package dedukti
An implementation of The Lambda-Pi Modulo Theory
Install
Dune Dependency
Authors
Maintainers
Sources
v2.7.tar.gz
sha512=97171b48dd96043d84587581d72edb442f63e7b5ac1695771aa1c3c9074739e15bc7d17678fedb7062acbf403a0bf323d97485c31b92376b80c63b5c2300ee3c
sha256=5e1b6a859dfa1eb2098947a99c7d11ee450f750d96da1720f4834e1505d1096c
doc/src/dedukti.kernel/reduction.ml.html
Source file reduction.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
open Basic open Rule open Term open Dtree open Ac let d_reduce = Debug.register_flag "Reduce" type red_target = Snf | Whnf type red_strategy = ByName | ByValue | ByStrongValue type dtree_finder = Signature.t -> Basic.loc -> Basic.name -> t type red_cfg = { select : (Rule.rule_name -> bool) option; nb_steps : int option; (* [Some 0] for no evaluation, [None] for no bound *) target : red_target; strat : red_strategy; beta : bool; logger : position -> Rule.rule_name -> term Lazy.t -> term Lazy.t -> unit; finder : dtree_finder; } let pp_red_cfg fmt cfg = let args = (match cfg.target with Snf -> ["SNF"] | _ -> []) @ (match cfg.strat with | ByValue -> ["CBV"] | ByStrongValue -> ["CBSV"] | _ -> []) @ match cfg.nb_steps with Some i -> [string_of_int i] | _ -> [] in Format.fprintf fmt "[%a]" (pp_list "," Format.pp_print_string) args let default_cfg = { select = None; nb_steps = None; target = Snf; strat = ByName; beta = true; logger = (fun _ _ _ _ -> ()); finder = Signature.get_dtree; } exception Not_convertible let rec zip_lists l1 l2 lst = match (l1, l2) with | [], [] -> lst | s1 :: l1, s2 :: l2 -> zip_lists l1 l2 ((s1, s2) :: lst) | _, _ -> raise Not_convertible (* State *) type env = term Lazy.t LList.t (* A state {ctx; term; stack} is the state of an abstract machine that represents a term where [ctx] is a ctx that contains the free variables of [term] and [stack] represents the terms that [term] is applied to. *) type state = { ctx : env; (* context *) term : term; (* term to reduce *) stack : stack; (* stack *) } and stack = state ref list (* TODO: implement constant time random access / in place mutable value. *) let rec term_of_state {ctx; term; stack} : term = let t = if LList.is_empty ctx then term else Subst.psubst_l ctx term in mk_App2 t (List.map term_of_state_ref stack) and term_of_state_ref r = term_of_state !r let state_of_term t = {ctx = LList.nil; term = t; stack = []} let state_ref_of_term t = ref {ctx = LList.nil; term = t; stack = []} (**************** Pretty Printing ****************) (* open Format let pp_env fmt (env:env) = pp_list ", " pp_term fmt (List.map Lazy.force (LList.lst env)) let pp_stack fmt (st:stack) = fprintf fmt "[ %a ]\n" (pp_list "\n | " pp_term) (List.map term_of_state_ref st) let pp_stack_oneline fmt (st:stack) = fprintf fmt "[ %a ]" (pp_list " | " pp_term) (List.map term_of_state_ref st) let pp_state ?(if_ctx=true) ?(if_stack=true) fmt { ctx; term; stack } = if if_ctx then fprintf fmt "{ctx=[%a];@." pp_env ctx else fprintf fmt "{ctx=[...](%i);@." (LList.len ctx); fprintf fmt "term=%a;@." pp_term term; if if_stack then fprintf fmt "stack=%a}@." pp_stack stack else fprintf fmt "stack=[...](%i)}@." (List.length stack); fprintf fmt "@.