in mk_App (const_of "lam") (mk_Lam dloc x mty' (encode_term te)) [] and encode_App f a args = let rec encode_app2 a args = match (a, args) with | _, [] -> assert false | a, [x] -> mk_App (const_of "app") a [encode_term x] | a, x :: l -> encode_app2 (mk_App (const_of "app") a [encode_term x]) l in encode_app2 (encode_term f) (a :: args) and encode_Pi _ x a b = mk_App (const_of "prod") (encode_term a) [mk_Lam dloc x None (encode_term b)] (* Using typed context here does not make sense *) let rec encode_pattern pattern : Rule.pattern = let open Rule in match pattern with | Var (lc, id, n, ps) -> Var (lc, id, n, List.map encode_pattern ps) | Brackets term -> Brackets (encode_term term) | Lambda (lc, id, p) -> Pattern (lc, name_of "lam", [Lambda (lc, id, encode_pattern p)]) | Pattern (lc, n, []) -> Pattern (lc, name_of "sym", [Pattern (lc, n, [])]) | Pattern (lc, n, ps) -> Pattern ( lc, name_of "app", Pattern (lc, name_of "sym", [Pattern (lc, n, [])]) :: List.map encode_pattern ps ) let encode_rule (r : 'a Rule.rule) = let open Rule in {r with pat = encode_pattern r.pat; rhs = encode_term r.rhs} let encode_term ?sg:_ ?ctx:_ t = encode_term t let encode_rule ?sg:_ r = encode_rule r let rec decode_term t = match t with | Kind -> assert false | Type _ -> assert false | DB (lc, x, n) -> decode_DB lc x n | Const (lc, name) -> decode_Const lc name | Lam (lc, x, mty, te) -> decode_Lam lc x mty te | App (f, a, args) -> decode_App f a args | Pi (lc, x, a, b) -> decode_Pi lc x a b and decode_DB lc x n = mk_DB lc x n and decode_Const lc name = if name_eq name (name_of "ty") then mk_Type dloc else mk_Const lc name and decode_Lam lc x mty te = let mty' = match mty with None -> None | Some mty -> Some (decode_term mty) in mk_Lam lc x mty' (decode_term te) and decode_App f a args = match f with | Const (_, name) -> if name_eq name (name_of "prod") then match (a, args) with | a, [Lam (_, x, None, b)] -> mk_Pi dloc x (decode_term a) (decode_term b) | _ -> assert false else if name_eq name (name_of "sym") then decode_term a else if name_eq name (name_of "var") then decode_term a else if name_eq name (name_of "app") then mk_App2 (decode_term a) (List.map decode_term args) else if name_eq name (name_of "lam") then decode_term a else mk_App (decode_term f) (decode_term a) (List.map decode_term args) | _ -> decode_App (decode_term f) (decode_term a) (List.map decode_term args) and decode_Pi _ _ _ _ = assert false end module APP = struct open Basic open Term let md = mk_mident "ltyped" let entries () = let mk_decl id = Entry.Decl ( dloc, mk_ident id, Signature.Public, Signature.Definable Free, mk_Type dloc ) in List.map mk_decl ["ty"; "var"; "sym"; "lam"; "app"; "prod"] let signature = let sg = Signature.make md Files.find_object_file in let mk_decl id = Signature.add_declaration sg dloc (mk_ident id) Signature.Public (Signature.Definable Free) (mk_Type dloc) in List.iter mk_decl ["ty"; "var"; "sym"; "lam"; "app"; "prod"]; sg let safe = true let name_of str = mk_name md (mk_ident str) let const_of str = mk_Const dloc (name_of str) let rec encode_term sg ctx t = match t with | Kind -> assert false | Type lc -> encode_type sg ctx lc | DB (lc, x, n) -> encode_DB sg ctx lc x n | Const (lc, name) -> encode_Const sg ctx lc name | Lam (lc, x, Some ty, te) -> encode_Lam sg ctx lc x ty te | Lam _ -> assert false | App (f, a, args) -> encode_App sg ctx f a args | Pi (lc, x, a, b) -> encode_Pi sg ctx lc x a b and encode_type _ _ _ = const_of "ty" and encode_DB _ _ lc x n = mk_App (const_of "var") (mk_DB lc x n) [] and encode_Const _ _ _ name = mk_App (const_of "sym") (mk_Const dloc name) [] and encode_Lam sg ctx lc x ty te = let ctx' = (lc, x, ty) :: ctx in let tyf = Typing.Default.infer sg ctx (mk_Lam lc x (Some ty) te) in let tyf' = PROD.encode_term tyf in mk_App (const_of "lam") tyf' [mk_Lam dloc x (Some (encode_term sg ctx ty)) (encode_term sg ctx' te)] and encode_App sg ctx f a args = encode_app2 sg ctx f (a :: args) and encode_app2 sg ctx f args = let aux f f' a = let tyf = Typing.Default.infer sg ctx f in let tyf' = PROD.encode_term