package dedukti
An implementation of The Lambda-Pi Modulo Theory
Install
Dune Dependency
Authors
Maintainers
Sources
v2.7.tar.gz
sha512=97171b48dd96043d84587581d72edb442f63e7b5ac1695771aa1c3c9074739e15bc7d17678fedb7062acbf403a0bf323d97485c31b92376b80c63b5c2300ee3c
sha256=5e1b6a859dfa1eb2098947a99c7d11ee450f750d96da1720f4834e1505d1096c
doc/src/dedukti.kernel/dtree.ml.html
Source file dtree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
open Basic open Term open Rule open Format open Ac type dtree_error = | HeadSymbolMismatch of loc * name * name | ArityInnerMismatch of loc * ident * ident | ACSymbolRewritten of loc * name * int exception Dtree_error of dtree_error type miller_var = { arity : int; (** Arity of the meta variable *) depth : int; (** Depth under which this occurence of the meta variable is considered *) vars : int list; (** The list of local DB indices of argument variables*) mapping : int array; (** The mapping from all local DB indices for either -1 or position in the list of argument variables *) } let fo_var : miller_var = {arity = 0; depth = 0; vars = []; mapping = [||]} let mapping_of_vars (depth : int) (arity : int) (vars : int list) : int array = let arr = Array.make depth (-1) in List.iteri (fun i n -> arr.(n) <- arity - i - 1) vars; arr type var_p = int * miller_var (* TODO: add loc to this to better handle errors *) type 'a eq_problem = miller_var * 'a type 'a ac_problem = int * ac_ident * int * var_p list * 'a type pre_matching_problem = { pm_eq_problems : int eq_problem list LList.t; pm_ac_problems : int ac_problem list; pm_arity : int array; } let pp_var_type fmt (i, {arity; vars; _}) = if arity = 0 then fprintf fmt "%i" i else fprintf fmt "%i[%a]" i (pp_list " " pp_print_int) vars let pp_eq_problem vp pp_a fmt (args, t) = fprintf fmt "%a = %a" pp_var_type (vp, args) pp_a t let pp_eq_problems sep pp_a fmt (vp, prbs) = fprintf fmt "%a" (pp_list sep (pp_eq_problem vp pp_a)) prbs let pp_njoks fmt n = if n > 0 then fprintf fmt " + %i _" n let pp_ac_problem pp_rhs fmt (_, aci, joks, vars, terms) = fprintf fmt "{ %a%a } =(%a) { %a }" (pp_list " , " pp_var_type) vars pp_njoks joks pp_ac_ident aci pp_rhs terms let pp_pos fmt p = fprintf fmt "stack.%a" pp_print_int p let pp_pre_matching_problem sep fmt mp = fprintf fmt "[ %a | %a ]" (pp_llist sep (pp_eq_problems sep pp_pos)) (LList.mapi (fun i c -> (i, c)) mp.pm_eq_problems) (pp_list sep (pp_ac_problem pp_pos)) mp.pm_ac_problems type case = CConst of int * name * bool | CDB of int * int | CLam type atomic_problem = {a_pos : int; a_depth : int; a_args : int array} type matching_problem = atomic_problem LList.t type dtree = | Switch of int * (case * dtree) list * dtree option | Test of Rule.rule_name * pre_matching_problem * constr list * term * dtree option | Fetch of int * case * dtree * dtree option | ACEmpty of int * dtree * dtree option (** Type of decision forests *) type t = algebra * (int * dtree) list let empty = (Free, []) (** Return first pair (ar,tree) in given list such that ar <= stack_size *) let find_dtree stack_size (alg, l) = let rec aux = function | [] -> None | hd :: tl -> if fst hd <= stack_size then Some hd else aux tl in (alg, aux l) let mk_AC_set cst pat1 pat2 = let rec flatten acc = function | [] -> acc | LPattern (cst', args) :: tl when name_eq cst cst' && Array.length args == 2 -> flatten acc (args.(0) :: args.(1) :: tl) | t :: tl -> flatten (t :: acc) tl in LACSet (cst, flatten [] [pat1; pat2]) (******************************************************************************) (* * there is one matrix per head symbol that represents all the rules associated to that symbol. * col_depth: [ (n_0) (n_1) ... (n_k) ] * first: [ pats.(0) pats.(1) ... pats.