%a@." pp_term (term_of_state {ctx; term; stack}) let pp_state_oneline = pp_state ~if_ctx:true ~if_stack:true *) type convertibility_test = Signature.t -> term -> term -> bool module type ConvChecker = sig val are_convertible : convertibility_test val constraint_convertibility : Rule.constr -> Rule.rule_name -> convertibility_test val conversion_step : Signature.t -> term * term -> (term * term) list -> (term * term) list end module type S = sig include ConvChecker val reduction : red_cfg -> Signature.t -> term -> term val whnf : Signature.t -> term -> term val snf : Signature.t -> term -> term end (* Should eta expansion be allowed at conversion check ? *) let eta = ref false (* Should beta steps be allowed at reduction ? *) let beta = ref true (* Rule filter *) let selection = ref None (* Where to find the dtree associated to a symbol *) let dtree_finder : dtree_finder ref = ref Signature.get_dtree module Make (C : ConvChecker) (M : Matching.Matcher) : S = struct (******* AC manipulating functions *******) let filter_neutral sg l cst terms = match Signature.get_algebra sg l cst with | ACU neu -> ( match List.filter (fun x -> not (C.are_convertible sg neu x)) terms with | [] -> [neu] | s -> s) | _ -> terms (** Builds a comb-shaped AC term from a list of arguments. *) let to_comb sg l cst ctx stack = let rec f = function | [] -> {ctx = LList.nil; term = Signature.get_neutral sg l cst; stack = []} | [t] -> !t | t1 :: t2 :: tl -> f (ref {ctx; term = mk_Const l cst; stack = [t1; t2]} :: tl) in f stack (* Unfolds all occurences of the AC(U) symbol in the stack * Removes occurence of neutral element. *) let rec flatten_AC_stack sg (cst : name) : stack -> stack = let rec flatten acc = function | [] -> acc | st :: tl -> ( match !st with | {term = Const (_, cst'); stack = [st1; st2]; _} when name_eq cst cst' -> flatten acc (st1 :: st2 :: tl) | _ -> ( st := state_whnf sg !st; match !st with | {term = Const (_, cst'); stack = [st1; st2]; _} when name_eq cst cst' -> flatten acc (st1 :: st2 :: tl) | _ -> flatten (st :: acc) tl)) in flatten [] and comb_state_if_AC alg sg st = if Term.is_AC alg then match st with | {ctx; term = Const (l, cst); stack = s1 :: s2 :: rstack; _} -> let nstack = flatten_AC_stack sg cst [s1; s2] in let nstack = match alg with | ACU neu -> List.filter (fun st -> not (C.are_convertible sg (term_of_state_ref st) neu)) nstack | _ -> nstack in let combed = to_comb sg l cst ctx nstack in let fstack = match rstack with [] -> combed.stack | l -> combed.stack @ l in {combed with stack = fstack} | st -> st else st and comb_term_if_AC sg : term -> term = function | App (Const (l, cst), a1, a2 :: remain_args) as t -> let alg = Signature.get_algebra sg l cst in if is_AC alg then let id_comp = Signature.get_id_comparator sg in let args = flatten_AC_terms cst [a1; a2] in let args = filter_neutral sg l cst args in let args = List.sort (compare_term id_comp) args in let _ = assert (List.length args > 0) in mk_App2 (unflatten_AC (cst, alg) args) remain_args else t | t -> t (******* Matching with a decision tree *******) and find_case sg (st : state) (case : case) : stack option = match (st, case) with | {term = Const (_, cst); stack; _}, CConst (nargs, cst', false) -> if name_eq cst cst' && List.length stack == nargs then Some stack else None | {ctx; term = DB (_, _, n); stack; _}, CDB (nargs, n') -> assert (ctx = LList.nil); (* no beta in patterns *) if n == n' && List.length stack == nargs then Some stack else None | {term = Lam (_, _, _, _); _}, CLam -> ( match term_of_state st with (*TODO could be optimized*) | Lam (_, _, _, te) -> Some [state_ref_of_term te] | _ -> assert false) | ( {term = Const (_, cst); stack = t1 :: t2 :: s; _}, CConst (nargs, cst', true) ) when name_eq cst cst' && nargs == List.length s + 2 -> Some (ref {st with stack = flatten_AC_stack sg cst [t1; t2]} :: s) (* This case is a bit tricky: when + is AC, C (+ f g 1) can match C (h 1) The corresponding matching problem is +{f,g} = +{h} which is not necessarily unsolvable in general: maybe + is acu and a solution is {f = u, g = h} TODO: check that this case is used properly ! *) | {ctx; term; stack}, CConst (nargs, cst, true) when List.length stack == nargs - 2 -> let new_st = ref {ctx; term; stack = []} in let new_stack = flatten_AC_stack sg cst [new_st] in Some (ref {ctx; term = mk_Const dloc cst; stack = new_stack} :: stack) | _ -> None and fetch_case sg (state : state ref) (case : case) (dt_suc : dtree) (dt_def : dtree option) : (dtree * state ref * stack) list = let def_s = match dt_def with None -> [] | Some g -> [(g, state, [])] in let stack = !state.stack in match !state.term with | Const _ -> let rec f acc (stack_acc : state ref list) st = match (st, case) with | [], _ -> acc | hd :: tl, _ -> let new_stack_acc = hd :: stack_acc in let new_acc = match find_case sg !hd case with | None -> acc | Some s -> let new_stack = List.rev_append stack_acc tl in (* Remove hd from stack *) let new_state = ref {!state with stack = new_stack} in (dt_suc, new_state, s) :: acc in f new_acc new_stack_acc tl in List.rev_append (f [] [] stack) def_s | _ -> assert false and find_cases sg (st : state) (cases : (case * dtree) list) (default : dtree option) : (dtree * stack) list = List.fold_left (fun acc (case, tr) -> match find_case sg st case with | None -> acc | Some stack -> (tr, stack) :: acc) (match default with None -> [] | Some g -> [(g, [])]) cases (* TODO implement the stack as an array ? (the size is known in advance). *) and gamma_rw (sg : Signature.t) (filter : (Rule.rule_name -> bool) option) : stack -> dtree -> (rule_name * env * term) option = let rec rw_list : (stack * dtree) list -> (rule_name * env * term) option = function | [] -> None | [(stack, tree)] -> rw stack tree | (stack, tree) :: tl -> ( match rw stack tree with None -> rw_list tl | x -> x) and rw (stack : stack) : dtree -> (rule_name * env * term) option = function (* Fetch case from AC-headed i-th state This may branch and generate many case, one for each possible term to fetch *) | Fetch (i, case, dt_suc, dt_def) -> let rec split_ith acc i l = match (i, l) with | 0, h :: t -> (acc, h, t) | i, h :: t -> split_ith (h :: acc) (i - 1) t | _ -> assert false in let stack_h, arg_i, stack_t = split_ith [] i stack in assert ( match !arg_i.term with | Const (l, cst) -> Signature.is_AC sg l cst | _ -> false); let process (g, new_s, s) = ( List.rev_append stack_h (new_s :: (match s with [] -> stack_t | s -> stack_t @ s)), g ) in let cases = (* Generate all possible picks for the fetch *) fetch_case sg arg_i case dt_suc dt_def in let new_cases = List.map process cases in rw_list new_cases (* ... try them all *) | ACEmpty (i, dt_suc, dt_def) -> ( match !(List.nth stack i) with | {term = Const (l, cst); stack = st; _} -> assert (Signature.is_AC sg l cst); if st = [] then rw stack dt_suc else bind_opt (rw stack) dt_def | _ -> assert false) | Switch (i, cases, def) -> let arg_i = List.nth stack i in arg_i := state_whnf sg !arg_i; (* Several cases may match !! when max and plus are ACU symbols, they can match anything (max f g) ... = x ... (plus f g) ... = x ... x ... = x ... FIXME: This should really be handled by the decision tree. It impacts performance a bit to have a list of size 1 computed then mapped then matched upon (instead of just jumping to the recursive call). *) let