tyf in ( Term.mk_App2 f [a], mk_App (const_of "app") tyf' [f'; encode_term sg ctx a] ) in snd @@ List.fold_left (fun (f, f') a -> aux f f' a) (f, encode_term sg ctx f) args and encode_Pi sg ctx lc x a b = let ctx' = (lc, x, a) :: ctx in mk_App (const_of "prod") (mk_Lam dloc x (Some (encode_term sg ctx a)) (encode_term sg ctx' b)) [] let rec encode_pattern sg ctx pattern = let open Rule in let dummy = Var (Basic.dloc, mk_ident "_", 0, []) in let mk_pat_app l r = Pattern (Basic.dloc, name_of "app", [dummy; l; encode_pattern sg ctx r]) in match pattern with | Var (lc, id, n, ps) -> Var (lc, id, n, List.map (encode_pattern sg ctx) ps) | Brackets term -> Brackets (encode_term sg ctx term) | Lambda (lc, id, p) -> Pattern (lc, name_of "lam", [dummy; Lambda (lc, id, encode_pattern sg ctx p)]) | Pattern (lc, n, []) -> Pattern (lc, name_of "sym", [Pattern (lc, n, [])]) | Pattern (lc, n, [a]) -> Pattern ( lc, name_of "app", [ dummy; Pattern (lc, name_of "sym", [Pattern (lc, n, [])]); encode_pattern sg ctx a; ] ) | Pattern (lc, n, a :: l) -> List.fold_left (fun p arg -> mk_pat_app p arg) (encode_pattern sg ctx (Pattern (lc, n, []))) (a :: l) let encode_rule sg r = let r' = Rule.untyped_rule_of_rule_infos (Rule.to_rule_infos r) in let _, r'' = Typing.Default.check_rule sg r' in let open Rule in { r with pat = encode_pattern sg r''.ctx r.pat; rhs = encode_term sg r''.ctx r.rhs; } let fake_sig () = Signature.make (Basic.mk_mident "") Files.find_object_file let encode_term ?(sg = fake_sig ()) ?(ctx = []) t = encode_term sg ctx t let encode_rule ?(sg = fake_sig ()) r = encode_rule sg r let rec decode_term t = match t with | Kind -> assert false | Type _ -> assert false | DB (lc, x, n) -> decode_DB lc x n | Const (lc, name) -> decode_Const lc name | Lam (lc, x, mty, te) -> decode_Lam lc x mty te | App (f, a, args) -> decode_App f a args | Pi (lc, x, a, b) -> decode_Pi lc x a b and decode_DB lc x n = mk_DB lc x n and decode_Const lc name = if name_eq name (name_of "ty") then mk_Type dloc else mk_Const lc name and decode_Lam lc x mty te = let mty' = match mty with None -> None | Some mty -> Some (decode_term mty) in mk_Lam lc x mty' (decode_term te) and decode_App f a args = match f with | Const (_, name) -> if name_eq name (name_of "prod") then match a with | Lam (_, x, Some a, b) -> mk_Pi dloc x (decode_term a) (decode_term b) | _ -> assert false else if name_eq name (name_of "sym") then decode_term a else if name_eq name (name_of "var") then decode_term a else if name_eq name (name_of "app") then match args with | [f; a] -> Term.mk_App2 (decode_term f) [decode_term a] | _ -> assert false else if name_eq name (name_of "lam") then match args with [a] -> decode_term a | _ -> assert false else mk_App (decode_term f) (decode_term a) (List.map decode_term args) | _ -> mk_App (decode_term f) (decode_term a) (List.map decode_term args) and decode_Pi _ _ _ _ = assert false end let encode cfg env term = match cfg.encoding with | None -> term | Some (module E : ENCODING) -> if E.safe then match env with | None -> Errors.fail_sys_error ~msg: "A type checking environment must be provided when a safe \ encoding is used." () | Some env -> let sg = Env.get_signature env in E.encode_term ~sg term else E.encode_term term let decode cfg term = match cfg.encoding with | None -> term | Some (module E : ENCODING) -> E.decode_term term let normalize cfg sg term = let red = red_cfg cfg in Reduction.Default.reduction red sg term (* [cfg.meta_rules = None] means we use the type checking environment for normalisation. *) let get_meta_signature cfg env = match cfg.meta_rules with | Some _ -> cfg.meta_signature | None -> ( match env with | None -> Errors.fail_sys_error ~msg: "A type checking environment must be provided when the \ normalisation strategy is done via the type checking \ environmenet" () | Some env -> Env.get_signature env) let mk_term ?env cfg term = let term' = encode cfg env term in let sg = get_meta_signature cfg env in let term'' = normalize cfg sg term' in if cfg.decoding then decode cfg term'' else term'' exception