(k) ] * others: [ pats.(0) pats.(1) ... pats.(k) ] * ... ... ... ... * [ pats.(0) pats.(1) ... pats.(k) ] * * n_i records the depth of the column (number of binders under which it stands) *) type matrix = { col_depth : int array; first : rule_infos; others : rule_infos list; } (** Merge and flatten the first two argument of AC headed patterns into the LACSet representation: + (+ r s) (t u) ... --> ... becomes +{r s t u} ... --> ... *) let merge_AC_arguments = let aux r = let f = function | 0 -> mk_AC_set r.cst r.pats.(0) r.pats.(1) | i -> r.pats.(i - 1) in let npats = Array.init (Array.length r.pats - 1) f in {r with pats = npats} in List.map aux (** Append extra rule when necessary : +{1 0} --> r becomes +{1 0 X} --> +{r X} +{X X} --> r becomes +{X X Y} --> +{r Y} (TODO) +{X 0} --> r is left unchanged (X already a "scraps collecting" variable) *) let expand_AC_rules = let rec aux acc = function | [] -> List.rev acc | r :: tl -> ( assert (Array.length r.pats == 1); let is_linear_var = function | LJoker -> true | LVar (_, i, []) -> not (List.mem i r.nonlinear) | _ -> false in match r.pats.(0) with | LACSet (cst, args) -> let new_acc = if List.exists is_linear_var args then r :: acc else (* +{pats} --> r where pats contains no variable. *) let newr = (* becomes +{pats,x} --> + r x with x fresh variable *) { r with esize = r.esize + 1; rhs = mk_App (mk_Const dloc cst) r.rhs [mk_DB dloc dmark r.esize]; pats = [|LACSet (cst, LVar (dmark, r.esize, []) :: args)|]; } in newr :: r :: acc in aux new_acc tl | _ -> assert false) in aux [] (* mk_matrix lst builds a matrix out of the non-empty list of rules [lst] * It is checked that all rules have the same head symbol and arity. *) let mk_matrix (ac : bool) (arity : int) (ri : rule_infos list) : matrix = let rules = List.filter (fun x -> List.length x.args <= arity) ri in assert (rules <> []); (* At least one rule should correspond to the given arity. *) let f r = let ar = Array.length r.pats in assert (ar <= arity); (* This guaranted in the of_rules function. *) if ar == arity then r else (* Edit rule r with too low arity : add extra arguments*) let tail = Array.init (arity - ar) (fun i -> LVar (dmark, i + r.esize, [])) in let new_args = List.map (function LVar (x, n, []) -> mk_DB dloc x n | _ -> assert false) (Array.to_list tail) in { r with esize = r.esize + arity - ar; rhs = mk_App2 r.rhs new_args; pats = Array.append r.pats tail; } in let rules = List.map f rules in let rules = if ac && arity > 1 then merge_AC_arguments rules else rules in let rules = if ac && arity == 2 then expand_AC_rules rules else rules in { first = List.hd rules; others = List.tl rules; col_depth = Array.make arity 0; } (* Remove a line of the matrix [mx] and return None if the new matrix is Empty. *) let pop mx = match mx.others with | [] -> None | f :: o -> Some {mx with first = f; others = o} let filter (f : rule_infos -> bool) (mx : matrix) : matrix option = match List.filter f (mx.first :: mx.others) with | [] -> None | f :: o -> Some {mx with first = f; others = o} let get_rule_filter f c r = f r.pats.(c) (* Keeps only the rules with a lambda on column [c] *) let filter_on_lambda = function | LLambda _ | LJoker | LVar _ -> true | LACSet (_, s) -> List.exists (function LLambda _ -> true | _ -> false) s | _ -> false (* Keeps only the rules with a bound variable of index [n] on column [c] *) let filter_on_bound_variable nargs n = function | LVar _ | LJoker -> true | LBoundVar (_, n', args) -> n' == n && Array.length args == nargs | LACSet _ -> assert false | _ -> false (* Keeps only the rules with a pattern head by [cst] applied to [nargs] arguments. *) let filter_on_pattern nargs cst = function | LVar _ | LJoker -> true | LPattern (cst', ar') -> name_eq cst cst' && Array.length ar' == nargs | LACSet _ -> assert false | _ -> false (* Keeps only the rules with a joker or a variable on column [c] *) let filter_default (mx : matrix) (c : int) : matrix option = filter (fun r -> match r.pats.