new_cases = List.map (fun (g, l) -> (concat stack l, g)) (find_cases sg !arg_i cases def) in rw_list new_cases | Test (rule_name, matching_pb, cstr, right, def) -> let keep_rule = match filter with None -> true | Some f -> f rule_name in if keep_rule then ( (* FIXME: Several calls to [convert(_ac) i] generates different lazy values. Whnf may be computed several times in case of non linearity. *) let convert i = let te = List.nth stack i in lazy (term_of_state_ref te) in let convert_ac i = List.map (fun s -> lazy (term_of_state_ref s)) !(List.nth stack i).stack in (* Convert problem on stack indices to a problem on terms *) match M.solve_problem rule_name sg convert convert_ac matching_pb with | None -> bind_opt (rw stack) def | Some ctx -> List.iter (fun (i, t2) -> let t1 = Lazy.force (LList.nth ctx i) in let t2 = term_of_state {ctx; term = t2; stack = []} in if not (C.constraint_convertibility (i, t2) rule_name sg t1 t2) then raise (Signature.Signature_error (Signature.GuardNotSatisfied (get_loc t1, t1, t2)))) cstr; Some (rule_name, ctx, right)) else bind_opt (rw stack) def in rw (* ************************************************************** *) (* This function reduces a state to a weak-head-normal form. * This means that the term [term_of_state (state_whnf sg state)] is a * weak-head-normal reduct of [term_of_state state]. * * Moreover the returned state verifies the following properties: * - state.term is not an application * - state.term can only be a variable if term.ctx is empty * (and therefore this variable is free in the corresponding term) * - when state.term is an AC constant, then state.stack contains no application * of that same constant *) and state_whnf (sg : Signature.t) (st : state) : state = (* Debug.(debug D_reduce "Reducing %a" pp_state_oneline st); *) let rec_call ctx term stack = state_whnf sg {ctx; term; stack} in match st with (* Weak head beta normal terms *) | {term = Type _; _} | {term = Kind; _} | {term = Pi _; _} | {term = Lam _; stack = []; _} -> st (* DeBruijn index: environment lookup *) | {ctx; term = DB (l, x, n); stack} -> if LList.is_empty ctx then st else if n < LList.len ctx then state_whnf sg {ctx = LList.nil; term = Lazy.force (LList.nth ctx n); stack} else {ctx = LList.nil; term = mk_DB l x (n - LList.len ctx); stack} (* Beta redex *) | {ctx; term = Lam (_, _, _, t); stack = p :: s; _} -> if not !beta then st else rec_call (LList.cons (lazy (term_of_state_ref p)) ctx) t s (* Application: arguments go on the stack *) | {ctx; term = App (f, a, lst); stack = s; _} -> (* rev_map + rev_append to avoid map + append*) let tl' = List.rev_map (fun t -> ref {ctx; term = t; stack = []}) (a :: lst) in rec_call ctx f (List.rev_append tl' s) (* Potential Gamma redex *) | {ctx; term = Const (l, n); stack; _} -> ( let trees = !dtree_finder sg l n in match find_dtree (List.length stack) trees with | alg, None -> comb_state_if_AC alg sg st | alg, Some (ar, tree) -> ( let s1, s2 = split ar stack in let s1 = if ar > 1 && Term.is_AC alg then match s1 with | t1 :: t2 :: tl -> let flat = flatten_AC_stack sg n [t1; t2] in ref {ctx; term = mk_Const l n; stack = flat} :: tl | _ -> assert false else s1 in match gamma_rw sg !selection s1 tree with | None -> comb_state_if_AC alg sg st | Some (_, ctx, term) -> rec_call ctx term s2)) (* ************************************************************** *) (* Weak Head Normal Form *) and whnf sg term = term_of_state (state_whnf sg (state_of_term term)) (* Strong Normal Form *) and