Not_a_pattern let rec pattern_of_term t = let open Term in match t with | Kind | Type _ | Pi _ -> raise Not_a_pattern | Lam (lc, x, _, te) -> Rule.Lambda (lc, x, pattern_of_term te) | App (Const (lc, name), a, args) -> Rule.Pattern (lc, name, List.map pattern_of_term (a :: args)) | App (DB (lc, x, n), a, args) -> Rule.Var (lc, x, n, List.map pattern_of_term (a :: args)) | Const (lc, name) -> Rule.Pattern (lc, name, []) | DB (lc, x, n) -> Rule.Var (lc, x, n, []) | _ -> raise Not_a_pattern let mk_rule env cfg (r : Rule.partially_typed_rule) = let open Rule in let meta_signature = get_meta_signature cfg (Some env) in match cfg.encoding with | None -> {r with rhs = normalize cfg meta_signature r.rhs} | Some (module E : ENCODING) -> let sg = Env.get_signature env in let r' = E.encode_rule ~sg r in let pat' = normalize cfg meta_signature (Rule.pattern_to_term r'.pat) in let pat'' = if cfg.decoding then pattern_of_term (E.decode_term pat') else pattern_of_term pat' in let rhs' = normalize cfg meta_signature r'.rhs in let rhs'' = if cfg.decoding then decode cfg rhs' else rhs' in {pat = pat''; rhs = rhs''; ctx = r.ctx; name = r.name} module D = Basic.Debug let debug_flag = D.register_flag "Dkmeta" let bmag fmt = "\027[90m" ^^ fmt ^^ "\027[0m%!" let log fmt = D.debug debug_flag (bmag fmt) let mk_entry cfg env entry = let open Entry in let open Rule in let sg = Env.get_signature env in let md = Env.get_name env in match entry with | Decl (lc, id, sc, st, ty) -> log "[NORMALIZE] %a" Basic.pp_ident id; let ty' = mk_term ~env cfg ty in if cfg.register_before then Signature.add_declaration sg lc id sc st ty else Signature.add_declaration sg lc id sc st ty'; Decl (lc, id, sc, st, ty') | Def (lc, id, sc, opaque, ty, te) -> ( log "[NORMALIZE] %a" Basic.pp_ident id; let cst = Basic.mk_name md id in let rule = {name = Delta cst; ctx = []; pat = Pattern (lc, cst, []); rhs = te} in let safe_ty = match (cfg.encoding, ty) with | Some (module E : ENCODING), None when E.safe -> Env.infer env te | _, Some ty -> ty | _, _ -> Term.mk_Type Basic.dloc in let safe_ty' = mk_term ~env cfg safe_ty in let te' = mk_term ~env cfg te in (if cfg.register_before then let _ = Signature.add_declaration sg lc id sc (Signature.Definable Free) safe_ty in Signature.add_rules sg (List.map Rule.to_rule_infos [{rule with rhs = te}]) else let _ = Signature.add_declaration sg lc id sc (Signature.Definable Free) safe_ty' in Signature.add_rules sg (List.map Rule.to_rule_infos [{rule with rhs = te'}])); match ty with | None -> Def (lc, id, sc, opaque, None, te') | Some _ -> Def (lc, id, sc, opaque, Some safe_ty', te')) | Rules (lc, rs) -> (* Signature.add_rules !sg (List.map Rule.to_rule_infos rs); *) let rs' = List.map (mk_rule env cfg) rs in if cfg.register_before then Signature.add_rules sg (List.map Rule.to_rule_infos rs) else Signature.add_rules sg (List.map Rule.to_rule_infos rs'); Rules (lc, rs') | _ -> entry module MetaConfiguration : Processor.S with type t = Rule.partially_typed_rule list = struct type t = Rule.partially_typed_rule list let rules = ref [] let handle_entry _ = function | Entry.Rules (_, rs) -> rules := rs :: !rules (* TODO: Handle definitions *) | _ -> () let get_data _ = let rs = List.flatten !rules in rules := []; rs end type _ Processor.t += MetaRules : Rule.partially_typed_rule list Processor.t let _ = let equal (type a b) : a Processor.t * b Processor.t -> (a Processor.t, b Processor.t) Processor.Registration.equal option = function | MetaRules, MetaRules -> Some (Processor.Registration.Refl MetaRules) | _ -> None in Processor.Registration.register_processor MetaRules {equal} (module MetaConfiguration) let parse_meta_files files = Processor.fold_files files ~f:(fun rules acc -> rules :: acc) ~default:[] MetaRules |> List.concat let make_meta_processor cfg ~post_processing = let module Meta = struct type t = unit let handle_entry env entry = post_processing env (mk_entry cfg env entry) let get_data _ = () end in (module Meta : Processor.S with type t = unit)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>