(c) with | LVar _ | LJoker -> true | LLambda _ | LPattern _ | LBoundVar _ -> false | LACSet _ -> assert false) mx let partition_AC_rules c f rules = let rec aux (keep, def) = function | [] -> (keep, def) | r :: tl -> ( match r.pats.(c) with | LVar _ | LJoker -> aux (r :: keep, r :: def) tl | LACSet (_, pats) -> if f pats then aux (r :: keep, def) tl else aux (keep, r :: def) tl | _ -> aux (keep, r :: def) tl) in aux ([], []) rules let filter_AC_on_empty_set = function LACSet (_, []) -> true | _ -> false let filter_AC_on_lambda s = List.exists (function LLambda _ -> true | _ -> false) s let filter_AC_on_bound_variable nargs n s = List.exists (function | LBoundVar (_, n', args) -> n' == n && Array.length args == nargs | _ -> false) s let filter_AC_on_pattern nargs cst s = List.exists (function | LPattern (cst', ar') -> name_eq cst cst' && Array.length ar' == nargs | _ -> false) s let case_eq a b = match (a, b) with | CLam, CLam -> true | CDB (ar, n), CDB (ar', n') -> ar == ar' && n == n' | CConst (ar, cst, _), CConst (ar', cst', _) -> ar == ar' && name_eq cst cst' | _, _ -> false let case_of_pattern (is_AC : name -> bool) : wf_pattern -> case option = function | LVar _ | LJoker -> None | LPattern (cst, pats) -> Some (CConst (Array.length pats, cst, is_AC cst && Array.length pats >= 2)) | LBoundVar (_, n, pats) -> Some (CDB (Array.length pats, n)) | LLambda _ -> Some CLam | LACSet _ -> assert false let case_pattern_match (case : case) (pat : wf_pattern) : bool = match (case, pat) with | CConst (lpats, c', _), LPattern (c, pats) -> name_eq c c' && lpats == Array.length pats | CDB (lpats, n'), LBoundVar (_, n, pats) -> n' == n && lpats == Array.length pats | CLam, LLambda _ -> true | _ -> false let specialize_empty_AC_rule (c : int) (r : rule_infos) : rule_infos = { r with pats = Array.init (Array.length r.pats) (fun i -> if i == c then LJoker else r.pats.(i)); } let specialize_AC_rule case (c : int) (nargs : int) (r : rule_infos) : rule_infos = let size = Array.length r.pats in let new_pats_c, pat = match r.pats.(c) with | LACSet (cst, l) -> let rec remove_case acc = function | [] -> assert false | hd :: tl -> if case_pattern_match case hd then (LACSet (cst, List.rev_append acc tl), hd) else remove_case (hd :: acc) tl in remove_case [] l | LVar _ | LJoker -> (r.pats.(c), LJoker) | _ -> assert false in let aux i = if i < size then if i == c then new_pats_c else r.pats.(i) else (* size <= i < size+nargs *) match (pat, case) with | LPattern (cst, pats2), CConst (_, cst', true) -> assert (name_eq cst cst'); assert (nargs >= 1); assert (Array.length pats2 == nargs + 1); if i == size then mk_AC_set cst pats2.(0) pats2.(1) else pats2.(i - size + 1) | LPattern (_, pats2), _ | LBoundVar (_, _, pats2), _ -> assert (Array.length pats2 == nargs); pats2.(i - size) | LLambda (_, p), _ -> assert (nargs == 1); p | LJoker, _ -> LJoker | _ -> assert false in {r with pats = Array.init (size + nargs) aux} (* Specialize the rule [r] on column [c] * i.e. replace colum [c] with a joker and append [nargs] new column at the end. * These new columns contain * - the arguments if column [c] is a pattern * - or the body if column [c] is a lambda * - or Jokers otherwise * *) let specialize_rule case (c : int) (nargs : int) (r : rule_infos) : rule_infos = let size = Array.length r.pats in let aux i = if i < size then if i == c then match r.pats.(c) with LVar _ as v -> v | _ -> LJoker else r.pats.