snf sg (t : term) : term = match whnf sg t with | (Kind | Const _ | DB _ | Type _) as t' -> t' | App (f, a, lst) -> let res = mk_App (snf sg f) (snf sg a) (List.map (snf sg) lst) in comb_term_if_AC sg res | Pi (_, x, a, b) -> mk_Pi dloc x (snf sg a) (snf sg b) | Lam (_, x, a, b) -> mk_Lam dloc x (map_opt (snf sg) a) (snf sg b) and conversion_step sg : term * term -> (term * term) list -> (term * term) list = fun (l, r) lst -> match (l, r) with | Kind, Kind | Type _, Type _ -> lst | Const (_, n), Const (_, n') when name_eq n n' -> lst | DB (_, _, n), DB (_, _, n') when n == n' -> lst | App (Const (lc, cst), _, _), App (Const (_, cst'), _, _) when Signature.is_AC sg lc cst && name_eq cst cst' -> ( (* TODO: Eventually replace this with less hardcore criteria: put all terms in whnf * then look at the heads to match arguments with one another. * Careful, this is tricky: * The whnf would need here to make sure that no reduction may occur at the AC-head. * Whenever max n n --> n, the whnf of "max a (max a b)" should be "max a b" * If not all head reduction are exhausted, then comparing AC argument sets is not enough *) match (snf sg l, snf sg r) with | App (Const (_, cst2), a, args), App (Const (_, cst2'), a', args') when name_eq cst2 cst && name_eq cst2' cst && name_eq cst2 cst' && name_eq cst2' cst' -> (a, a') :: zip_lists args args' lst | p -> p :: lst) | App (f, a, args), App (f', a', args') -> (f, f') :: (a, a') :: zip_lists args args' lst | Lam (_, _, _, b), Lam (_, _, _, b') -> (b, b') :: lst (* Potentially eta-equivalent terms *) | Lam (_, i, _, b), a when !eta -> let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in (b, b') :: lst | a, Lam (_, i, _, b) when !eta -> let b' = mk_App (Subst.shift 1 a) (mk_DB dloc i 0) [] in (b, b') :: lst | Pi (_, _, a, b), Pi (_, _, a', b') -> (a, a') :: (b, b') :: lst | t1, t2 -> Debug.(debug d_reduce "Not convertible: %a / %a" pp_term t1 pp_term t2); raise Not_convertible let rec are_convertible_lst sg : (term * term) list -> bool = function | [] -> true | (t1, t2) :: lst -> (* Check physical equality first for optimisation. *) are_convertible_lst sg (if t1 == t2 then lst (* This test can be less expensive than computing the `whnf` if the two terms are equal. *) else if term_eq t1 t2 then lst else conversion_step sg (whnf sg t1, whnf sg t2) lst) (* Convertibility Test *) let are_convertible sg t1 t2 = try are_convertible_lst sg [(t1, t2)] with Not_convertible | Invalid_argument _ -> false (* ************************************************************** *) type state_reducer = position -> state -> state type term_reducer = position -> term -> term let logged_state_whnf log stop (strat : red_strategy) (sg : Signature.t) : state_reducer = let rec aux : state_reducer = fun (pos : position) (st : state) -> if stop () then st else match (st, strat) with (* Weak head beta normal terms *) | {term = Type _; _}, _ | {term = Kind; _}, _ -> st | {term = Pi _; _}, ByName | {term = Pi _; _}, ByValue -> st | {ctx; term = Pi (l, x, a, b); _}, ByStrongValue -> let a' = term_of_state (aux (0 :: pos) {ctx; term = a; stack = []}) in (* Should we also reduce b ? *) {st with term = mk_Pi l x a' b} (* Reducing type annotation *) | {ctx; term = Lam (l, x, Some ty, t); stack = []; _}, ByStrongValue -> let ty' = term_of_state (aux (0 :: pos) {ctx; term = ty; stack = []}) in {st with term = mk_Lam l x (Some ty') t} (* Empty stack *) | {term = Lam _; stack = []; _}, _ -> st (* Beta redex with type annotation *) | {ctx; term = Lam (l, x, Some ty, t); stack = p :: s; _}, ByStrongValue -> let ty' = term_of_state (aux (0 :: pos) {ctx; term = ty; stack = []}) in if stop () || not !beta then {st with term = mk_Lam l x (Some ty') t} else let st' = { ctx = LList.cons (lazy (term_of_state_ref p)) ctx; term = t; stack = s; } in let _ = log pos Rule.Beta st st' in aux pos st' (* Beta redex *) | {ctx; term = Lam (_, _, _, t); stack = p :: s; _}, _ -> if not !beta then st else let st' = { ctx = LList.cons (lazy (term_of_state_ref p)) ctx; term = t; stack = s; } in let _ = log pos Rule.Beta st st' in aux pos st' (* DeBruijn index: environment lookup *) | {ctx; term = DB (l, x, n); stack; _}, _ -> if n < LList.len ctx then aux pos {ctx = LList.nil; term = Lazy.force (LList.nth ctx n); stack} else {ctx = LList.nil; term = mk_DB l x (n - LList.len ctx); stack} (* Application: arguments go on the stack *) | {ctx; term = App (f, a, lst); stack; _}, ByName -> (* rev_map + rev_append to avoid map + append *) let tl' = List.rev_map (fun t -> ref {ctx; term = t; stack = []}) (a :: lst) in aux pos {ctx; term = f; stack = List.rev_append tl' stack} (* Application: arguments are reduced to values then go on the stack *) | {ctx; term = App (f, a, lst); stack; _}, _ -> let arg_reduce i t = ref (aux (i :: pos) {ctx; term = t; stack = []}) in let tl' = rev_mapi arg_reduce (a :: lst) in aux pos {ctx; term = f; stack = List.rev_append tl' stack} (* Potential Gamma redex *) | {ctx; term = Const (l, n); stack; _}, _ -> ( let trees = !dtree_finder sg l n in match find_dtree (List.length stack) trees with | alg, None -> comb_state_if_AC alg sg st | alg, Some (ar, tree) -> ( let s1, s2 = split ar stack in let s1 = if ar > 1 && Term.is_AC alg then match s1 with | t1 :: t2 :: tl -> let flat = flatten_AC_stack sg n [t1; t2] in ref {ctx; term = mk_Const l n; stack = flat} :: tl | _ -> assert false else s1 in match gamma_rw sg !selection s1 tree with | None -> comb_state_if_AC alg sg st | Some (rn, ctx, term) -> let st' = {ctx; term; stack = s2} in log pos rn st st'; aux pos st')) in aux let term_whnf (st_reducer : state_reducer) : term_reducer = fun pos t -> term_of_state (st_reducer pos (state_of_term t)) let term_snf (st_reducer : state_reducer) : term_reducer = let rec aux pos t = match term_whnf st_reducer pos t with | (Kind | Const _ | DB _ | Type _) as t' -> t' | App (f, a, lst) -> mk_App (aux (0 :: pos) f) (aux (1 :: pos) a) (List.mapi (fun p arg -> aux (p :: pos) arg) lst) | Pi (_, x, a, b) -> mk_Pi dloc x (aux (0 :: pos) a) (aux (1 :: pos) b) | Lam (_, x, a, b) -> mk_Lam dloc x (map_opt (aux (0 :: pos)) a) (aux (1 :: pos) b) in aux let reduction cfg sg te = let log, stop = match cfg.nb_steps with | None -> ((fun _ _ _ _ -> ()), fun () -> false) | Some n -> let aux = ref n in ((fun _ _ _ _ -> decr aux), fun () -> !aux <= 0) in let st_logger p rn stb sta = log p rn stb sta; cfg.logger p rn (lazy (term_of_state stb)) (lazy (term_of_state sta)) in let st_red = logged_state_whnf st_logger stop cfg.strat sg in let term_red = match cfg.target with Snf -> term_snf | Whnf -> term_whnf in selection := cfg.select; beta := cfg.beta; dtree_finder := cfg.finder; let te' = term_red st_red [] te in selection := default_cfg.select; beta := default_cfg.beta; dtree_finder := default_cfg.finder; te' let are_convertible = are_convertible let constraint_convertibility _ _ = are_convertible end module rec Default : S = Make (Default) (Matching.Make (Default))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>