(i) else (* size <= i < size+nargs *) let check_args id pats = if Array.length pats != nargs then raise (Dtree_error (ArityInnerMismatch (r.l, Basic.id r.cst, id))); pats.(i - size) in match r.pats.(c) with | LJoker | LVar _ -> LJoker | LBoundVar (id, _, pats2) -> check_args id pats2 | LLambda (_, p) -> assert (nargs == 1); p | LACSet _ -> assert false | LPattern (cst, pats2) -> ( match case with | CConst (_, cst', true) -> (* AC const *) assert (name_eq cst cst'); assert (Array.length pats2 == nargs + 1 && nargs != 0); if i == size then mk_AC_set cst pats2.(0) pats2.(1) else pats2.(i - size + 1) | _ -> check_args (id cst) pats2) in {r with pats = Array.init (size + nargs) aux} (* Specialize the col_infos field of a matrix. * Invalid for specialization by lambda. *) let spec_col_depth (c : int) (nargs : int) (col_depth : int array) : int array = let size = Array.length col_depth in let aux i = if i < size then col_depth.(i) else (* < size+nargs *) col_depth.(c) in Array.init (size + nargs) aux (* Specialize the col_infos field of a matrix: the lambda case. *) let spec_col_depth_l (c : int) (col_depth : int array) : int array = let size = Array.length col_depth in let aux i = if i < size then col_depth.(i) else (*i == size *) col_depth.(c) + 1 in Array.init (size + 1) aux (* Specialize the matrix [mx] on AC-empty column [c] *) let specialize_ACEmpty (mx : matrix) (c : int) : matrix * matrix option = let rules_suc, rules_def = List.partition (get_rule_filter filter_AC_on_empty_set c) (mx.first :: mx.others) in match rules_suc with | [] -> assert false | first :: others -> ( ( { mx with first = specialize_empty_AC_rule c first; others = List.map (specialize_empty_AC_rule c) others; }, match rules_def with | [] -> None | f :: o -> Some {mx with first = f; others = o} )) (* Specialize the matrix [mx] on column [c] *) let specialize_AC (mx : matrix) (c : int) (case : case) : matrix * matrix option = let nargs, part_f = match case with | CLam -> (1, filter_AC_on_lambda) | CDB (nargs, n) -> (nargs, filter_AC_on_bound_variable nargs n) | CConst (nargs, cst, _) -> (nargs, filter_AC_on_pattern nargs cst) in let rules_suc, rules_def = partition_AC_rules c part_f (mx.first :: mx.others) in let nargs = nargs - match case with CConst (_, _, true) -> 1 | _ -> 0 in let new_cn = match case with | CLam -> spec_col_depth_l c mx.col_depth | _ -> spec_col_depth c nargs mx.col_depth in match rules_suc with | [] -> assert false | first :: others -> ( ( { first = specialize_AC_rule case c nargs first; others = List.map (specialize_AC_rule case c nargs) others; col_depth = new_cn; }, match rules_def with | [] -> None | f :: o -> Some {mx with first = f; others = o} )) (* Specialize the matrix [mx] on column [c] *) let specialize (mx : matrix) (c : int) (case : case) : matrix = let nargs, filter_f = match case with | CLam -> (1, filter_on_lambda) | CDB (nargs, n) -> (nargs, filter_on_bound_variable nargs n) | CConst (nargs, cst, _) -> (nargs, filter_on_pattern nargs cst) in let mx_opt = filter (get_rule_filter filter_f c) mx in let add_args = nargs - match case with CConst (_, _, true) -> 1 | _ -> 0 in let new_cn = match case with | CLam -> spec_col_depth_l c mx.col_depth | _ -> spec_col_depth c add_args mx.col_depth in match mx_opt with | None -> assert false | Some mx2 -> { first = specialize_rule case c add_args mx2.first; others = List.map (specialize_rule case c add_args) mx2.others; col_depth = new_cn; } (******************************************************************************) let rec partition_AC (is_AC : name -> bool) : wf_pattern list -> case = function | [] -> assert false | hd :: tl -> ( match case_of_pattern is_AC hd with | Some c -> c | None -> partition_AC is_AC tl) let partition (is_AC : name -> bool) (mx : matrix) (c : int) : case list = let aux lst li = match case_of_pattern is_AC li.pats.(c) with | Some c -> if List.exists (case_eq c) lst then lst else c :: lst | None -> lst in List.fold_left aux [] (mx.first :: mx.others) (******************************************************************************) let get_first_term mx = mx.first.rhs let get_first_constraints mx = mx.first.constraints (* Extracts the matching_problem from the first line. *) let get_first_matching_problem (get_algebra : name -> algebra) mx = let esize = mx.first.esize in let arity = Array.make esize (-1) in let eq_pbs = Array.make esize [] in let ac_pbs = ref [] in Array.iteri (fun i p -> let depth = mx.col_depth.(i) in match p with | LJoker -> () | LVar (_, n, args) -> assert (depth <= n && n < esize + depth); let n = n - depth in let len = List.length args in if arity.(n) == -1 then arity.(n) <- len else assert (arity.(n) == len); let miller = { depth; arity = len; vars = args; mapping = mapping_of_vars depth len args; } in eq_pbs.(n) <- (miller, i) :: eq_pbs.(n) | LACSet (cst, patl) -> let fetch_metavars (joks, vars) = function | LJoker -> (joks + 1, vars) | LVar (_, n, args) -> assert (depth <= n && n < esize + depth); let n = n - depth in let len = List.length args in if arity.(n) == -1 then arity.(n) <- len else assert (arity.(n) == len); let miller = { depth; arity = len; vars = args; mapping = mapping_of_vars depth len args; } in let nvars = (n, miller) :: vars in (joks, nvars) | _ -> assert false in let njoks, metavars = List.fold_left fetch_metavars (0, []) patl in ac_pbs := (depth, (cst, get_algebra cst), njoks, metavars, i) :: !ac_pbs | _ -> assert false) mx.first.pats; assert (Array.for_all (fun x -> x >= 0) arity); { pm_eq_problems = LList.of_array eq_pbs; pm_ac_problems = !ac_pbs; pm_arity = arity; } (******************************************************************************) (* TODO: check at some point that no neutral element can occur in a pattern *) let rec non_var_pat = function | LVar _ | LJoker -> false | LACSet (_, []) -> true | LACSet (_, patl) -> List.exists non_var_pat patl | _ -> true (* Give the index of the first non variable column *) let choose_column mx = let rec aux i = if i < Array.length mx.first.pats then if non_var_pat mx.first.pats.(i) then Some i else aux (i + 1) else None in aux 0 (* Construct a decision tree out of a matrix *) let rec to_dtree get_algebra (mx : matrix) : dtree = let is_AC cst = is_AC (get_algebra cst) in match choose_column mx with (* There are only variables on the first line of the matrix *) | None -> Test ( mx.first.name, get_first_matching_problem get_algebra mx, get_first_constraints mx, get_first_term mx, map_opt (to_dtree get_algebra) (pop mx) ) (* Pattern on the first line at column c *) | Some c -> ( match mx.first.pats.(c) with | LACSet (_, []) -> let mx_suc, mx_def = specialize_ACEmpty mx c in ACEmpty ( c, to_dtree get_algebra mx_suc, map_opt (to_dtree get_algebra) mx_def ) | LACSet (_, l) -> let case = partition_AC is_AC l in let mx_suc, mx_def = specialize_AC mx c case in Fetch ( c, case, to_dtree get_algebra mx_suc, map_opt (to_dtree get_algebra) mx_def ) | _ -> (* Carry parameter (false) above *) let cases = partition is_AC mx c in let aux ca = (ca, to_dtree get_algebra (specialize mx c ca)) in Switch ( c, List.map aux cases, map_opt (to_dtree get_algebra) (filter_default mx c) )) (******************************************************************************) (** Adds a new arity to a (reverse) sorted list of distincts arities *) let rec add l ar = match l with | [] -> [ar] | hd :: tl -> if ar > hd then ar :: l else if ar == hd then l (* ar is already in l *) else hd :: add tl ar let of_rules name get_algebra rs : t = let alg = get_algebra name in let ac = is_AC alg in let arities = ref [] in List.iter (fun x -> if not (name_eq x.cst name) then raise (Dtree_error (HeadSymbolMismatch (x.l, x.cst, name))); let arity = List.length x.args in if ac && arity == 0 (* + --> ... is forbidden when + is AC *) then raise (Dtree_error (ACSymbolRewritten (x.l, x.cst, arity))); (* The rule + l --> r requires + l x --> + r x to behave as expected, ie matching (1+l) "below the AC head") *) if ac && arity == 1 then arities := add !arities 2; (* Also add a rule of arity 2. *) arities := add !arities arity) rs; let sorted_arities = List.fold_left add [] !arities in (* reverse sorted list of all rewrite rules arities. *) let aux ar = let m = mk_matrix ac ar rs in (ar, to_dtree get_algebra m) in (alg, List.map aux sorted_arities) (******************************************************************************) let pp_AC_args fmt i = if i < 2 then fprintf fmt "%i args" i else if i == 2 then fprintf fmt "AC args" else fprintf fmt "AC args, %i args" (i - 2) let rec pp_dtree t fmt dtree = (* FIXME: Use format boxes here instead of manual tabs. *) let tab = String.init (1 + (t * 2)) (fun i -> if i == 0 then '\n' else ' ') in match dtree with | Test (_, mp, [], te, _) when mp.pm_ac_problems = [] && List.for_all (fun c -> c = []) (LList.lst mp.pm_eq_problems) -> fprintf fmt "%s%a" tab pp_term te | Test (name, mp, [], te, def) -> fprintf fmt "%stry %a :%s %a%sthen %a%selse %a" tab pp_rule_name name tab (pp_pre_matching_problem (tab ^ " ")) mp tab pp_term te tab (pp_def (t + 1)) def | Test (name, mp, cstr, te, def) -> fprintf fmt "%stry %a :%s %a%sunder constraints %a%sthen %a%selse %a" tab pp_rule_name name tab (pp_pre_matching_problem (tab ^ " ")) mp tab (pp_list ", " pp_constr) cstr tab pp_term te tab (pp_def (t + 1)) def | Switch (i, cases, def) -> let pp_case out = function | CConst (nargs, name, false), g -> fprintf out "%sif $%i = %a (%i args) then %a" tab i pp_name name nargs (pp_dtree (t + 1)) g | CConst (nargs, name, true), g -> fprintf out "%sif $%i = %a (%a) then %a" tab i pp_name name pp_AC_args nargs (pp_dtree (t + 1)) g | CDB (nargs, n), g -> fprintf out "%sif $%i = DB[%i] (%i args) then %a" tab i n nargs (pp_dtree (t + 1)) g | CLam, g -> fprintf out "%sif $%i = Lambda then %a" tab i (pp_dtree (t + 1)) g in fprintf fmt "%a%sdefault: %a" (pp_list "" pp_case) cases tab (pp_def (t + 1)) def | ACEmpty (i, tree_suc, tree_def) -> fprintf fmt "%sif $%i (AC flattened) is empty then %a%selse %a" tab i (pp_dtree (t + 1)) tree_suc tab (pp_def (t + 1)) tree_def | Fetch (i, case, tree_suc, tree_def) -> (match case with | CConst (nargs, name, false) -> fprintf fmt "%sif $%i is AC applied to %a (%i args) then %a%selse %a" tab i pp_name name nargs | CConst (nargs, name, true) -> fprintf fmt "%sif $%i is AC applied to %a (%a) then %a%selse %a" tab i pp_name name pp_AC_args nargs | CDB (nargs, n) -> fprintf fmt "%sif $%i is AC applied to DB[%i] (%i args) then %a%selse %a" tab i n nargs | CLam -> fprintf fmt "%sif $%i is AC applied to Lambda then %a%selse %a" tab i) (pp_dtree (t + 1)) tree_suc tab (pp_def (t + 1)) tree_def and pp_def t fmt = function | None -> fprintf fmt "FAIL" | Some g -> pp_dtree t fmt g let pp_dtree fmt dtree = pp_dtree 0 fmt dtree let pp_rw fmt (i, g) = fprintf fmt "When applied to %i argument(s): %a" i pp_dtree g let pp_dforest fmt = function | Free, [] -> fprintf fmt "No GDT.@." | AC, [] -> fprintf fmt "No GDT for AC symbol.@." | ACU _, [] -> fprintf fmt "No GDT for ACU symbol.@." | _, trees -> fprintf fmt "%a@." (pp_list "\n" pp_rw) trees
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>